

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Analytical Method Development and Validation for Simultaneous Estimation of Moxifloxacin Hydrochloride and Fluorometholone Acetate in Ophthalmic Suspension by RP-HPLC

Vennapusa Adireddy *, Karavadi Thejomoorthy and Ch. Saibabu

Department of Pharmaceutical Analysis, Malineni Lakshmaiah College of Pharmacy, Kanumalla, Singarayakonda-523101

ABSTRACT:

Moxifloxacin Hydrochloride (MOXI) is a fourth generation fluoroquinolone broad spectrum antibiotic agent used in conjunctivitis. Fluorometholone Acetate (FLM) is a corticosteroid employed for its steroidal anti inflammatory activity. The present study has established a specific, precise and accurate RP-HPLC method for simultaneous estimation of MOXI and FLM in ophthalmic suspension. The chromatographic system was equipped with Hypersil Gold BDS C_{18} column (25cm X 4.6mm, 5 μ) with PDA detection set at dual wave length of 295nm for MOXI and 240nm for FLM in conjunction with a mobile phase of phosphate buffer (pH adjusted to 3 by OPA) and a combination of methanol : acetonitrile (40:60 % v/v) with a gradient elution at flow rate of 1ml min⁻¹ and injection volume of 10 μ l with run time set for 20min. Optimum chromatographic separations were achieved at retention time of 5.1 min and 12.2 min for MOXI and FLM respectively. The method was validated in accordance with ICH guild lines. Response was a linear function over a concentration range of 50-150 μ g ml⁻¹ for MOXI (r²=0.9997) and 5-30 μ g ml⁻¹ for FLM (r²=0.9998) with a mean % recovery of 101% and 100.2% for MOXI and FLM respectively. The method resulted in good separation of analytes and degradation products with acceptable tailing and resolution. The results of the study showed that proposed RP-HPLC method was specific, precise and accurate which can be applied successfully for simultaneous determination of Moxifloxacin Hydrochloride and Fluorometholone Acetate in ophthalmic suspension for routine analysis and their stability studies.

Keywords: Moxifloxacin Hydrochloride, RP-HPLC, Method development, validation.

Introduction:

Moxifloxacin hydrochloride is known chemically as 1-Cyclopropyl-6-fluoro-1,4-dihydro-8-methoxy-7-[(4aS,7aS)-octahydro-6H-pyrrolo[3,4-b]pyridin-6-yl-4-oxo-3 quinolinecarboxylic acid hydrochloride. The antibiotic is classified as a broad-spectrum agent, which functions through the inhibition of two essential enzymes, namely DNA gyrase and topoisomerase IV. These enzymes, belonging to the type II topoisomerase group, play a crucial role in the separation of bacterial DNA, ultimately impeding the process of cell replication. The antibiotic is employed in the treatment of bacterial conjunctivitis, keratitis, as well as for the prevention and management of eye infections before and after surgical procedures. Ketorolac tromethamine is chemically denoted as (±)-5-benzoyl-2,3-dihydro-1H-pyrrolizine. The compound is a carboxylic acid with a substituent consisting of an amino group and a hydroxymethyl group attached to the same carbon atom. The compound -1,3-propanediol, which is structurally similar to indomethacin, belongs to the class of pyrrolizine carboxylic acid derivatives. It is primarily utilized as a nonsteroidal anti-inflammatory drug (NSAID) with its main therapeutic application being pain relief. Various techniques have been employed to analyze both moxifloxacin hydrochloride and ketorolac tromethamine, both individually and in conjunction with other pharmaceutical compounds. The moxifloxacin hydrochloride can be analyzed using various analytical methods, such as spectrophotometry and hplc.

Materials & Methods:

Instrument:

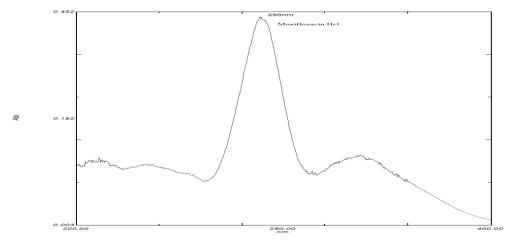
The equipments used are double beam Uv-Visible spectrophotometer (Make: Schimadzu, Model: Uv 1700) equipped with Uv probe 2.10 software, Analytical balance (Make: Schimadzu), pH meter (Make: Eu Tech), Sonicator: Ultrasonic bath sonicator (Model: 191500), Hot air oven (Make: Alpha Tempcon), water bath (Make: Alpha Tempcon). The chromatographic separation was carried out using HPLC Alliance Waters (2469) equipped with gradient system, connected to PDA detector. The data was acquired by Empower Pro.

Chemicals & Reagents:

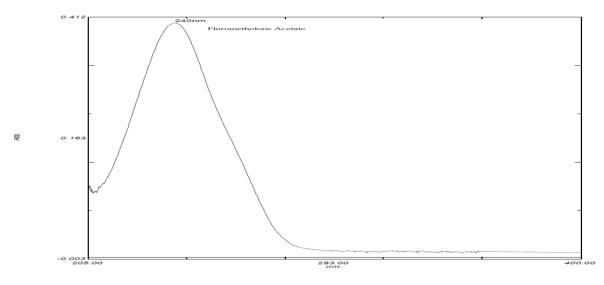
Moxifloxacin working standard was used for analysis. Methanol, Acetonitrile used are of HPLC grade solvents. Chemicals Orthophosphoric acid, Potassium Dihydrogen orthophosphate are of AR grade.

SELECTION OF WAVELENGTH

Selection of solvent


Mixture of Methanol and Water (70:30% v/v) was selected as the solvent for dissolving Moxifloxacin HCl and Fluorometholone Acetate.

Preparation of standard solutions


In order to prepare stock solution, 10 mg each Moxifloxacin HCl and Fluorometholone Acetate were accurately weighed and transferred into two separate 100 ml volumetric flasks respectively, about 70 ml of diluent was added to each flask and sonicated to dissolve, diluted up to mark with the diluent to obtain 100 µg/ml concentration each of Moxifloxacin HCl and Fluorometholone Acetate separately.

Determination of λ max

Both the standard solutions were scanned separately between 400nm to 200nm in 1cm cell against blank. The individual spectra for both drugs (Moxifloxacin HCl and Fluorometholone Acetate) were recorded as shown in Fig:-1&2.

Fig.No.1: UV Spectrum of Moxifloxacin HCl showing λ max of 295nm

SYSTEM SUITABILITY

System suitability test is a pharmacopeial requirement and is used to verify, whether the resolution and reproducibility of the chromatographic system are adequate for analysis to be done. The tests were performed by collecting data from five replicate injections of standard drug solution.

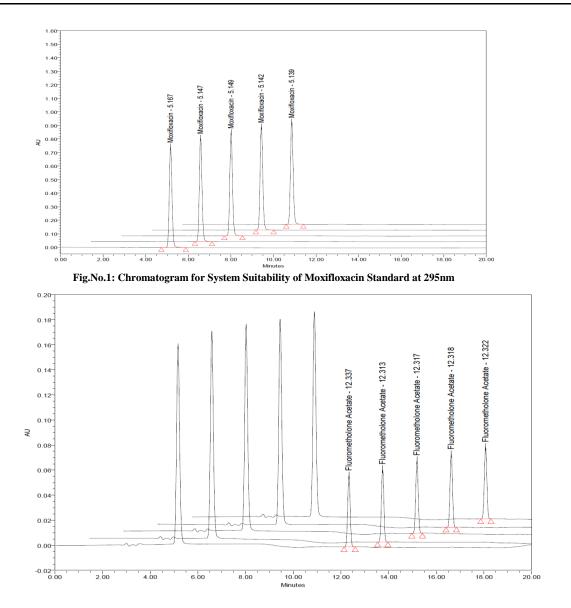


Fig.No.2: Chromatogram for System Suitability of Fluorometholone Acetate Standards at 240nm

Table No 2: Result and Statistical Data for System Suitability test of Moxifloxacin

Sample Name	Retention Time (min)	Area	Plate Count	Tailing
Standard 1	5.167	6708202	7668	1.1
Standard 2	5.147	6731189	7979	1.1
Standard 3	5.149	6735375	7911	1.1
Standard 4	5.142	6736760	7795	1.1
Standard 5	5.139	6721173	7734	1.1
Mean		6726538		
S.D]	11928.24]	
% RSD		0.177331		

Sample Name	Retention Time (min)	Area	Plate Count	Tailing
Standard 1	12.337	424055	61028	1.03
Standard 2	12.313	428199	62111	1.04
Standard 3	12.317	428486	60331	1.04
Standard 4	12.318	428048	61410	1.03
Standard 5	12.322	426945	61693	1.02
Mean		427146.6		
S.D		1824.3282		
% RSD		0.427096		

Table No 3: Result and Statistical Data for System Suitability test of Fluorometholone Acetate.

System Suitability Acceptance Criteria:

1. Relative standard deviation of the area of analyte peaks in standard chromatograms should not be more than 2.0%.

2. Theoretical plates of analyte peak in Standard chromatograms should not be less than 2000.

3. Tailing Factor (Asymmetry) of analyte peaks in Standard Chromatograms should be less than 2.0

Data interpretation:

It was observed from the data tabulated above that all the system suitability parameters meet the predetermined acceptance criteria as per the test method and indicates the suitability of the selected system.

LINEARITY AND RANGE:

Procedure:

Linearity was performed by diluting standard stock solution. From stock solution aliquots of 1.25, 2.5, 3.75, 5, 6.25, 7.5ml diluted to 25ml with dilutent such that the final concentration of Moxifloxacin in the range of 50 to 150 μ g/ml and Fluorometholone Acetate in the range of 5 to 30 μ g/ml. 10 μ l of each sample injected in duplicate for each concentration level and calibration curve was constructed by plotting the peak area versus the drug concentration. The observations and calibration curve is shown below.

<u>Weight of Std taken in mg \times Vol pipette out \times Potency \times Factor 1 \times 1000</u>

100 25 100 Factor 2

Calculation:

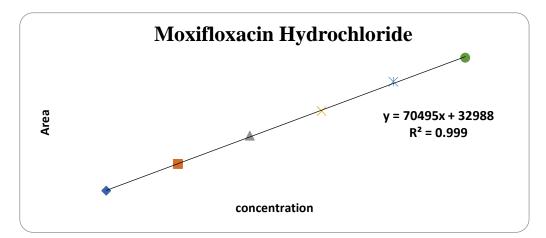

Final Conc. = $(\mu g/ml)$

Table No 4: Result and Statistical data for Linearity of Moxifloxacin

Sr .No	Linearity Level (%)	Vol. of stock Taken	Diluted	Concentration (ppm)	Avg. Area
1	25	1.25	25	23.9378	1698671
2	50	2.5	25	47.8757	3385855
3	75	3.75	25	71.8135	5171442
4	100	5	25	95.7514	6715986
5	125	6.25	25	119.6892	8574270
6	150	7.5	25	143.6270	10089220
		Correlation Coefficie	nt		0.9997
		Slope (m)	70495		
		Intercept (y)	32988		

Sr. No	Linearity Level (%)	Vol. of stock Taken	Diluted	Concentration (ppm)	Avg. Area
1	25	1.25	25	4.9644	107301
2	50	2.5	25	9.9288	213225
3	75	3.75	25	14.8932	325691
4	100	5	25	19.8576	425495
5	125	6.25	25	24.8220	543212
6	150	7.5	25	29.7864	645203
	•	Correlation Coefficien	t		0.9998
Slope (m)					21751
			1239		

Table No 5: Result and Statistical data for Linearity of Fluorometholone Acetate

Fig.No.5: Linearity Plot of Moxifloxacin

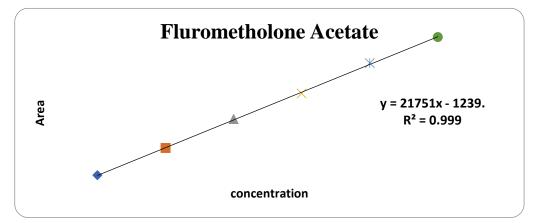


Fig.No.6: Linearity Plot of Fluorometholone Acetate

Acceptance Criteria:

The correlation coefficient should be NLT 0.999

Data Interpretation:

The *Correlation coefficient* for Moxifloxacin and Fluorometholone Acetate was found to be **0.9997** and **0.9998** respectively, which indicates that the peak responses were linear. This concluded that the method was linear throughout the range selected.

PRECISION:

The precision of an analytical method is the degree of agreement among individual test results when the method is applied repeatedly to multiple sampling of homogeneous sample. The precision of analytical method is usually expressed as the standard deviation or relative standard deviation (coefficient of variation) of series of measurement.

System precision

Standard solution was prepared as per the proposed method for system precision studies. Ten replicate injections were injected into the HPLC system. The % RSD for the peak responses of ten replicate injections should be *NMT 1.0*.

	Moxifloxacin		Fluorometholone Acc	etate
Injection no.	Retention Time	Area	Retention Time	Area
1	5.167	6708202	12.337	424055
2	5.147	6731181	12.313	428199
3	5.149	6735375	12.317	428486
4	5.142	6736760	12.318	428046
5	5.139	6721173	12.322	426945
6	5.138	6717112	12.338	425022
7	5.148	6720819	12.335	424125
8	5.149	6732231	12.312	428541
9	5.143	6734522	12.310	419085
10	5.138	6724678	12.339	420387
Mean		6726205		425289
S.D.		9364.205		3416.886
%RSD		0.1392		0.8034

Table No 6: Results and Statistical Data for System Precision of Moxifloxacin and Fluorometholone Acetate

Acceptance Criteria:

The % RSD for the ten determinations shall be NMT 1.0

Data interpretation:

It was observed from the data tabulated above, that the % RSD of the peak responses as peak area was found to be within acceptance criteria indicating an acceptance level of precision for system precision studies.

Method precision:

In method precision, a homogenous sample of a single batch should be analyzed six times. This indicates whether a method is giving consistent results for a single batch. To each six 100 ml flask, 2 gm sample of Moxifloxacin Hydrochloride and Fluorometholone Acetate were transferred. % assay values and RSD of assay were calculated.

Table No 7: Results for Method Precision of Moxifloxacin

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1001.1					
Wt. taken						
(in mg)	2014.5	2014.5	2014.5	2014.5	2014.5	2014.5
Area						
(Injection 1)	7048986	7202086	7189454	7188198	7199452	6953914
Area						
(Injection 2)	7046956	7245104	7154895	7165124	7125489	6980214
Average Area	7047971	7223595	7172175	7176661	7162471	6967064
% RSD	1.3592					
Assay(mg)	4.99	5.11	5.07	5.08	5.07	4.93
Assay (in %)	99.8	102.2	101.4	101.6	101.4	98.6
Average Assay		In mg = 5.04		100.8 %		

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1001.1					
Wt. taken						
(in mg)	2014.5	2014.5	2014.5	2014.5	2014.5	2014.5
Area (Injection 1)	437717	434568	437621	434523	435768	423178
Area (Injection 2)	437124	442015	432109	432712	438125	431021
Average Area	437421	438292	434865	433618	436947	427100
% RSD	0.9442					
Assay(mg)	1.01	1.01	1.00	1.00	1.01	0.99
Assay (in %)	101.0	101.0	100.0	100.0	101.0	99.0
Average Assay		In mg = 1.00		100.3.%		

Table No 8: Results for Method Precision of Fluorometholone Acetate

Acceptance Criteria:

The % RSD for the six determinations shall be NMT 2.0

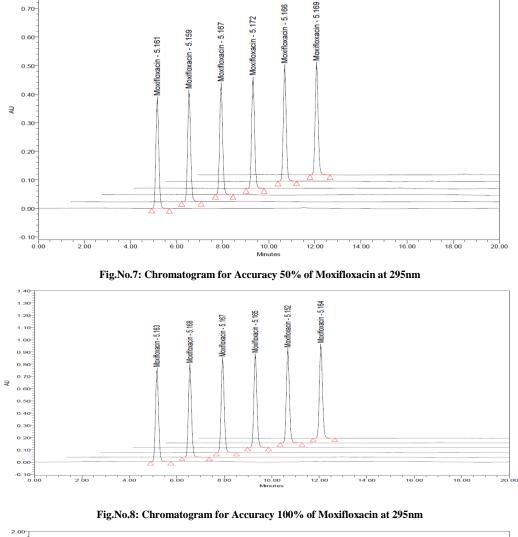
Data interpretation:

From the above results, it was concluded that the method was found to be precise.

ACCURACY:

The accuracy of an analytical method is the closeness of test results obtained by that method to the true value. Accuracy was performed in three different levels for Moxifloxacin and Fluorometholone Acetate. Spiked known quantity of Moxifloxacin and Fluorometholone Acetate Standard at 50%, 100% and 150% level into the placebo. Analyses of samples were done in triplicate for each level. From the results, % recovery was calculated.

Procedure for accuracy


Standard Preparation: Weighed accurately about 54.5mg of Moxifloxacin hydrochloride and 10mg of Fluorometholone Acetate in 100ml volumetric flask. To it added 50ml of diluent and sonicated for few minutes and then diluted upto mark with diluent.

Accuracy at 50 %: Accurately weighed 2001.2 mg of placebo, and spiked a known volume of standard preparation of 2.5ml was transferred to 25ml volumetric flask. To it 10 ml of diluent was added and sonicated for 5 minutes with occasional shaking and was cooled to room temperature then diluted upto the mark with diluent.

Accuracy at 100 %: Accurately weighed 2001.5 mg of placebo, and spiked a known volume of standard preparation of 5ml was transferred to 25ml volumetric flask. To it 10 ml of diluent was added and sonicated for 5 minutes with occasional shaking and was cooled to room temperature then diluted upto the mark with diluent.

Accuracy at 150 %: Accurately weighed 2001.3mg of placebo, and spiked a known volume of standard preparation of 7.5ml was transferred to 25ml volumetric flask. To it 10 ml of diluent was added and sonicated for 5 minutes with occasional shaking and was cooled to room temperature then diluted upto the mark with diluent.

0.80

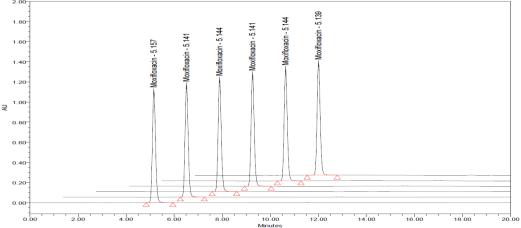
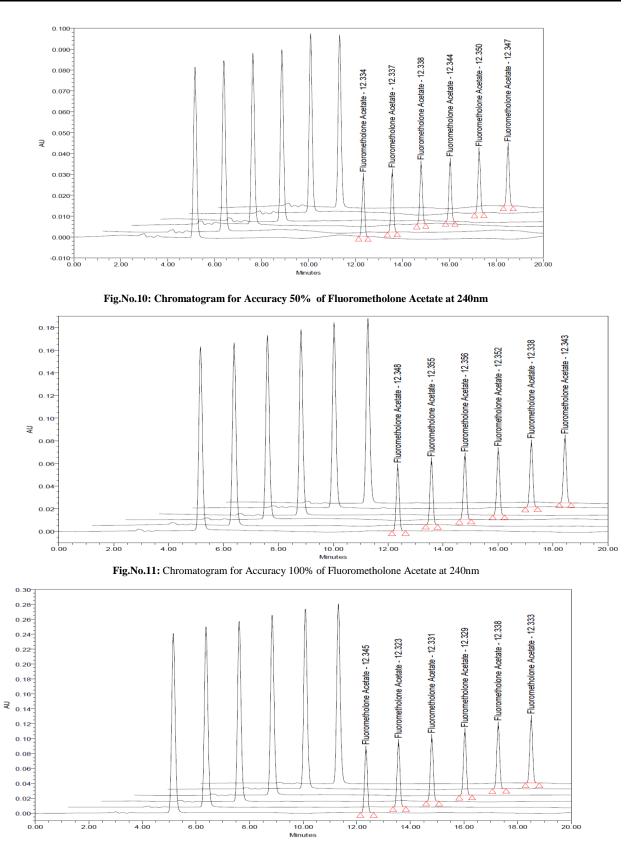
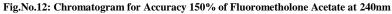




Fig.No.9: Chromatogram for Accuracy 150% of Moxifloxacin at 295nm

Amount of drug Recovered was calculated using following formula

Target Conc.	Vol.stk sol	Ppm Spiked	Area Inj 1	Area Inj 2	Avg Area	mg recov.	% Recovery	Avg Recovery	% RSD
50	2.5	52.8041	3464434	3444583	3454509	53.6408	101.6		
50	2.5	52.8041	3451381	3458279	3454830	53.6457	101.6	101.8	0.4
50	2.5	52.8041	3485817	3474087	3479950	54.0358	102.3		
100	5.0	105.6081	6798090	6812420	6805255	105.6703	100.1	100.4	0.4
100	5.0	105.6081	6834992	6813602	6824297	105.9660	100.3		
100	5.0	105.6081	6834989	6875277	6855133	106.4448	100.8	-	
150	7.5	158.4122	10240510	10310805	10275658	159.5578	100.7		
150	7.5	158.4122	10272369	10287123	10279746	159.6213	100.8	100.7	0.2
150	7.5	158.4122	10246149	10269604	10257877	159.2817	100.5		
						Overall Rec	overy	101.0	0.7

Table No 9: Result and Statistical data for Accuracy (Moxifloxacin)

 Table No 10: Result and Statistical data for Accuracy (Fluorometholone Acetate)

Target Conc.	Vol.stk sol	Ppm Spiked	Area Inj 1	Area Inj 2	Avg Area	ppm recov.	% Recovery	Avg Recovery	% RSD
50	2.5	10.0800	216420	217659	217040	10.0900	100.1		
50	2.5	10.0800	217595	218496	218046	10.1367	100.6	100.6	0.4
50	2.5	10.0800	219484	218478	218981	10.1802	101.0		
100	5.0	20.1600	430870	428659	429765	19.9793	99.1		0.5
100	5.0	20.1600	432899	432256	432578	20.1101	99.8	99.6	
100	5.0	20.1600	431928	435404	433666	20.1607	100		
150	7.5	30.2400	655274	650271	652773	30.3467	100.4		
150	7.5	30.2400	651573	654220	652897	30.3525	100.4	100.4	0.1
150	7.5	30.2400	652469	652705	652587	30.3381	100.3		
						Overall Rec	covery	100.2	0.5

SPECIFICITY AND SELECTIVITY:-

The analytes should have no interference from other extraneous components and be well resolved from them. Specificity is the procedure to detect quantitatively the analyte in presence of component that may be expected to be present in the sample matrix, while selectivity is the procedure to detect qualitatively the analyte in presence of components that may be expected to be present in the sample matrix.

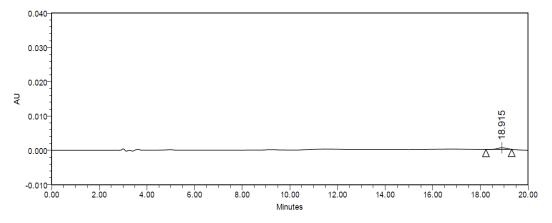


Fig.No.13: Typical Chromatogram for blank

Interference of Placebo:

Prepared the placebo solution by weighing equivalent amount of placebo present in the sample to be taken for assay preparation in triplicate, diluted it as per the test method and injected into the HPLC system. Evaluate the % interference from placebo and recorded the observation.

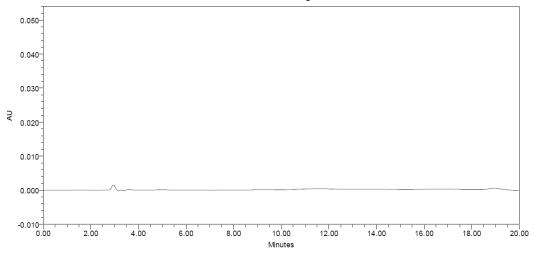


Fig.No.14: Typical Chromatogram for Placebo

INTERMEDIATE PRECISSION/ RUGGUDNESS:

Standard preparation and sample preparations were prepared and injected into the HPLC system by different analyst to record the chromatograms and measured the peak responses for the Moxifloxacin and Fluorometholone Acetate peaks.

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1001.1			-		
Wt. taken (in mg)	2000.2	2000.2	2000.2	2000.2	2000.2	2000.2
Average Area	7000347	7002835	7001795	7006522	7016254	7000438
% RSD	0.07945			-		
Assay(mg)	4.99	4.99	4.99	4.99	5.00	4.99
Assay (in %)	99.8	99.8	99.8	99.8	100.0	99.8
Average Assay(mg)		In mg = 4.99		99.8 %		

Table no.11: Results for Analyst 1 Variability of Moxifloxacin

Table no.12: Results for Analyst 2 Variability of Moxifloxacin

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.2					
Wt. taken (in mg)	2011.1	2011.1	2011.1	2011.1	2011.1	2011.1
Average Area	7013793	7016543	7020679	7050273	7128718	7001464
% RSD	0.66819					
Assay(mg)	4.97	4.97	4.97	4.99	5.05	4.96
Assay (in %)	99.4	99.4	99.4	99.8	101.0	99.2
Average Assay		In mg = 4.99		99.7%		

Table no.13: Results for Analyst 1 Variability of Fluorometholone Acetate

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1001.1	- 1				
Wt. taken (in mg)	2000.2	2000.2	2000.2	2000.2	2000.2	2000.2
Average Area	427978	426148	427605	429914	421374	426706
% RSD	0.951	-				1
Assay(mg)	0.99	0.99	0.99	1.00	0.98	0.99
Assay (in %)	99.8	99.0	99.4	100	98.0	99.3
Average Assay		In mg = 0.99			99.0%	

Table no.14: Results for Analyst 2 Variability of Fluorometholone Acetate

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.2					
Wt. taken (in mg)	2011.1	2011.1	2011.1	2011.1	2011.1	2011.1
Average Area	431819	437646	419935	437764	429470	428869
% RSD	1.583					
Assay(mg)	1.00	1.01	0.97	1.01	0.99	0.99
Assay (in %)	100.0	101.0	97.0	101.0	99.0	99.0
Average Assay		In mg = 1.00		99.5%		

Different Column:

Standard preparation and sample preparations were prepared and injected into the HPLC system by using different column to record the chromatograms and measured the peak responses for the Moxifloxacin and Fluorometholone Acetate peaks.

Table no.15: Results for Column Variability of Moxifloxacin

Test No						
	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.2					
Wt. taken (in mg)	2011.1	2011.1	2011.1	2011.1	2011.1	2011.1
Average Area	7103347	7065738	7067582	7099553	7004866	7045652
% RSD	0.5166					
Assay(mg)	5.03	5.00	5.00	5.03	4.96	4.99
Assay (in %)	100.6	100.0	100.0	100.6	99.2	99.8
Average Assay		In mg = 4.99		99.9%		

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.2					
Wt. taken						
(in mg)	2011.1	2011.1	2011.1	2011.1	2011.1	2011.1
Average Area	437728	419729	429624	423192	429316	415069
% RSD	1.7103	-1			r	
Assay(mg/)	1.01	0.97	0.99	0.98	0.99	0.96
Assay (in %)	101.0	97.0	99.0	98.0	99.0	96.0
Average Assay		In mg = 0.98		98.3%		

Table no.16: Results for Column Variability for Fluorometholone Acetate

Different Days:

InterDay Study:

The interday study was performed by applying the proposed method on same sample of solution on different days. The percentage label claim was calculated for the above observations.

Day	Wt of SPL	wt/ml	Avg sample area		Assay In mg		%Label claim	
			MOXI	FLM	MOXI	FLM	MOXI	FLM
0	2004.1	1000.2	7100575	424083	5.04	0.98	100.8	98
2	2006.4	1000.2	7110565	427317	5.05	0.99	101	99
4	2012.7	1000.2	7170187	438314	5.07	1.01	101.4	101
						%RSD	0.3022	1.5377

Intraday study:

The intraday study was performed by applying the proposed method on the same sample of the solution on the same day at two hours interval. The percent label claim was calculated from the obtained results

Table no.18: Results for InterDay study of Moxifloxacin and Fluorometholone Acetate

Time(hrs)	Wt of SPL	wt/ml	Avg sample area		Assay In mg		%Label claim	
			MOXI	FLM	MOXI	FLM	MOXI	FLM
0	2000.3	1002.5	7001820	424639	5.00	0.99	100	99
2	2000.3	1002.5	7001703	425938	5.00	0.99	100	99
4	2000.3	1002.5	7053212	419145	5.03	0.98	100.6	98
						%RSD	0.3457	0.5851

System variability:

The system variability study was performed by applying the proposed method on same sample of solution on different systems. The percentage label claim was calculated for the below observations.

Table no.19: Results for System Variability Results of Moxifloxacin

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.1			F	~~~ r ~~ -	r
Wt. taken (in mg)	2007.1	2007.1	2007.1	2007.1	2007.1	2007.1
Average Area	7093032	7019193	7045632	7076280	7051400	7059826
% RSD	0.4166				•	-
Assay(mg)	5.03	4.98	5.00	5.02	5.00	5.01
Assay (in %)	100.6	99.6	100.0	100.4	100.0	100.2
Average Assay		In mg = 5.01		100.1%		

Table no.20: Results for System Variability Results of Fluorometholone Acetate

Test No	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6
Weight/ml	1000.1					
Wt. taken						
(in mg)	2007.1	2007.1	2007.1	2007.1	2007.1	2007.1
Average Area	427031	432771	429255	434984	428312	426908
% RSD	0.8103	•				
Assay(mg)	0.99	1.00	0.99	1.01	0.99	0.99
Assay (in %)	99.0	100.0	99.0	101.0	99.0	99.0
Average Assay		In mg = 0.99		99.5%		

Table. No.21 Compatibility results of ruggedness for Moxifloxacin

S.No.	Method Precision	Analyst Variability	Different days	Column Variability	System Variability
1	99.8	99.6	100.8	100.6	100.6
2	102.2	99.6	101	100	99.6
3	101.4	99.6	101.4	100	100
4	101.6	99.8	100	100.6	100.4
5	101.4	100.5	100	99.2	100
6	98.6	99.5	100.6	99.8	100.2
Overall Avg.			100.2		
Overall %RSD			0.459		

Table. No 22 Compatibility results of ruggedness for Fluorometholone Acetate

S.No.	Method	Analyst	Different	Column	System		
5.110.	Precision	Variability	days	Variability	Variability		
1	101	99.9	98	101	99		
2	101	100	99	97	100		
3	100	98.2	101	99	99		
4	100	100.5	99	98	101		
5	101	98.5	99	99	99		
6	99	99.2	98	99	99		
Overall Avg.			99.2				
Overall %RSD		0.746					

Acceptance criteria:

The overall % RSD for the above determinations shall be NMT 2.0

Data interpretation:

The overall % assay and overall % RSD for above determinations was found to be within acceptance criteria for the cumulative comparisons with data of method precision and ruggedness study. Hence, method was rugged.

CONCLUSION

In RP-HPLC method, the conditions were optimized to obtain an adequate separation of eluted compounds. Initially, various columns, mobile phase compositions were tried, to separate titled ingredients. Column selection depends upon the structural integrity of the selected compounds. Since MOXI and FLM were having higher carbon to heteroatom ratio can be well separated by both C8 or C18 stationary phases which in turn depends upon their overall hydrophobicity. For optimization of chromatographic conditions and to obtain symmetrical peaks with better resolution and with no peak impurity various stationary phases with different packaging materials (Inertsil ODS C₁₈, Gemini NX C₁₈, Phenomenex C₈, Hypersil gold BDS C₁₈) were applied. Mobile phase and flow rate selection was based on peak parameters (height, tailing, theoretical plates, capacity or symmetry factor), run time and resolution. The system with Hypersil Gold BDS C₁₈ (250 X 4.6 X 5 μ) as column and KH₂PO₄ having pH 3.0 buffer and methanol : acetonitrile as mobile phase at gradient flow rate of 1.0 ml min⁻¹ was found to be quite robust.

References:

- 1] Willard HH, Merritt LL, Dean JA and Settle FA (2001). Instrumental Methods of Analysis. 7th ed. Delhi: CBS Publishers and Distributors. p3.
- 2] Skoog DA, West DM and Holler FJ (1996). Fundamentals of Analytical Chemistry. 7th ed. Philadephia: Saunders College Publishing. p. 1-3.
- 3] Sharma BK (2002). Instrumental Methods of Chemical Analysis. 21st ed. Meerut: Goel Publishing House, p. 3-5.
- Skoog DA, Holler FJ, Timothy A and Nieman NW (2004). Principle of Instrumental Analysis. 5th ed. Bangalore: Eastern Press. p. 1-2, 678-688, 695-696.
- 5] Scott RPW (2003). Technique and Practice of chromatography. Marcel Dekker: Vol. 70. New York: p. 1-12.
- 6] Jeffery GH, Basset J, Mendham J and Denney RC (1996). *Vogel's textbook of Quantitative Chemical analysis*. 5th ed. England: Longman Publication. p. 647-649.
- 7] Connors KA (1999). A textbook of Pharmaceutical Analysis. 8th ed. New York: Wiley-Interscience. p. 408-421.
- 8] Hamilton RJ and Sewell PA (1982). Introduction to HPLC. 2nd ed. London: Chapman and Hall. p. 189.
- 9] Chatwal GR and Anand SK (2004). Instrumental Methods of Chemical Analysis. 5th ed. Delhi: Himalaya Publishing House. p. 2.599-2.605.
- 10] Sethi PD (2001). 'High Performance Liquid Chromatography', Quantitative Analysis of Pharmaceutical Formulations, 1st ed. New Delhi: CBS Publishers and Distributors. p. 3-11, 116-120.
- 11] Sharma BK (2003). Instrumental Methods of Chemical Analysis. 25th ed. Meerut: Goel Publishing House. p. 39-42, 96-104.
- 12] Parimoo P (1998). Pharmaceutical Analysis.1st ed. New Delhi: CBS Publication and Distributors. p. 151-152.
- 13] Schrimer RE (1991). Modern Method Pharmaceutical Analysis. 2nd ed. CRC Press. Vol -1. p. 75-76.
- 14] Beckett AH and Stenlake JB (2004). Practical Pharmaceutical Chemistry. Part 2. New Delhi: CBS Publishers and Distributors. p. 282-283
- 15] Munson JW. (2001). Pharmaceutical Analysis: Modern Methods (Part B). New York: Marcel Dekker. p. 51-54,120,175.
- 16] Scott RPW. (1993). Liquid Chromatography for the Analyst. New York: Marcel Dekker. Vol. 67. p. 15-23, 265-272.
- 17] Snyder LR, Kirkland JJ and Glajch JL (1997). Practical HPLC Method Development. 2nd ed. New York: Wiley. p. 1-20.
- 18] Ewing's. (2005). Analytical Instrumentation Handbook, 3rd ed. New York. Cazes J, Marcel Dekker. p. 995-998.
- 19] ICH Harmonised Tripartite Guideline (Nov 2005) Validation of Analytical Procedures: Text and Methodology Q2 (R1).
- 20] ICH, (October 1993). Q1A Stability testing of New Drug Substances and Products in Proceedings of the International Conference on Harmonization, Geneva.
- 21] The United States Pharmacopoeia, The Official Compendia of Standards, (2006), 29th ed., Rockville, MD, USP convention Inc.
- 22] Dinesh M. Dhumal, Atul A. Shirkhedkar* and Sanjay J. Surana . Quantitative determination of Moxifloxacin Hydrochloride in bulk and ophthalmic solution by UV- spectroscopy and first order derivative using area under curve. (2011). *Scholars Research Library*. 3(3), 453-456.
- 23] Vandhana, Alok kumar chaudhary.(2010). A Novel and validated Spectrophotometric method for estimation of Moxifloxacin Hydrochloride in tablets. African Journal of Pharmaceutical sciences and Pharmacy. 1 (1), 50-56.

- 24] Lobna M. Abdellaziz and Mervat M. Hosny. (2011). Development and validation of Spectrophotometric, atomic absorption and kinetic methods for determination of Moxifloxacin Hydrochloride. *Analytical Chemistry insights*. 6, 67-78.
- 25] Renaud Respaud, Solene Grayo, Eric Singlas, Sophie, Alban Le and Marie (2012). HPLC Assay for Moxifloxacin in Brain Tissue and Plasma. *Journal of Analytical Methods in Chemistry*. 1-7.
- 26] W.F.El-Hawary, Faisal, Al-Gethami. (2013). Mutual Spectrophotometric Determination of Moxifloxacin Drug and Iron Ions by Complex Formation. *European Chemical Bulletin*. 2(1), 22-27.