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ABSTRACT 

Weed identification is more difficult in rice plantations due to uneven plant spacing. Traditional approaches  to obtain a real-time solution, However, the majority 

of crops past research has required rapid and constant-time weed detection, which was mainly centred on the weed. Weed species, on the other hand, vary 

considerably. This project overtures a new method for combining  the use of more advanced but time-consuming methods, such as CNN algorithm with image-

processing technology approaches. To detect weeds in rice plantations Alex Net model in MATLAB was utilized. Then, the classification based on image processing 

is done. Furthermore, this method has the potential to substantially minimize the size of the dataset images used for training process to obtain the complexity of 

weed detection, resulting in improved identification of weeds performance and accuracy. Deep neural networks and image processing were utilized to differentiate 

the weeds from the background using grey scaling-based picture segmentation. The colour index that was used to determine. Image processing was used to classify 

weeds from the rice crop. Based on this the rover is designed which contains a pluckier to destroy the weeds and the fertility of the soil is also checked. This rover 

is controlled and monitored using IOT application. Thus this proposed rover is capable of destroying the weed without delays in detection occur in various 

topographical conditions and crop growth phases. 

Index Terms: Weed detection, CNN, image processing. 

I. INTRODUCTION 

Weed control has been an ongoing problem for farmers for more than a century. Herbicide resistance, human health concerns, and environmental pollution 

are all caused by the continuous use of herbicides, which have proven to be effective in weed control. Because of the negative consequences, governments 

and farmers are attempting to reduce it. 

The use of herbicides in agricultural production (Hillocks, 2012) can be overcome by precision farming, which uses weeding mechanisms to treat 

individual plants or small weed clusters (Weis et al., 2008). By doing so,  the usage of chemicals in agriculture can be considerably reduced, if not 

completely eliminated. Human-oriented precision weeding technology, on the other hand, usually requires labour-intensive and human resources, 

diminishing the financial benefits of herbicide savings. Robots are controlled electro-mechanically to do tasks quickly and accurately. When various 

duties that people either don't want to undertake or are incapable of executing are replaced by robots. Rover is a contemporary autonomous robot that 

moves in accordance with the operator's wishes. A rover that is capable of performing agricultural duties is known as an Agri-rover. In the farm, several 

rovers can be utilized for tasks like spraying, collecting fruit, etc. Based on an analysis of the last 20 years' progress in vision technology for mobile robot 

navigation. This review has looked at a number of developments in a vision for rover outdoor navigation and how they relate to the potential automation 

of many elements of crop production. The process of destroying the weeds among crops is based more on the segmented and classified images captured 

and the pluckier is designed in such a way  without harming and disturbing the crops. An application is developed prototyping system for monitoring 

mobile assistance rover.  GPS is used for precision in localization and can be employed in tough conditions when the signal is greatly degraded due to 

dense vegetation. Currently, there is substantial development in the use of robotic weed management technology, which includes weed detection and 

destruction. This is because automated weed control helps in reducing the cost and boost the crop efficiency. 

The rover's visual system is dependent on intelligent weeding equipment to recognize weeds. However, the efficiency of the machine vision system is 

influenced by environmental variables such as illumination and color variations in the soil as well as in leaves, limiting the precision of weed management. 

Since artificial intelligence is currently blooming, Deep-learning weed detection algorithms have made great progress. Crop/weed detection systems 

based on Convolutional Neural Networks (CNN) are being demonstrated to yield accurate results. 

Weed control in agriculture is a time-consuming operation. It necessitates a considerable amount of manpower as well as, at times, machine power. Some 

of the issues with existing approaches are as follows: 

• Using herbicides - Because chemicals like glycol are harmful, they pollute the land and degrade soil quality. 
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• Hand cutting - human labour is in short supply and has become an expensive investment. Furthermore, field labourers are threatened by toxic insects 

and reptiles.  

• Mechanised cutting - Power tools run on petroleum fuels or batteries. Petroleum fuels have their own cost disadvantage. Manual labour is used to operate 

this equipment, and the labour cost for operating these machines is also rather high. 

To overcome the limitations of current technologies, this deep learning-based rover will be a cost-effective weed-control option. 

• A microprocessor-controlled rover will navigate the field. 

• It will follow a course that spans the entire field. 

• If it finds a weed in its path, it will halt and engage its cutters to cut it; if it detects a rice crop, it will navigate around it. 

II.WORKING METHOD 

The approach provided in this project for weed detection is divided into two parts. In this study, the first step comprises of the cutting-edge AlexNet 

algorithm [21] for weed detection. Weed images are gathered and utilised providing input dataset for the neural network that has been trained detects 

weeds and highlight it to identify class probabilities. The next stage is to perform   colour segmentation on the weed in pixels within the boxes, resulting 

in a visual categorization of the detection of weeds among crops in the image. Figure 1 depicts the suggested method's procedural phases. The rest of this 

section goes over each stage in detail. 

The AlexNet algorithm was used for testing and training in the MATLAB deep learning framework using a GPU(graphics processor unit). 

A. IMAGE ACQUISITION 

Weed images were captured with a Raspberry Pi camera. Images of rice plantations are being collected for training purposes. Weed pictures were captured 

under a variety of settings, including different lighting conditions (Fig. 2a), complicated backgrounds (Fig. 2b), and various growth stages.  

 

 

 

 

 

 

 

 

Fig.2a Data collection of photos of rice plantations classified by crop size, colour, and spacing 

 

 

 

 

 

 

 

Fig. 2b. Images of weed among plants based on several circumstances: low, medium, and high brightness, backdrop complexity 

B. DETECTION OF WEEDS WITH DEEP LEARNING 

IMAGE MODIFICATION  

The training set contained 1000 photographs, which were later enlarged to 10000 images utilizing image augmentation techniques to boost the amount 

of information in the experimental dataset. As shown in Fig. 3, the gathered photographs were pre-processed under different conditions based on colour 

quality, brightness of the area, different angles and picture definition, and the dataset was expanded.  
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Fig.3: Images that have been pre-processed based on colour quality, brightness, angles, and picture definition 

IMAGE ANNOTATION  

Using MATLAB software LabelImg, boundary boxes were drawn onto the plants (in this case, rice) in the input photos for manual annotation. To train 

the AlexNet, appropriate XML format label files were created. Training and testing used 80% and 20% of the dataset, respectively. 

TESTING AND LEARNING  

The AlexNet algorithm is an advanced, completely unique object detector that uses significant estimations rather than anchors. In AlexNet, objects are 

illustrated as a single solid mark, and heat map visualizations are utilized to estimate their centres. The heatmap is constructed with an SDGN, and the 

predicted centres are determined by the peak values of the heatmap. Object attributes such as size and dimension are determined by the centre localization. 

Figure 4 depicts the AlexNet model created in MATLAB. 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: AlexNet MATLAB was used to create the model. 
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Fig.4.a. Convolutional 2d layer 

When the vegetation was discovered, Rice crops were labelled as the other green particles that fell outside of the boundary boxes. Colour 

index segmentation for outdoor field conditions employing binary-coded defining weed in RGB colour space was researched and applied to differentiate 

weeds among other components in the image (i.e. dirt, soil and leftovers) was investigated and applied.   

The resulting segmentation was then compared to the commonly used excess colour green index. 

 

 

 

 

 

 

 

Fig 5 depicts the image pixel in grey scale. 

The process of identifying an axis that intersects the RGB colour cube and thus classifying an image into rice and weed pixels is referred to as 

segmentation.  

The equation aR + bG + cB = T (1) defines the plan. To distinguish plants the values of a, b, c, and T must be chosen in the context. 

 

 

 

 

 

 

 

 

 

 

Block Diagram Of The Proposed System 
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III. RESULT AND DISCUSSION 

WEED DETECTION PERFORMANCE   

The input photos were shrunk to 512 512 pixels are needed to accommodate the Hourglass framework input. To further analyse training process, The 

highest possible value of epochs is fixed as 24 and the overall value of groups is fixed 2. Remaining elements (momentum, starting training rate, weight 

reduction regularization, and so on) referred to the AlexNet model's default values. By implementing the training procedure given in the original 

publication on AlexNet during the training stage, the algorithm is trained as per the specified parameters. To optimize training loss, the configuration 2d 

layer was modified the weights of networks according to training data. Table 3 displays the initialized values for the training parameters.  

 

 

 

 

 

 

 

 

 

 

Figure 6 depicts the training and validation of datasets based on accuracy level. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Deep Network Analysis Table 

Identification of weeds among rice crop is shown in Fig 9. The outcome shows that the trained AlexNet model is also capable of distinguishing vegetation 

and  weed. The fact that there are a significant variety in weed species is also important to note. Direct identification of weed is the conventional method. 

As a result, various weed datasets must be used to build deep learning models for categorization. The detection is probably to fail if there is some sort of 

weeds that haven't been observed during the training process. A suggested approach, in contrast, instructs the model to just recognize vegetation. This 

eliminates the need to manage different weed plants. 

Whenever we come across unspecified weeds, misidentification is common. Occlusion may cause plant to be missed, according to observations of the 

detection instances (Fig. 10). Some crops were planted extremely close together and were entirely veiled in Fig. 10. If such cases were seen in the field, 

they would go unidentified. This scenario, however, can be overcome by including high obstructed data in the training set. 
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Figure 8. depicts the training procedure for determining accuracy and loss. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows the outcome of detecting the precision of the trained data. 

 

 

 

 

 

 

 

 

 

 

Fig.10: Image testing results with 87.4% accuracy. 

  



International Journal of Research Publication and Reviews, Vol 4, no 7, pp 2694-2703 July 2023                                     2700

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11: Image Clustering 

Fig.12 (a) ) filter applied for locating the weed area to figure 11, (b) filter applied for locating the weed area to figure 11, (c) segmentation of the image 

from Figure 11. 

PERFORMANCE OF WEED SEGMENTATION 

The 11th figure shows the outcome of applying the suggested algorithm to the photos in Figure 2b, revealing that weeds were precisely segregated from 

the surrounding environment for images taken under natural conditions. This is known as clustering process. The image clustering result was compared 

in order to further validate the accuracy of the segmentation. The ExG indicators is frequently utilized and performs a good job of separating plants from 

the backdrop. The ExG index turned a colour  picture to a grey scale picture, which was easily converted to a binary image using the algorithm. approach. 

A review of Fig. 11 revealed that the ExG + Otsu technique result was tainted by additional sounds. A few pixels in the backdrop were incorrectly 

categorized as dust or stones (noises) because to colour similarity between weeds and background. These noises were frequently dispersed throughout 

the image. To remove of the minute noise present in binary images, a filter using  a thresholding method. Each related region's area was determined. 

Objects lesser than current threshold value (determined by test and errors) are classified as noise and it is filtered in (Figure. 12).  

The segmentation results are displayed, with vegetation regions designated by a red mark. similarly just swapping reference photos and calculating the 

pixels that represent the distribution frequencies of the matching targets, this technique may be easily replicated. 

IV. CONCLUTION 

This research describes a method for detecting weeds among rice crop plantations utilizing deep learning technology with image processing and destroying 

it with a rover. The process is carried out in two stages. To classify vegetation, a AlexNet algorithm is used for training the model. The trained AlexNet 

achieved 98.6% precision. The segmented image, which highlights objects in white, is classified as weeds. As a result, this model focuses on detecting 

only weeds and avoids rice crop.  

This research made the following contributions:  

1) it investigated and presented a process for detecting weeds in vegetative plantations utilizing deep learning with image processing.  
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2) Created novel and indirect method for distinguishing between rice and weeds.  

3) Under natural conditions, offer a colour index for extracting weeds from the background.  
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