WWW.IJRPR.COM

Buckling of Isotropic Clamped-Simple-Clamped-Simple and Clamped-Simple-Simple-Simple Rectangular Plates by Applying $3^{\text {rd }}$ Order Energy Functional.

Uzoukwu C. S., Ogbonna N. S., Chike K. O., Ikpa P. N., Emejulu D. A.
Civil Engineering Department, Federal University of Technology, Owerri, Nigeria.
DOI: https://doi.org/10.55248/gengpi.4.723.49286

Abstract

The work covers the buckling of rectangular Clamped-Simple-Clamped- Simple and Clamped-Simple-Simple-Simple Isotropic plate using odd number Functional. For the derivation of the Energy Functional, 3rd order was adopted. On getting the shape functions, the integral values of the differentiated shape functions of the various boundary conditions were obtained. From these, the stiffness coefficients of the various boundary conditions were derived. The Third order strain energy equation was derived which was further expanded to generate the Third Order Total Potential Energy Functional. The Third Order Total Potential Energy Functional was integrated with respect to the amplitude, giving a result known as the Governing equation. Further minimization of the governing equation gave rise to the critical buckling load equations. The non-dimensional buckling load parameters were obtained by substituting the different aspect ratios, m / n ranging from 1.0 to 2.0 , at the interval of 0.1 . The graph of non-buckling load parameters against the aspect ratios was plotted, and it was observed that the increase in one axis brought about the decrease in the other axis.

Key words: Total Potential Energy Functional, Buckling Coefficient , Flexural Rigidity $3{ }^{\text {rd }}$ Order Functional
Notation S
§ - Stress,ð- Strain, S- simple support, Cl- clamped support. n-Length of the primary dimension of the plate, m- Width of the secondary dimension of the plate, t - Tertiary dimension (thickness) of the plate

T - Total Potential Energy Functional, - the aspect ratio,F- the Deflection.
G - the flexural Rigidity, Am - Amplitude, B_{x} - Buckling Load Equation.

1. Introduction:

From the general research made in the course of this work, a plate can be defined as a structural element with either straight or curves boundaries, having primary, secondary and tertiary dimension (thickness), with the tertiary dimension very small compared to other dimensions. The isotropic rectangularClSCIS and CISSS platehave all their material properties in all directions as the same. These properties includes flexural rigidity, Young elastic modulus of elastic and Poison ratiobut when these materials are not uniform, it's said to be orthotropic plates. Stability analysis which is the same as buckling tendency of rectangular plate has been a subject of study in solid structural mechanics for more than a century. Although the buckling analysis of rectangular plates has received the attention of many researchers for several centuries, its treatment has left much to be done. Other researchers before now have gotten solution using both the Second and Fourth the Order energy functional for Buckling of plate. None of the researchers have any work on buckling of plate using Third order energy functional and so the resolution of the buckling tendency of CISClS and ClSSS isotropic plate using third order energy functional is the gap the work tends to fill. Diagrammatically, the plates can be shown as

Fig.1aClamped-Simple-Clamped-Simple Plate Fig.1b Clamped-Simple-Simple-Simple Plate

BUCKLING LOAD EQUAUTION;

Total potential energy, \uparrow is the summation of strain energy, $€$ and external work, v given as:
$T=\epsilon+v \quad 1$
To derive the strain energy, $€$ the product of normal stress and normal strain in x direction is considered as
$\S_{\mathrm{x}} \mathrm{J}_{\mathrm{x}}=\frac{E Z^{2}}{1-\mu^{2}}\left(\left[\frac{\partial^{2} f}{\partial x^{2}}\right]^{2}+\mu\left[\frac{\partial^{2} f}{\partial x \partial y}\right]^{2}\right)$

$$
2
$$

while their product in y direction is considered as
$\S_{y} \mathrm{\partial}_{\mathrm{y}}=\frac{E z^{2}}{1-\mu^{2}}\left(\left[\frac{\partial^{2} f}{\partial y^{2}}\right]^{2}+\mu\left[\frac{\partial^{2} f}{\partial x \partial y}\right]^{2}\right)$
andfinally the product of the in-plane shear stress and in-plane shear strain is given as:
$\tau_{x y} \gamma_{\mathrm{xy}}=2 \frac{E z^{2}(1-\mu)}{\left(1-\mu^{2}\right)}\left[\frac{\partial^{2} f}{\partial x \partial y}\right]^{2}$
adding all together gives
$\S_{\mathrm{x}} \partial_{\mathrm{x}}+\S_{\mathrm{y}} \partial_{\mathrm{y}}+\tau_{x y} \gamma_{\mathrm{xy}}=\frac{E z^{2}}{1-\mu^{2}}\left(\left[\frac{\partial^{2} f}{\partial x^{2}}\right]^{2}+2\left[\frac{\partial^{2} f}{\partial x \partial y}\right]^{2}+\left[\frac{\partial^{2} f}{\partial y^{2}}\right]^{2}\right)$
5
but $€=\frac{1}{2} \iint_{\mathrm{xy}} \overline{\mathcal{E}}$ dxdywhere $\bar{Є}==\frac{\mathrm{Ez}^{2}}{1-\mu^{2}} \int\left(\left[\frac{\partial^{2} f}{\partial x^{2}}\right]^{2}+2\left[\frac{\partial^{2} f}{\partial x \partial y}\right]^{2}+\left[\frac{\partial^{2} f}{\partial y^{2}}\right]^{2}\right)$

Upon minimisation of the expressions above, the third order strain energy equation is given as
$\epsilon=\frac{G}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial^{3} f}{\partial x^{3}} \cdot \frac{\partial f}{\partial \mathrm{x}}+2 \frac{\partial^{3} f}{\partial \mathrm{x} \partial \mathrm{y}^{2}} \cdot \frac{\partial \mathrm{f}}{\partial \mathrm{x}}+\frac{\partial^{3} f}{\partial y^{3}} \cdot \frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right) \mathrm{dxdy}$
with the external load as $\mathrm{v}=-\frac{B x}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2}$ dxdy 8

The third order total potential energy functional is expressed mathematically as
$\mathrm{T}=\frac{G}{2} \iint\left(\frac{\partial^{3} f}{\partial x^{3}} \cdot \frac{\partial \mathrm{f}}{\partial \mathrm{x}}+2 \frac{\partial^{3} f}{\partial \mathrm{x}^{2} \partial \mathrm{y}} \cdot \frac{\partial \mathrm{f}}{\partial \mathrm{y}}+\frac{\partial^{3} f}{\partial y^{3}} \cdot \frac{\partial \mathrm{f}}{\partial \mathrm{y}}\right) \mathrm{dxdy}-\frac{B x}{2} \iint \frac{\partial^{2} f}{\partial x^{2}} \mathrm{dxdy}$
Rearranging the total potential energy equation, the buckling load equation is gotten as
$\mathrm{B}_{\mathrm{x}}=\frac{\frac{\mathrm{G}}{\mathrm{a}^{2}} \int_{0}^{1} \int_{0}^{1}\left(\left[\frac{\partial^{3} h}{\partial R^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{R}}+2 \frac{1}{p^{2}}\left[\frac{\partial^{3} h}{\partial \mathrm{R} \partial Q^{2}}\right] \cdot \frac{\partial h}{\partial \mathrm{R}}+\frac{1}{p^{4}}\left\{\frac{\partial^{3} h}{\partial Q^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{Q}}\right) \mathrm{dRdQ}}{\int_{0}^{1} \int_{0}^{1}\left(\frac{\partial \mathrm{\partial}}{\partial \mathrm{R}}\right)^{2} \mathrm{dRdQ}}$

FORMULATION OF SHAPE FUNCTION

For the derivation of the shape function, two major support conditions were considered, namely Simple support which is denoted as S and Clamped support which is denoted as Cl . For Simple support condition, the deflection equation F and the $2^{\text {nd }}$ order derivative of the deflection equation F^{ii}, were equated to zero and simultaneous equations were formed by considering $J=0$ at the left hand support for X axis and $I=0$ at the top of the support for Y axis while $\mathrm{J}=1$ at the right hand support X axis and $\mathrm{I}=1$ at the bottom support for Y axis. For the Clamped support condition, the deflection equation, F and $1^{\text {st }}$ order derivative of the deflection equation, F^{i}, were equated to zero and simultaneous equations were formed by considering $\mathrm{J}=0$ at the left hand support for the X axis and $\mathrm{I}=0$ at the top support for the Y axis, while at the Right hand support, $\mathrm{J}=1$ for X axis while $\mathrm{I}=1$ at the bottom support for Y axis. These equations were solved simultaneously to obtain the various values of the primary and secondary dimensions ($\mathrm{n}_{1}, \mathrm{~m}_{1}, \mathrm{n}_{2}, \mathrm{~m}_{2} \mathrm{n}_{3}, \mathrm{~m}_{3}, \mathrm{n}_{4}$ andm_{4}). Where J and I are non-dimensional axis parallel to X and Y axis respectively as earlier explained. For the CISCIS and CISSS plate their shape functions were derived as explained below.

Shape function For Clamped-Simple - Clamped- Simple Plate

Fig 2a Isotropic Rectangular CISCIS Plate

The case of horizontal Direction ($\mathrm{X}-\mathrm{X}$ axis)

Fig 2bSimple-SimpleSupport on x -x axis
Considering the $\mathrm{X}-\mathrm{X}$ axis
But $F_{x}=n_{o}+n_{1} R+n_{2} R^{2}+n_{3} R^{3}+n_{4} R^{4} \quad 11$
$\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{i}}=\mathrm{n}_{1}+2 \mathrm{n}_{2} \mathrm{R}+3 \mathrm{n}_{3} \mathrm{R}^{2}+4 \mathrm{n}_{4} \mathrm{R}^{3} \quad 12$
$\mathrm{F}^{\mathrm{ii}}=2 \mathrm{n}_{2}+6 \mathrm{n}_{2} \mathrm{R}+12 \mathrm{n}_{4} \mathrm{R}^{2} \quad 13$
At the left support, $\mathrm{R}=0$
When $\mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{x}}=0=\mathrm{n}_{\mathrm{o}}+0+0+0+0$
$\mathrm{n}_{\mathrm{o}}=0$
Also when $\mathrm{f}_{\mathrm{x}}{ }^{\mathrm{ii}}=0$
$\mathrm{F}^{\mathrm{ii}}=0=2 \mathrm{n}_{2}+6 \mathrm{n}_{3} \mathrm{R}+12 \mathrm{n}_{4} \mathrm{R}^{2}$
$2 \mathrm{n}_{2}=0$
$\mathrm{n}_{2}=0$
At the right support, $\mathrm{R}=1$
When $\mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{\mathrm{o}}+\mathrm{n}_{1} \mathrm{R}+\mathrm{n}_{2} \mathrm{R}^{2}+\mathrm{n}_{3} \mathrm{R}^{3}+\mathrm{n}_{4} \mathrm{R}^{4}$
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{\mathrm{o}}+\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}$
(where $\mathrm{n}_{\mathrm{o}}=\mathrm{n}_{2}=0$)
$0=\mathrm{n}_{1}+\mathrm{n}_{3}+\mathrm{n}_{4}$
$\mathrm{n}_{1}+\mathrm{n}_{3}=-\mathrm{n}_{4}$
Also when $\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{ii}}=0$,
$\mathrm{F}^{\mathrm{ii}}=0=0+6 \mathrm{n}_{3}+12 \mathrm{n}_{4}$
(where $\mathrm{n}_{2}=0$)
$6 n_{3}=-12 n_{4}$
$n_{3}=-2 n_{4}$
Substituting $-2 \mathrm{n}_{4}$ for a_{3} into equation (1.3)
$\mathrm{n}_{1}+\left(-2 \mathrm{n}_{4}\right)=-\mathrm{n}_{4} \quad 24$
$\mathrm{n}_{1}=2 \mathrm{n}_{4}-\mathrm{n}_{4}$
$\mathrm{n}_{1}=\mathrm{n}_{4}$
Substituting back in the general equation $F_{x}=n_{o}+n_{1} R+n_{2} R^{2}+n_{3} R^{3}+n_{4} R^{4}$
$0=0+n_{4} R+0+\left(-2 n_{4}\right) R^{3}+n_{4} R^{4}$.
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{4}\left(\mathrm{R}-2 \mathrm{R}^{3}+\mathrm{R}^{4}\right)$

The case of vertical direction (Y- Y axis)

Fig. 2c Clamped-Clamped support on y - y axis
But $\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1} \mathrm{I}+\mathrm{m}_{2} \mathrm{I}^{2}+\mathrm{m}_{3} \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4} \quad 28$
$\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=\mathrm{m}_{1}+2 \mathrm{~m}_{2} \mathrm{I}+3 \mathrm{~m}_{3} \mathrm{I}^{2}+4 \mathrm{~m}_{4} \mathrm{I}^{3} \quad 29$
At the top support, $I=0$
When $\mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{y}}=0=\mathrm{m}_{0}+0+0+0+0$
$\mathrm{m}_{\mathrm{o}}=0$
Also when $\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=0$
$\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=0=\mathrm{m}_{1}+0+0+0$
$\mathrm{m}_{1}=0$
At the bottom support, $\mathrm{I}=1$
When $\mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1} \mathrm{I}+\mathrm{m}_{2} \mathrm{I}^{2}+\mathrm{m}_{3} \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4} \quad 32$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1}+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4} \quad 33$
(where $\mathrm{m}_{\mathrm{o}}=\mathrm{m}_{1}=0$)
$0=\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}$
$\mathrm{m}_{2}+\mathrm{m}_{3}=-\mathrm{m}_{4} \quad 35$
Also when $\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=0$,
$\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=0=\mathrm{m}_{1}+2 \mathrm{~m}_{2} \mathrm{I}+3 \mathrm{~m}_{3} \mathrm{I}^{2}+4 \mathrm{~m}_{3} \mathrm{I}^{3} \quad 36$
$0=2 \mathrm{~m}_{2}+3 \mathrm{~m}_{3}+4 \mathrm{~m}_{4} \quad 37$
$2 m_{2}+3 m_{3}=-4 m_{4} \quad 38$
Solving Equations 1.7 and 1.8 simultaneously, yields
$\left[\begin{array}{ll}1 & 1 \\ 2 & 3\end{array}\right] *\left[\begin{array}{l}\mathrm{m}_{2} \\ \mathrm{~m}_{3}\end{array}\right]=\left[\begin{array}{c}-\mathrm{m}_{4} \\ -4 \mathrm{~m}_{4}\end{array}\right]$
$m_{2}=m_{4}, m_{3}=-2 m_{4}$
Substituting back in the general equation
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1} \mathrm{I}+\mathrm{m}_{2} \mathrm{I}^{2}+\mathrm{m}_{3} \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4}$ 40
$0=0+\mathrm{m}_{4} \mathrm{I}^{2}+0+\left(-2 \mathrm{~m}_{4}\right) \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4} . \quad 41$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{4}\left(\mathrm{I}^{2}-2 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 42$
But F $=\mathrm{F}_{\mathrm{x}} \mathrm{F}_{y}$

$\mathrm{F}=\mathrm{n}_{4}\left(\mathrm{R}-2 \mathrm{R}^{3}+\mathrm{R}^{4}\right) \mathrm{m}_{4}\left(\mathrm{I}^{2}-2 \mathrm{I}^{3}+\mathrm{I}^{4}\right)$	44
$=\mathrm{n}_{4} \mathrm{~m}_{4}\left(\mathrm{R}-2 \mathrm{R}^{3}+\mathrm{R}^{4}\right)\left(\mathrm{I}^{2}-2 \mathrm{I}^{3}+\mathrm{I}^{4}\right)$	45
wheren ${ }_{4} \mathrm{~m}_{4}=\mathrm{Am}$	
$\mathrm{f}=\mathrm{Am}$ *h	46

Therefore the shape function h for CISCIS panel is $\left(\mathrm{J}-2 \mathrm{~J}^{3}+\mathrm{J}^{4}\right)\left(\mathrm{I}^{2}-2 \mathrm{I}^{3}+\mathrm{I}^{4}\right)$
Shape function for Clamped- Simple - Simple - Simple Plate

Fig. 3aClSSS RECTANGULAR SHAPE
The case of horizontal direction ($\mathrm{X}-\mathrm{X}$ axis)

Fig. 3b Simple-Simple support on x -x axis
But $\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{\mathrm{o}}+\mathrm{n}_{1} \mathrm{~J}+\mathrm{n}_{2} \mathrm{~J}^{2}+\mathrm{n}_{3} \mathrm{~J}^{3}+\mathrm{n}_{4} \mathrm{~J}^{4} \quad 47$
$\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{i}}=\mathrm{n}_{1}+2 \mathrm{n}_{2} \mathrm{~J}+3 \mathrm{n}_{3} \mathrm{~J}^{2}+4 \mathrm{n}_{4} \mathrm{~J}^{3} \quad 48$
$F_{x}{ }^{i i}=2 n_{2}+6 n_{3} J+12 n_{4} J^{2} \quad 49$
At the left support, $\mathrm{J}=0$
When $\mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{x}}=0=\mathrm{n}_{\mathrm{o}}+0+0+0+0$
$\mathrm{n}_{\mathrm{o}}=0$
Also when $\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{i}}=0$
$\mathrm{F}_{\mathrm{x}}^{\mathrm{ii}}=0=2 \mathrm{n}_{2}+6 \mathrm{n}_{3} \mathrm{~J}+12 \mathrm{n}_{4} \mathrm{~J}^{2}$
$2 \mathrm{n}_{2}=0$
$\mathrm{n}_{2}=0$
At the right support, $\mathrm{J}=1$
When $\mathrm{F}_{\mathrm{x}}=0$
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{\mathrm{o}}+\mathrm{n}_{1}+\mathrm{n}_{2}+\mathrm{n}_{3}+\mathrm{n}_{4}$
$\left(\right.$ wheren $\left._{\mathrm{o}}=\mathrm{n}_{2}=0\right)$
$0=\mathrm{n}_{1}+\mathrm{n}_{3}+\mathrm{n}_{4}$
$\mathrm{n}_{1}+\mathrm{n}_{3}=-\mathrm{n}_{4} \quad 53$
Also when $\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{ii}}=0$,
$\mathrm{F}_{\mathrm{x}}{ }^{\mathrm{ii}}=0=0+6 \mathrm{n}_{3}+12 \mathrm{n}_{4}$
$\left(\right.$ wheren $\left._{2}=0\right)$
$6 n_{3}=-12 n_{4}$
$\mathrm{n}_{3}=-2 \mathrm{n}_{4}$
Substituting - $2 \mathrm{n}_{4}$ for n_{3} into Equation (2.3)
$\mathrm{n}_{1}+\left(-2 \mathrm{n}_{4}\right)=-\mathrm{n}_{4}$
$\mathrm{n}_{1}=2 \mathrm{n}_{2}-\mathrm{n}_{4}$
$\mathrm{n}_{1}=\mathrm{n}_{4}$
Substituting back in the general equation
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{\mathrm{o}}+\mathrm{n}_{1} \mathrm{~J}+\mathrm{n}_{2} \mathrm{~J}^{2}+\mathrm{n}_{3} \mathrm{~J}^{3}+\mathrm{n}_{4} \mathrm{~J}^{4}$
$0=0+n_{4} \mathrm{~J}+0+\left(-2 \mathrm{n}_{4}\right) \mathrm{J}^{3}+\mathrm{n}_{4} \mathrm{~J}^{4}$.
$\mathrm{F}_{\mathrm{x}}=\mathrm{n}_{4}\left(\mathrm{~J}-2 \mathrm{~J}^{3}+\mathrm{J}^{4}\right)$

The case of vertical direction (Y-Y axis)

Fig. 3c Clamped-Simple support on $y-y$ axis
But $\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1} \mathrm{I}+\mathrm{m}_{2} \mathrm{I}^{2}+\mathrm{m}_{3} \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4} \quad 62$
$F_{y}{ }^{\mathrm{i}}=\mathrm{m}_{1}+2 \mathrm{~m}_{2} \mathrm{I}+3 \mathrm{~m}_{3} \mathrm{I}^{2}+4 \mathrm{~m}_{4} \mathrm{I}^{3} \quad 63$
At the top support, $\mathrm{I}=0$
When $\mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{y}}=0=\mathrm{m}_{\mathrm{o}}+0+0+0+0$
$\mathrm{m}_{\mathrm{o}}=0$
Also when $\mathrm{Fy}^{\mathrm{i}}=0$
$\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{i}}=0=\mathrm{m}_{1}+0+0+0$
$\mathrm{m}_{1}=0$
At the bottom support, $\mathrm{I}=1$
When $\mathrm{F}_{\mathrm{y}}=0$
$\mathrm{F}_{\mathrm{y}}=0=0+0+\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4}$
$0=\mathrm{m}_{2}+\mathrm{m}_{3}+\mathrm{m}_{4} \quad 66$
$m_{2}+m_{3}=-m_{4}$
(wherem $_{0}=m_{2}=0$)
$\mathrm{m}_{2}+\mathrm{m}_{3}=-\mathrm{m}_{4}$

Also when $\mathrm{F}_{\mathrm{y}}{ }^{\mathrm{ii}}=0$,

$\mathrm{F}_{\mathrm{y}}^{\mathrm{ii}}=0=2 \mathrm{~m}_{2}+6 \mathrm{~m}_{3}+12 \mathrm{~m}_{4}$	69
$=2 \mathrm{~m}_{2}+6 \mathrm{~m}_{3}+12 \mathrm{~m}_{4}$	70
$\mathrm{~m}_{2}+3 \mathrm{~m}_{3}=-6 \mathrm{~m}_{4}$	71

Solving the Equations 2.6 and 2.7 simultaneously
$\left[\begin{array}{ll}1 & 1 \\ 1 & 3\end{array}\right] *\left[\begin{array}{c}\mathrm{m}_{2} \\ \mathrm{~m}_{3}\end{array}\right]=\left[\begin{array}{c}-\mathrm{m}_{4} \\ -6 \mathrm{~m}_{4}\end{array}\right]$
$\mathrm{m}_{2}={ }_{2}^{2} \mathrm{~m}_{4}, \mathrm{~m}_{3}=-{ }_{-}^{5} \mathrm{~m}_{4}$,
Substituting back in the general equation $\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{0}+\mathrm{m}_{1} \mathrm{I}+\mathrm{m}_{2} \mathrm{I}^{2}+\mathrm{m}_{3} \mathrm{I}^{3}+\mathrm{m}_{4} \mathrm{I}^{4}$
$0=0+0+\frac{3}{2} \mathrm{~m}_{4}+\left(-\frac{5}{2} \mathrm{~m}_{4}\right) \mathrm{I}^{3}+\mathrm{I}^{4} \quad 73$
$0=\mathrm{m}_{4}\left(1.5 \mathrm{I}^{2}-2.5 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 74$
$\mathrm{F}_{\mathrm{y}}=\mathrm{m}_{4}\left(1.5 \mathrm{I}^{2}-2.5 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 75$
But $F=F_{X} F_{y} \quad 76$
$\mathrm{F}=\mathrm{n}_{4}\left(\mathrm{~J}-2 \mathrm{~J}^{3}+\mathrm{J}^{4}\right) \mathrm{m}_{4}\left(1.5 \mathrm{I}^{2}-2.5 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 77$
$=\mathrm{n}_{4} \mathrm{~m}_{4}\left(\mathrm{R}-2 \mathrm{R}^{3}+\mathrm{R}^{4}\right)\left(1.5 \mathrm{I}^{2}-2.5 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 78$
$\mathrm{F}=\mathrm{Am} * \mathrm{~h} \quad 79$
While the Amplitude, $\mathrm{Am}=\mathrm{n}_{4} \mathrm{~m}_{4}$, the shape function h for ClSSS panel is
$\left(\mathrm{J}-2 \mathrm{~J}^{3}+\mathrm{J}^{4}\right)\left(1.5 \mathrm{I}^{2}-2.5 \mathrm{I}^{3}+\mathrm{I}^{4}\right) \quad 80$

STIFFNESS COEFFICIENTS

Given that the shape functions for ClSClS and CISSS are $\left(J-2 J^{3}+J^{4}\right)\left(I^{2}-2 I^{3}+I^{4}\right)$ and $\left(J-2 J^{3}+J^{4}\right)\left(1.5 I^{2}-2.5 I^{3}+I^{4}\right)$ respectively, the differential values known as the C -values were integrated to generate the expressions below

For CISCIS plate shape,
$\mathrm{c}_{1}=\iint\left(-12+24 J+72 J-192 \mathrm{~J}^{3}+96 \mathrm{~J}^{4}\right) \quad 81$
$x\left(I^{4}-4 I^{5}+6 I^{6}-4 I^{7}+I^{8}\right) \quad 82$
$c_{1}=\left(-4 \frac{4}{5}\right) \times\left(\frac{1}{630}\right)=\frac{-4}{525}$
$\mathrm{c}_{2}=\iint\left(1-12 \mathrm{~J}^{2}+8 \mathrm{~J}^{3}+36 \mathrm{~J}^{4}-48 \mathrm{~J}^{5}+16 \mathrm{~J}^{6}\right)$
$\mathrm{x}\left(2 \mathrm{I}^{2}-16 \mathrm{I}^{3}+38 \mathrm{I}^{4}-36 \mathrm{I}^{5}+12 \mathrm{I}^{6}\right) \quad 84$
$\mathrm{c}_{2}=\left(\frac{17}{35}\right) \times\left(\frac{-2}{105}\right)=\frac{-34}{3675} 85$
$\mathrm{c}_{3}=\iint\left(\mathrm{J}^{2}-4 \mathrm{~J}^{4}+2 \mathrm{~J}^{5}+4 \mathrm{~J}^{6}-4 \mathrm{~J}^{7}+\mathrm{J}^{8}\right)$
$x\left(-24 I+120 I^{2}-192 I^{3}+96 I^{4}\right)$
$\mathrm{c}_{3}=\left(\frac{31}{630}\right) \times\left(-\frac{4}{5}\right)=\frac{-62}{1575} \quad 86$
$c_{6}=\iint\left(1-12 J^{2}+8 J^{3}+36 J^{4}-48 J^{5}+16 J^{6}\right) \quad 87$
$x\left(I^{4}-4 I^{5}+6 I^{6}-4 I^{7}+I^{8}\right)$
$c_{6}=\left(\frac{17}{35}\right) \times\left(\frac{19}{630}\right)=\frac{17}{22050}$ 88

Differentiating the Total potential energy with respect to Am.
$\frac{\mathrm{d} \Phi}{\mathrm{dAm}}=0=\frac{2 \mathrm{AmG}}{2} \iint_{\mathrm{xy}}\left(\left[\frac{\partial^{2} h}{\partial x^{2}}\right]^{2}+2\left[\frac{\partial^{2} h}{\partial x \partial y}\right]^{2}+\left[\frac{\partial^{2} h}{\partial y^{2}}\right]^{2}\right) \mathrm{dxdy}$
$-\mathrm{qA} \iint_{\mathrm{xy}} \mathrm{h} d x d y-\frac{B x}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2} \mathrm{dxdy}-\frac{M \Lambda^{2}}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}(f)^{2} \mathrm{dxdy}$
and

```
\(\frac{\mathrm{d} \uparrow}{\mathrm{dAm}}=0=\frac{2 \mathrm{AmG}}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial^{3} h}{\partial x^{3}} \cdot \frac{\partial h}{\partial \mathrm{x}}+2 \frac{\partial^{3} h}{\partial x^{2} \partial \mathrm{y}} \cdot \frac{\partial \mathrm{h}}{\partial \mathrm{y}}+\frac{\partial^{3} h}{\partial y^{3}} \cdot \frac{\partial h}{\partial \mathrm{y}}\right) \mathrm{dxdy}-\mathrm{qAm} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}} \mathrm{h} d x d y-\frac{2 A m B x}{2} \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2} \mathrm{dx} \quad-\frac{2 M \Lambda^{2}}{2} \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}(f)^{2} \mathrm{dxdy}\)
    91
where Lateral load \(=\mathrm{qAm} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}} \mathrm{h} d x d y\),100
Buckling \(=\frac{2 A m B x}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2} \mathrm{dx}\)
Free Vibration \(=\frac{2 M \Lambda^{2}}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}(f)^{2} \mathrm{dxdy}\)102
```

For stability analysis of plate, lateral load and free vibration are considered zero.
That means $\mathrm{q}=\Lambda=0$ and so substituting the values of q and K into the equations 3.42 b and 3.42c above gives
$\frac{\mathrm{d} \Phi}{\mathrm{dAm}}=0=\frac{2 \mathrm{AmG}}{2} \iint_{\mathrm{xy}}\left(\left[\frac{\partial^{2} h}{\partial x^{2}}\right]^{2}+2\left[\frac{\partial^{2} h}{\partial x \partial y}\right]^{2}+\left[\frac{\partial^{2} h}{\partial y^{2}}\right]^{2}\right) \mathrm{dxdy}$
$-\frac{B x}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2}$ dxdy and $\quad 104$
$\frac{\mathrm{d} \uparrow}{\mathrm{dAm}}=0=\frac{2 \mathrm{AmG}}{2} \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left(\frac{\partial^{3} h}{\partial x^{3}} \cdot \frac{\partial h}{\partial \mathrm{x}}+2 \frac{\partial^{3} h}{\partial x^{2} \partial \mathrm{y}} \cdot \frac{\partial \mathrm{h}}{\partial \mathrm{y}}+\frac{\partial^{3} h}{\partial y^{3}} \cdot \frac{\partial h}{\partial \mathrm{y}}\right) \mathrm{dxdy}-\frac{2 A m N x}{2} \int_{0}^{\mathrm{a}} \int_{0}^{\mathrm{b}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2} \mathrm{dxdy}$
Making Bx the subject formula

for the $2^{\text {nd }}$ order functional Equation while the $3^{\text {rd }}$ order functional is
$\mathrm{Bx}=\frac{\frac{2 \mathrm{AmG}}{2} \int_{0}^{1} \int_{0}^{1} \quad\left(\left(\left[\frac{\partial^{3} \mathrm{~h}}{\partial \mathrm{x}^{3}}\right] \cdot \frac{\partial \mathrm{h}}{\partial \mathrm{y}}+2\left[\frac{\partial^{3} \mathrm{~h}}{\partial \mathrm{x} \partial \mathrm{y}}\right] \cdot \frac{\partial \mathrm{h}}{\partial \mathrm{x}}+\left[\frac{\partial^{3} \mathrm{~h}}{\partial \mathrm{y}^{3}}\right] \cdot \frac{\partial \mathrm{h}}{\partial \mathrm{y}}\right) \mathrm{dxdy}\right.}{\frac{2 \mathrm{Am}}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{x}}\right)^{2} \mathrm{dxdy}}$

DETERMINATION OF CRITICAL BUCKLING LOAD COEFFICIENT USING ASPECT RATIO,

$$
\boldsymbol{p}=\mathbf{m} / \mathbf{n}
$$

Defining the principal in-plane coordinates(x and y) in terms of non-dimension in-plane coordinates (J and I) as:
$\mathrm{J}=\frac{x}{n}$. That is $\mathrm{x}=\mathrm{nJ}$ 108
$\mathrm{I}=\frac{y}{m}$. That is $\mathrm{y}=\mathrm{mI}$ 109

Where " n " and " m " are plate dimensions in x and y directions. The aspect ratio α (ratio of length in y direction to length in x direction) of $\frac{n}{m}$, where the α ranges from 1.0 to 2.0 was considered. Also the aspect ratio of $\frac{n}{m}$, was considered where α ranges from 0.5 to 1.0 . The value of n is less or equal to b . (i.e $\mathrm{n} \leq \mathrm{m}$).

While G is flexural rigidity and F is the shape function, \uparrow is the total potential energy functional. J and I are non-dimensional axis (quantity) parallel to x and y axis. Substituting nJ and mI for x and y respectively into Equation

$\mathrm{Bx}=\frac{\frac{2 \mathrm{AmG}}{2} \int_{0}^{1} \int_{0}^{1}\left(\left[\frac{\partial^{2} h}{\partial n^{2} J^{2}}\right]^{2}+2\left[\frac{\partial^{2} h}{\partial J \partial I}\right]^{2}+\left[\frac{\partial^{2} h}{\partial m^{2} J^{2}}\right]^{2}\right) \mathrm{nmdJdI}}{\frac{2 \mathrm{Am}}{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{b}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{nmdJdI}}$

Substituting $p n$ in place of m in the Equation
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{n^{2}}\left[\frac{\partial^{2} h}{\partial R^{2}}\right]^{2}+2 \frac{1}{n^{4} \alpha^{2}}\left[\frac{\partial^{2} h}{\partial J \partial \partial}\right]^{2}+\frac{1}{n^{4} \alpha^{4}}\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \mathrm{nmdJdI}}{\frac{1}{n^{2}} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{nmdJdI}}$
$\mathrm{Bx}=\frac{\frac{\mathrm{G}}{a^{4}} \int_{0}^{1} \int_{0}^{1} \quad\left(\left[\frac{\partial^{2} h}{\partial R^{2}}\right]^{2}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial R \partial Q}\right]^{2}+\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h}{\partial Q^{2}}\right]^{2}\right) \mathrm{nmdJdI}}{\frac{1}{a^{2}} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{nmdJdI}}$

Finally the Buckling Equation Bx with Aspect Ratio, $\alpha=m / n$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial J \partial I}\right]^{2}+\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h}{\partial Q^{2}}\right]^{2}\right) \mathrm{nmdJdI}}{a^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{R}}\right)^{2} \mathrm{nmdJdI}}$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\left[\frac{\partial^{3} h}{\partial J^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{3} h}{\partial J \partial \mathrm{II}}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+\frac{1}{\alpha^{4}}\left[\frac{\partial^{3} h}{\partial I^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{I}}\right) \mathrm{dJdI}}{a^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{dJdI}}$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\alpha^{2}\left[\frac{\partial^{3} h}{\partial J^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+2\left[\frac{\partial^{3} h}{\partial J^{2} \partial I}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+\frac{1}{\alpha^{2}}\left[\frac{\partial^{3} h}{\partial I^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{II}}\right) \mathrm{dJdI}}{a^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{dJdI}}$

3.8.2 DETERMINATION OFBUCKLING COEFFICIENT USING ASPECT

RATIO. $p=\mathrm{n} / \mathrm{m}$
Recall that for $\mathrm{y}=\mathrm{mI}$
$p=\mathrm{n} / \mathrm{m}$, that means $\mathrm{n}=p m$
$\mathrm{BX}=\frac{\frac{2 \mathrm{AmG}}{2} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{a^{4}}\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2 \frac{1}{n^{2} m^{2}}\left[\frac{\partial^{2} h}{\partial J \partial I}\right]^{2}+\frac{1}{m^{4}}\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \alpha \mathrm{m}^{2} \mathrm{dJdI}}{\frac{2 \mathrm{Am}}{2 a^{2}} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \alpha \mathrm{~m}^{2} \mathrm{dJdI}}$
Substituting $p \mathrm{~m}$ in place of n in the Equation

$\mathrm{Bx}=\frac{\frac{G}{b^{4}} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h R^{2}}{\partial \mathrm{R}^{2}}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial \partial I}\right]^{2}+\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \alpha \mathrm{m}^{2} \mathrm{dJdI}\right.}{\frac{1}{n^{2}} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{R}}\right)^{2} \alpha \mathrm{~m}^{2} \mathrm{dJdI}}$
$\mathrm{Bx}=\frac{\frac{\mathrm{G}}{b^{2}} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial \partial I}\right]^{2}+\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \alpha \mathrm{m}^{2} \mathrm{dJdI}}{\int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \alpha m^{2} \mathrm{dJdI}}$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial \partial J I}\right]^{2}+\left[\frac{\partial^{2} h}{\partial \partial^{2}}\right]^{2}\right) \mathrm{dJdI}}{m^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial h}{\partial \mathrm{~J}}\right)^{2} \mathrm{dJdI}}$
$B x=\frac{G \int_{0}^{1} \int_{0}^{1}\left(\frac{1}{\alpha^{4}}\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial J \partial I}\right]^{2}+\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \mathrm{dJdI}}{m^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{dJdI}}$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\alpha^{2}\left[\frac{\partial^{2} h}{\partial J^{2}}\right]^{2}+2\left[\frac{\partial^{2} h}{\partial J \partial t}\right]^{2}+\frac{1}{\alpha^{2}}\left[\frac{\partial^{2} h}{\partial I^{2}}\right]^{2}\right) \mathrm{dJdI}}{m^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{II}}\right)^{2} \mathrm{dJdI}}$
This Equations is equivalent to $B x$ below, which is the Buckling Equation for the Aspect Ratio, $p=m / n$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\left[\frac{\partial^{3} h}{\partial J^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{I}}+2 \frac{1}{\alpha^{2}}\left[\frac{\partial^{3} h}{\partial \partial \partial I}\right] \cdot \frac{\partial h}{\partial \mathrm{I}}+\frac{1}{\alpha^{4}}\left[\frac{\partial^{3} h}{\partial I}\right] \cdot \frac{\partial h}{\partial \mathrm{\partial I}}\right) \mathrm{dJdI}}{a^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{dJdI}}$
$\mathrm{Bx}=\frac{\mathrm{G} \int_{0}^{1} \int_{0}^{1}\left(\alpha^{2}\left[\frac{\partial^{3} h}{\partial J^{3}}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+2\left[\frac{\partial^{3} h}{\left.\partial J^{2} \partial\right]}\right] \cdot \frac{\partial h}{\partial \mathrm{~J}}+\frac{1}{\alpha^{2}}\left[\frac{\partial^{3} h}{\partial \mathrm{I}^{3}} \cdot \frac{\partial h}{\partial \mathrm{II}}\right) \mathrm{dJdI}\right.}{a^{2} \int_{0}^{\mathrm{n}} \int_{0}^{\mathrm{m}}\left(\frac{\partial \mathrm{h}}{\partial \mathrm{J}}\right)^{2} \mathrm{dJdI}}$
which can be rewritten
$\mathrm{Bx}=\frac{G\left(\alpha^{2} \mathrm{c} 1+2 \mathrm{c} 2+\frac{1}{\alpha^{2}} \mathrm{c} 3\right)}{a^{2} \mathrm{c} 6}$
where $\mathrm{C} 1=\left(\frac{\partial^{3} h}{\partial I^{3}}\right) \cdot \frac{\partial h}{\partial \mathrm{~J}}, \mathrm{C} 2=\left(\frac{\partial^{2} h}{\partial J^{3} \partial \mathrm{I}}\right) \cdot \frac{\partial h}{\partial \mathrm{~J}}, \quad \mathrm{C} 3=\left(\frac{\partial^{2} h}{\partial I^{3}}\right) \cdot \frac{\partial h}{\partial \mathrm{~J}}$ andC6 $=\left(\frac{\partial h}{\partial \mathrm{R}}\right) \cdot \frac{\partial h}{\partial \mathrm{~J}}$
Andc c_{1}, c_{2}, c_{3} and c_{6} are defined as follows:

$$
\mathrm{c}_{1}=\int_{0}^{1} \int_{0}^{1} \mathrm{C} 1=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{3} h}{\partial J^{3}} \cdot \frac{\partial h}{\partial \mathrm{~J}} \mathrm{dJd}
$$

$$
\begin{align*}
& \mathrm{c}_{2}=\int_{0}^{1} \int_{0}^{1} \mathrm{C} 2=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{3} h}{\partial J^{2} \partial \mathrm{II}} \cdot \frac{\partial \mathrm{~h}}{\partial \mathrm{I}} \mathrm{dJdI} \\
& \mathrm{c}_{3}=\int_{0}^{1} \int_{0}^{1} \mathrm{C} 3=\int_{0}^{1} \int_{0}^{1} \frac{\partial^{3} h}{\partial J^{3}} \cdot \frac{\partial h}{\partial \mathrm{I}} \mathrm{dJdI} \tag{131}\\
& \mathrm{c}_{6}=\int_{0}^{1} \int_{0}^{1} \mathrm{C} 6=\int_{0}^{1} \int_{0}^{1}\left(\frac{\partial \mathrm{~h}}{\partial \mathrm{~J}}\right)^{2} \mathrm{dJdI} \tag{132}
\end{align*}
$$

These c parameters shall be referred to as stiffness components of the rectangular plate.

RESULTS AND DISCUSSION.

The results for the critical buckling load coefficients were gotten for different aspect ratios.For each shape function, the results were presented in two tables. The first table represents the values of the critical buckling coefficients for the aspect ratio of m / n while the second tables contains the critical buckling coefficients for the aspect ratio n / m. Two graphs were plotted for the rectangular plates with Clamped-Simple-Clamped- Simple edge support and also for the plate with Clamped-Simple-Simple- Simple supported edge. The first graph contains the Critical Buckling Load against Aspect Ratio for the aspect ofm $/ \mathrm{n}$, while the second graph contains the Critical Buckling Load against Aspect Ratio for the aspect ofn $/ \mathrm{m}$. In the first graph, the aspect Ratio is of the range 1.0 to 2.0 while in the second graph it ranges from 0.5 to 1.0 at the same interval in each case, From the graph of critical buckling load against the aspect ratios plotted, it was observed that in the first graph, as the aspect ratio increases from 1.0 to 2.0 , the critical buckling load also decreases.

Table 1.1 Non dimensional buckling load parameters for CSSS plate for aspect m / n

m / n		2	1.9	1.8	1.7	1.6
B		17.0778	18.036	19.2033	20.6449	22.4537
Bx	Previous	$17.07771 \frac{\mathrm{G}}{\mathrm{n}^{2}}$	$18.03599 \frac{\mathrm{D}^{2}}{}$	$19.20324 \frac{\mathrm{D}}{\mathrm{a}^{2}}$	$20.64487 \frac{\mathrm{D}}{\mathrm{a}^{2}}$	$22.45361 \frac{\mathrm{D}}{\mathrm{a}^{2}}$
	Present	$17.07771 \frac{\mathrm{D}}{\mathrm{a}^{2}}$	$18.03599 \frac{\frac{D}{a^{2}}}{}$	$19.20324 \frac{\mathrm{D}}{\mathrm{a}^{2}}$	$20.64487 \frac{\text { D }}{a^{2}}$	$22.45361 \frac{\mathrm{D}}{\mathrm{a}^{2}}$

m / n		1.5	1.4	1.3	1.2	1.1	1
B	24.76415	27.77746	31.80291	37.33388	45.19029	56.80228	
Bx	Previous	$24.7642 \frac{G}{n^{2}}$	$27.7775 \frac{G}{n^{2}}$	$31.803 \frac{G}{n^{2}}$	$37.3339 \frac{G}{n^{2}}$	$45.1903 \frac{G}{n^{2}}$	$56.8023 \frac{G}{n^{2}}$
	Present	$24.76415 \frac{G}{n^{2}}$	$27.77746 \frac{G}{n^{2}}$	$31.80291 \frac{G}{n^{2}}$	$37.33388 \frac{G}{n^{2}}$	$45.19029 \frac{G}{a^{2}}$	$56.80228 \frac{G}{n^{2}}$

Table 1.2 Non dimensional buckling load parameters for CSCS plate for aspect m / n

m / n	2	1.9	1.8	1.7	1.6	
B	19.0747	20.44976	22.155	24.30162	27.049	
Bx	Previous	$19.1108 \frac{G}{n^{2}}$	$20.4874 \frac{G}{n^{2}}$	$22.1947 \frac{G}{n^{2}}$	$24.34392 \frac{G}{n^{2}}$	$27.0956 \frac{G}{n^{2}}$
	Present	$19.0747 \frac{G}{n^{2}}$	$20.44976 \frac{G}{n^{2}}$	$22.155 \frac{G}{n^{2}}$	$24.30162 \frac{G}{n^{2}}$	$27.049 \frac{G}{n^{2}}$

m / n	1.5	1.4	1.3	1.2	1.1	1
B	30.6365	35.42043	41.9632	51.1755	64.5951	84.9468
Bx	Previous	$30.6866 \frac{G}{n^{2}}$	$35.4763 \frac{G}{n^{2}}$	$42.0272 \frac{G}{n^{2}}$	$51.2509 \frac{G}{n^{2}}$	$64.6872 \frac{G}{n^{2}}$

REFERENCES

[1] Ahmed Al-Rajihy (2008). "The Axisymmetric Dynamics of Isotropic Circular Plates with Variable Thickness Under the Effect of Large Amplitudes". Journal of Engineering, Vol. 14, Issue :1, Pp. 2302 - 2313.
[2] Ali Reza Pouladkhan (2011). "Numerical Study of Buckling of Thin Plate".International Conference on Sustainable Design and Construction Engineering. Vol. 78,Issue: 1, Pp. 152 - 157 .
[3] An-Chien W., Pao-Chun L. and Keh-Chynan, T. (2013)." High - Mode Buckling-restrained Brace Core Plates".Journals of the International Association for Earthquake Engineering.
[4] Audoly, B., Roman, B. and Pocheau, A. (2002). Secondary Buckling Patterns of a Thin Plate under In-plane Compression. The European Physical Journal BCondensed Matter and Complex Systems, Vol. 27, No. 1 (May)
[5] AydinKomur and Mustafa Sonmez (2008). "Elastic Buckling of Rectangular Plates Under Linearly Varying In-plane Normal Load with a Circular Cutout". International Journal of Mechanical Sciences. Vol. 35, Pp. 361-371.
[6] Azhari, M, Shahidi, A.R, Saadatpour, M.M (2004) "Post Local Buckling of Skew and Trapezoidal Plate". Journal of Advances in Structural Engineering, Vol. 7, Pp 61-70.
[7] Azhari, M. and Bradford, M.A. (2005), "The Use of Bubble Functions for the Post-Local Buckling of Plate Assemblies by the Finite Strip Method", International Journal for Numerical Methods in Engineering, Vol.38, Issue 6.
[8] Bhaskara, L.R. and Kameswara, C.T. (2013)." Buckling of Annular Plate with Elastically Restrained External and Internal Edges". Journal of Mechanics Based Design of Structures and Machines. Vol. 41, Issue 2. Pp. 222-235.
[9] Da-Guang Zhang (2014). "Nonlinear Bending Analysis of FGM Rectangular Plates with Various Supported Boundaries Resting on Two-Parameter Elastic ". Archive of Applied Mechanics. Vol. 84, Issue: 1, Pp.1-20.
[10] Ferreira, A.J.M, Roque, C.M.C. and Reddy, J.N. (2011). "Buckling Analysis of Isotropic and Laminated Plates by Radial Basis Functions According to a Higher - Order Shear Deformation Theory". Thin - Walled Structures. Vol. 49, Issue:7, Pp. 804-811.
[11] Ibearugbulem, O. M. (2012), Application of a direct variational Principle in elastic stability of rectangular flat thin Plates. Ph.D. thesis submitted to postgraduate school, Federal University of Technology, Owerri, Nigeria. Ibearugbulem, O. M. and Ezeh, J.C. (2013) "Instability of Axially Compressed CCCC Thin Rectangular Plate Using Taylor - Mclaurin's Series Shape Function on Ritz Method". Journal of Academic Research International, Vol. 4, No.1, Pp. 346-351

