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ABSTRACT 

The work covers the buckling of rectangular Clamped-Simple-Clamped- Simple and Clamped-Simple-Simple-Simple Isotropic plate using odd number Functional. 

For the derivation of the Energy Functional, 3rd order was adopted. On getting the shape functions, the integral values of the differentiated shape functions of the 

various boundary conditions were obtained. From these, the stiffness coefficients of the various boundary conditions were derived. The Third order strain energy 

equation was derived which was further expanded to generate the Third Order Total Potential Energy Functional. The Third Order Total Potential Energy Functional 

was integrated with respect to the amplitude, giving a result known as the Governing equation. Further minimization of the governing equation gave rise to the 

critical buckling load equations. The non-dimensional buckling load parameters were obtained by substituting the different aspect ratios, m/n ranging from 1.0 to 

2.0, at the interval of 0.1. The graph of non-buckling load parameters against the aspect ratios was plotted, and it was observed that the increase in one axis brought 

about the decrease in the other axis. 

Key words: Total Potential Energy Functional, Buckling Coefficient , Flexural Rigidity 3rd Order Functional 

Notation S 

§ - Stress,ð- Strain, S- simple support, Cl- clamped support. 

n-Length of the primary dimension of the plate,  m- Width of the secondary  

dimension of the plate, t - Tertiary dimension (thickness) of the plate  

 Ϯ - Total Potential Energy Functional, - the aspect ratio,F- the Deflection. 

G - the flexural Rigidity, Am - Amplitude, Bx - Buckling Load Equation. 

1. Introduction:  

From the general research made in the course of this work, a plate can be defined as a structural element with either straight or curves boundaries, having 

primary, secondary and tertiary dimension (thickness), with the tertiary dimension very small compared to other dimensions. The isotropic 

rectangularClSClS and ClSSS platehave all their material properties in all directions as the same. These properties includes flexural rigidity, Young elastic 

modulus of elastic and Poison ratiobut when these materials are not uniform, it’s said to be orthotropic plates. Stability analysis which is the same as 

buckling tendency of rectangular plate has been a subject of study in solid structural mechanics for more than a century. Although the buckling analysis 

of rectangular plates has received the attention of many researchers for several centuries, its treatment has left much to be done. Other researchers before 

now have gotten solution using both the Second and Fourth the Order energy functional for Buckling of plate. None of the researchers have any work on 

buckling of plate using Third order energy functional and so the resolution of the buckling tendency of ClSClS and ClSSS isotropic plate using third 

order energy functional is the gap the work tends to fill. Diagrammatically, the plates can be shown as  

 

 

 

 

Fig.1aClamped-Simple-Clamped-Simple Plate     Fig.1b Clamped-Simple-Simple-Simple Plate 
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BUCKLING LOAD EQUAUTION;  

Total potential energy, Ϯ is the summation of strain energy, Є and external work, ѵ given as: 

Ϯ = Є + ѵ       1  

To derive the strain energy,Єthe product of normal stress and normal strain in x direction is considered as  

§xðx =
𝐸𝑧2

1–µ2
([

𝜕2𝑓

𝜕𝑥2
]

2

+  µ [
𝜕2𝑓

𝜕𝑥𝜕𝑦
]

2

)   2 

while their product in y direction is considered as 

§yðy =
𝐸𝑧2

1–µ2
([

𝜕2𝑓

𝜕𝑦2
]

2

+  µ [
𝜕2𝑓

𝜕𝑥𝜕𝑦
]

2

)    3 

andfinally the product of the in-plane shear stress and in-plane shear strain  is given as: 

𝜏𝑥𝑦γxy = 2 
𝐸𝑧2(1 – µ)

(1 – µ2)
[

𝜕2𝑓

𝜕𝑥𝜕𝑦
]

2

     4 

adding all together gives 

§xðx + §yðy + 𝜏𝑥𝑦γxy    =
𝐸𝑧2

1–µ2
([

𝜕2𝑓

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓

𝜕𝑦2
]

2

)    5 

butЄ =
1

2
∬ Є̅

xy
dxdywhereЄ̅ = =  

Ez2

1–µ2
  ∫ ([

𝜕2𝑓

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓

𝜕𝑦2
]

2

)   6 

Upon minimisation of the expressions above, the third order strain energy equation is given as 

  Є =
𝐺

2
∫ ∫ (

∂3𝑓

∂𝑥3
.

∂𝑓

∂x
+ 2

∂3𝑓

∂x ∂y2
.

∂f

∂x
+

∂3𝑓

∂𝑦3
.

∂f

∂y
)

m

0

n

0
dxdy      7 

with the external load  as ѵ = – 
𝐵𝑥

2
∫ ∫ (

  ∂h

∂x
)

m 

0

n

0

2

dxdy        8 

The third order total potential energy functional is expressed mathematically as  

Ϯ =
𝐺

2
∫ ∫ (

∂3𝑓

∂𝑥3
.

∂f

∂x
+ 2

∂3𝑓

∂x2 ∂y
.

∂f

∂y
+

∂3𝑓

∂𝑦3
.

∂f

∂y
) dxdy −

𝐵𝑥

2
∫ ∫

∂2𝑓

∂𝑥2
dxdy     9 

Rearranging the total potential energy equation, the buckling load equation is gotten as  

Bx =

G

a2 ∫ ∫
1

0
1

0 ([
𝜕3ℎ

𝜕𝑅3].
∂ℎ

∂R
+2

1

𝑝2[
𝜕3ℎ

𝜕R𝜕𝑄2].
∂ℎ

∂R
 +

1

𝑝4[
𝜕3ℎ

𝜕𝑄3].
∂ℎ

∂Q
)dRdQ

∫ ∫ (
  ∂h

∂R
)

1 
0

1
0

2
dRdQ

      10 

FORMULATION OF SHAPE FUNCTION  

For the derivation of the shape function, two major support conditions were considered, namely Simple support which is denoted as S and Clamped 

support which is denoted as Cl. For Simple support condition, the deflection equation F and the 2nd order derivative of the deflection equation Fii, were 

equated to zero and simultaneous equations were formed by considering J = 0 at the left hand support for X axis and I = 0 at the top of the support for Y 

axis while J = 1 at the right hand support X axis and I = 1 at the bottom support for Y axis. For the Clamped support condition, the deflection equation, 

F and 1st order derivative of the deflection equation, Fi, were equated to zero and simultaneous equations were formed by considering J = 0 at the left 

hand support for the X axis and I = 0 at the top support for the Y axis, while at the Right hand support, J = 1 for X axis while I= 1 at the bottom support 

for Y axis.  These equations were solved simultaneously to obtain the various values of the primary and secondary dimensions (n1, m1, n2, m2 n3, m3, n4 

andm4). Where  J and I are non-dimensional axis parallel to X and Y axis respectively as earlier explained.  For the ClSClS and ClSSS plate their shape 

functions were derived as explained below. 

Shape function For Clamped-Simple - Clamped- Simple Plate 

 

 

 

 

 

 

Fig 2a     Isotropic Rectangular ClSClS  Plate 
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Cl  SCl  S  
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The case of horizontal Direction ( X- X axis) 

 

 

 

 

 

Fig 2bSimple-SimpleSupport on x-x axis 

Considering the X- X axis 

 But   Fx = no + n1R + n2 R
2 + n3R

3 + n4R
4 11 

Fx
i= n1 + 2n2R + 3n3R

2 + 4n4R
3  12 

Fii= 2n2 + 6n2R+ 12n4R
2 13 

At the left support, R = 0 

When Fx = 0 

Fx = 0 = no + 0 + 0 + 0+ 0              14 

no= 0 

Also when   fx
ii= 0                15 

Fii= 0 = 2n2 + 6n3R+ 12n4R
2                   16  

2n2 = 0                17 

 n2 = 0 

At the right support, R =1 

When Fx = 0 

Fx = no + n1R + n2 R
2 + n3R

3 + n4R
4             18 

Fx = no + n1 + n2 + n3+n4               19 

 

 (where no= n2 = 0 ) 

 0 =   n1 + n3+ n4                20 

n1 + n3= - n4                                                                                                                                            21 

Also when   Fx
ii= 0, 

Fii= 0 = 0 + 6n3+ 12n4                 22 

 (where n2  = 0) 

 6n3 = -12n4         23 

 n3= -2n4 

Substituting -2n4 for a3 into equation (1.3)  

n1 + (-2n4) = -n4               24  

n1 = 2n4 - n4             25  

n1 = n4  

 Substituting back in the general   equation   Fx= no + n1R + n2 R
2 + n3R

3 + n4R
4 

0 = 0 + n4R + 0 + (-2n4) R
3 + n4R

4.            26  

Fx = n4 (R-2R3+R4)               27 

J=1 
 

F =0 
Fii=0 
 

J=0 
 

F = 0 
Fii= 0 
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The case of vertical direction ( Y- Y axis)  

 

 

 

 

 

 

 

 

 

Fig.  2c Clamped-Clamped support on y-y axis 

But   Fy = mo+ m1I + m2I
2 + m3I

3 + m4I
4  28 

Fy
i= m1 + 2m2I + 3m3I

2 + 4m4I
3   29 

At the top support, I = 0 

When Fy = 0 

Fy = 0 = mo+ 0 + 0 + 0+ 0   30 

mo= 0 

Also when Fy
i= 0 

Fy
i= 0 = m1 + 0+ 0 + 0    31 

m1 = 0 

At the bottom support, I = 1 

When Fy = 0 

Fy = mo+ m1I + m2I
2 + m3I

3 + m4I
4  32 

Fy = mo+ m1 + m2 + m3+ m4    33 

(where mo= m1 = 0 ) 

0 = m2 + m3+ m4     34 

  m2 + m3= - m4     35  

Also when Fy
i=  0, 

Fy
i = 0 = m1 + 2m2I + 3m3I

2 + 4m3I
3   36 

 0 = 2m2 + 3m3+ 4m4    37 

 2m2 + 3m3 = -4m4    38 

 Solving Equations 1.7 and 1.8 simultaneously, yields 

[
1 1
2 3

] * [
m2

m3
] = [

−m4

−4m4
] 

m2 = m4,   m3 = -2m4    39 

Substituting back in the general equation   

Fy= mo+ m1I + m2I
2 + m3I

3 + m4I
4   40 

0 = 0 + m4I
2 + 0 + (-2m4)I

3 +   m4I
4.  41 

Fy = m4(I
2-2I3+I4)    42 

  But F = FXFy    43 

F=0 
Fi=0 
 

I=0 
 

I=1 
 

F=0 

Fi=0 
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F = n4(R-2R3+R4)m4(I
2-2I3+I4)  44   

= n4m,4(R-2R3+R4) (I2-2I3+I4)  45 

wheren4m4 = Am 

f   =    Am*h   46 

Therefore the shape function h for ClSClS panel is (J-2J3+J4) (I2-2I3+I4) 

  Shape function for Clamped- Simple – Simple – Simple  Plate 

  

 

 

 

 

 

Fig. 3aClSSS RECTANGULAR SHAPE 

 The case of  horizontal direction  (X- X axis) 

 

 

 

 

 

   Fig. 3b   Simple-Simple support on x-x axis 

But   Fx = no + n1J + n2J
2 + n3J

3 + n4J
4 47 

Fx
i= n1 + 2n2J + 3n3J

2 + 4n4J
3 48 

Fx
ii= 2n2 + 6n3J+ 12n4J

2 49 

  At the left support, J = 0 

  When Fx = 0 

Fx = 0 = no + 0 + 0 + 0+ 0 

no= 0 

 Also when Fx
ii= 0 

Fx
ii= 0 = 2n2 + 6n3J+ 12n4J

2    50 

2n2 = 0 

n2 = 0 

At the right support, J =1 

When Fx = 0 

Fx = no + n1 + n2 + n3+ n4     51 

(whereno= n2 = 0 ) 

0 =  n1 + n3+ n4      52 

n1 + n3= - n4       53 

Also when   Fx
ii= 0, 

Fx
ii= 0 = 0 + 6n3+ 12n4    54 

xJ 

YI 

Cl  SSS 

J=0 
 

F=0 
F²=0 
 

F=0 
F²=0 
 

J=1 
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(wheren2 = 0) 

6n3 = -12n4      55 

n3 = -2n4 

Substituting -2n4 for n3 into Equation (2.3)  

n1 + (-2n4) = -n4      56 

n1 = 2n2 - n4      57 

n1 = n4       58 

Substituting back in the general   equation    

Fx= no + n1J + n2 J
2 + n3J

3 + n4J
4    59 

0 = 0 + n4J + 0 + (-2n4) J
3 + n4J

4.    60  

Fx = n4 (J-2J3+J4)     61 

The case of vertical direction  (Y- Y axis) 

 

 

 

 

 

 

 

 

 

 

Fig. 3c   Clamped-Simple support on y-y axis 

But   Fy = mo+ m1I + m2I
2 + m3I

3 + m4I
4 62 

Fy
i= m1 + 2m2I + 3m3I

2 + 4m4I
3 63 

At the top support, I = 0 

When Fy = 0 

Fy = 0 = mo+ 0 + 0 + 0+ 0   64  

mo= 0 

Also when Fy
i= 0 

Fy
i= 0 = m1 + 0 + 0+ 0 

m1 = 0 

At the bottom support, I =1 

When Fy = 0 

Fy = 0 = 0+ 0 + m2 + m3+ m4   65 

0 = m2 + m3+ m4     66 

m2 + m3= - m4     67 

(wheremo= m2 = 0) 

m2 + m3= - m4     68 

F=0 
Fi=0 
 

I=0 
 

F= 0 

Fii= 0 

 
I =1 
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Also when Fy
ii= 0, 

Fy
ii= 0 = 2 m2 + 6m3+ 12m4   69 

 = 2m2 + 6m3+ 12m4    70  

m2 + 3m3= -6m4     71 

Solving the Equations 2.6 and 2.7 simultaneously 

[
1 1
1 3

] * [
m2

m3
] = [

−m4

−6m4
] 

m2 = 
3

2
m4, m3 = - 

5

2
m4 , 

Substituting back in the general equation   Fy= mo+ m1I + m2I
2 + m3I

3 + m4I
4  72 

0   = 0 + 0 + 
3

2
m4 + (-

5

2
m4) I

3 + I4   73 

0 = m4 (1.5I2- 2.5I3+ I4)   74 

Fy =   m4 (1.5I2- 2.5I3+I4)   75 

But     F = FXFy    76 

F = n4(J-2J3+J4) m4 (1.5I2- 2.5I3+I4)   77 

= n4m4(R-2R3+R4) (1.5I2- 2.5I3+ I4)          78 

F  =   Am*h       79 

While the Amplitude, Am = n4m4 ,the shape function h for ClSSS panel is 

 (J-2J3+J4) (1.5I2- 2.5I3+ I4)   80 

STIFFNESS COEFFICIENTS 

Given that the shape functions for ClSClS and ClSSS are (J-2J3+J4) (I2-2I3+I4) and (J-2J3+J4) (1.5I2- 2.5𝐼3+I4) respectively, the differential values known 

as the C-values were integrated to generate the expressions below 

For ClSClS plate shape,  

 c1     = ∫ ∫ (−12 + 24𝐽 + 72J − 192J3 + 96J4) 81 

                  x (I4 − 4I5 +    6I6 − 4I7 + I8)  82 

 c1 = (−4
4

5
)  x  (

1

630
)  =

−4

525
   83 

  c2 = ∫ ∫(1 − 12J2 + 8J3 + 36J4 − 48J5 + 16J6)      

x  (2I2 − 16I3 +  38I4−36I5 +  12I6)  84 

 c2 = (
17

35
) x  (

−2

105
)  =

−34

3675
   85 

c3    = ∫ ∫ (J2 − 4J4 + 2J 5 + 4J6 − 4J7 + J8) 

x (−24I +  120I2−192I3 + 96I4) 

c3 = (
31

630
)  x  (−

4

5
)  =

−62

1575
   86 

c6   = ∫ ∫(1 − 12J2 + 8J3 + 36J4 − 48J5 + 16J6) 87 

x(I4 − 4I5 +  6I6 − 4I7 +  I8) 

c6 = (
17

35
)  x  (

19

630
) =  

17

22050
  88 

Differentiating the Total potential energy with respect to Am. 

dϮ

dAm
= 0 =

2AmG

2
∬ ([

𝜕2ℎ

𝜕𝑥2
]

2

+ 2 [
𝜕2ℎ

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2ℎ

𝜕𝑦2
]

2

)
xy

dxdy        89 

−qA ∬ h dxdy
xy

 – 
𝐵𝑥

2
∫ ∫ (

  ∂h

∂x
)

m 

0

n

0

2

dxdy −
𝑀ʎ2

2
∫ ∫ (𝑓)

m 

0

n

0

2
dxdy   90 

and 
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dϮ

dAm
= 0 =

2AmG

2
∫ ∫ (

∂3ℎ

∂𝑥3
.

∂ℎ

∂x
+ 2

∂3ℎ

∂𝑥2 ∂y
.

∂h

∂y
+

∂3ℎ

∂𝑦3
.

∂ℎ

∂y
)

m

0

n

0
dxdy −  qAm ∫ ∫ h

m

0

n

0
 dxdy  − 

2𝐴𝑚𝐵𝑥

2
∫ ∫ (

  ∂h

∂x
)

b 

0

a

0

2

dx      −
2𝑀ʎ²

2
∫ ∫ (𝑓)

b 

0

a

0

2

dxdy                       

   91 

where   Lateral   load   =   qAm ∫ ∫ h
m

0

n

0
 dxdy ,      100  

 Buckling     =  
 2𝐴𝑚𝐵𝑥

 2
∫ ∫ (

  ∂h

∂x
)

m 

0

n

0

2

dx             101 

 Free Vibration =
2𝑀ʎ²

2
∫ ∫ (𝑓)

m 

0

n

0

2
dxdy                                      102 

For stability analysis of plate, lateral load and free vibration are considered zero. 

That means   q = ʎ = 0   and so substituting the values of q and ʎ  into the equations 3.42b and 3.42c above gives 

dϮ

dAm
= 0 =

2AmG

2
∬ ([

𝜕2ℎ

𝜕𝑥2
]

2

+ 2 [
𝜕2ℎ

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2ℎ

𝜕𝑦2
]

2

)
xy

dxdy        103 

    – 
𝐵𝑥

2
∫ ∫ (

  ∂h

∂x
)

m 

0

n

0

2

dxdy and       104 

dϮ

dAm
   = 0 =      

2AmG

2
∫ ∫ (

∂3ℎ

∂𝑥3
.
∂ℎ

∂x
+ 2

∂3ℎ

∂𝑥2 ∂y
.
∂h

∂y
+

∂3ℎ

∂𝑦3
.
∂ℎ

∂y
)

b

0

a

0

dxdy − 
2𝐴𝑚𝑁𝑥

2
∫ ∫ (

  ∂h

∂x
)

b 

0

a

0

2

dxdy                                                         105        

Making Bx the subject formula 

Bx     =    

2AmG

2
∫ ∫

1
0

2AmG

2
 (

1
0

[
∂2h

∂x2]
2

+2[
∂2h

∂x ∂y
]

2

+[
∂2h

∂y2]
2

)dxdy

2Am

2
∫ ∫ (

  ∂h

∂x
)

m
0

n
0

2
dxdy

     106 

for the 2nd order functional Equation while the 3rd order functional is 

Bx     =     

2AmG

2
∫ ∫

1
0  (

1
0 ([

∂3h

∂x3].
∂h

∂y
+  2[

∂3h

∂x ∂y
].

∂h

∂x
 +  [

∂3h

∂y3].
∂h

∂y
)dxdy

2Am

2
∫ ∫ (

  ∂h

∂x
)

m 
0

n
0

2
dxdy

    107 

DETERMINATION OF CRITICAL BUCKLING LOAD COEFFICIENT USING ASPECT RATIO, 

𝒑 = 𝐦/𝐧  

   Defining the principal in-plane coordinates(x and y) in terms of non-dimension in-plane coordinates (J and I) as: 

J= 
𝑥

𝑛
.  That is   x = nJ         108 

I= 
𝑦

𝑚
. That is   y = mI         109 

Where “n” and “m” are plate dimensions in x and y directions. The aspect ratio  𝛼 (ratio of length in y direction to length in x direction) of 
𝑛

𝑚
, where the 

𝛼ranges from 1.0 to 2.0 was considered. Also the aspect ratio of 
𝑛

𝑚 
, was considered where𝛼  ranges from 0.5 to 1.0. The value of n is less or equal to b.  

( i. e  n≤ m). 

While G is flexural rigidity and F is the shape function, Ϯ is the total potential energy functional. J and I are non-dimensional axis (quantity) parallel to x 

and y axis. Substituting nJ and mI for x and y respectively into Equation  

Bx = 

2AmG

2
∫ ∫

1
0  (

1
0 [

𝜕2ℎ

𝜕𝑛2𝐽2]
2

+2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝑚2𝐼2]
2

)nmdJdI

2Am

2
∫ ∫ (

  ∂h

∂J
)

m 
0

n
0

2
nmdJdI

     110 

Bx =

2AmG

2
∫ ∫

1
0  (

1
0 [

𝜕2ℎ

𝜕𝑛2𝐽2]
2

+2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝑚2𝐽2]
2

)nmdJdI

2Am

2
∫ ∫ (

  ∂h

∂J
)

b 
0

n
0

2
nmdJdI

     111 

Bx =

2AmG

2
∫ ∫

1
0  (

1

𝑛2
1

0 [
𝜕2ℎ

𝜕𝐼2 ]
2

+2
1

𝑛2𝑚2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+
1

𝑚4[
𝜕2ℎ

𝜕𝐼2 ]
2

)nmdJdI

2A

2𝑛2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
nmdJdI

     112 

Substituting   𝑝n  in place of m in the Equation  

Bx =
G ∫ ∫

1
0 (

1

𝑛2
1

0 [
𝜕2ℎ

𝜕𝑅2]
2

+2
1

𝑛4𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+
1

𝑛4𝛼4[
𝜕2ℎ

𝜕𝐼2 ]
2

)nmdJdI

1

𝑛2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
nmdJdI

     113 

Bx  =

G

𝑎4 ∫ ∫
1

0  (
1

0 [
𝜕2ℎ

𝜕𝑅2]
2

+2
1

𝛼2[
𝜕2ℎ

𝜕𝑅𝜕𝑄
]

2

+
1

𝛼4[
𝜕2ℎ

𝜕𝑄2]
2

)nmdJdI

1

𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
nmdJdI

     114 
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Bx  =

G

𝑎2 ∫ ∫
1

0 (
1

0
[

𝜕2ℎ

𝜕𝐽2]
2

+ 2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+ 
1

𝛼4[
𝜕2ℎ

𝜕𝑄2]
2

)nmdJdI

∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
nmdJdI

      115 

Finally the Buckling Equation Bx with Aspect Ratio, α = m/n 

Bx  =
G ∫ ∫

1
0 (

1
0 [

𝜕2ℎ

𝜕𝐽2]
2

+ 2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+ 
1

𝛼4[
𝜕2ℎ

𝜕𝑄2]
2

)nmdJdI

𝑎2 ∫ ∫ (
  ∂h

∂R
)

m 
0

n
0

2
nmdJdI

     116 

Bx    =     
G ∫ ∫

1
0

1
0 ([

𝜕3ℎ

𝜕𝐽3].
∂ℎ

∂J
+  2

1

𝛼2[
𝜕3ℎ

𝜕𝐽𝜕𝐼
].

∂ℎ

∂J
 + 

1

𝛼4[
𝜕3ℎ

𝜕𝐼3 ].
∂ℎ

∂I
)dJdI

𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

     117 

Bx    =     
G ∫ ∫

1
0

1
0 (𝛼2[

𝜕3ℎ

𝜕𝐽3].
∂ℎ

∂J
+  2[

𝜕3ℎ

𝜕𝐽2𝜕𝐼
].

∂ℎ

∂J
 + 

1

𝛼2[
𝜕3ℎ

𝜕𝐼3 ].
∂ℎ

∂I
)dJdI

𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

     118 

3.8.2   DETERMINATION OFBUCKLING COEFFICIENT USING ASPECT 

RATIO.𝑝 = n/m  

Recall that for   y = mI        119 

𝑝 = n/m, that means n = 𝑝𝑚 

Bx  =

2AmG

2
∫ ∫

1
0  (

1

𝑎4
1

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2
1

𝑛2𝑚2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+
1

𝑚4[
𝜕2ℎ

𝜕𝐼2 ]
2

)𝛼m²dJdI

2Am

2𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
𝛼m²dJdI

    120 

Substituting 𝑝m in place of 𝑛 in the Equation  

Bx =  
G ∫ ∫

1
0  (

1

𝛼4𝑚4
1

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2
1

𝛼2𝑚4[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+
1

𝑚4[
𝜕2ℎ

𝜕𝐼2 ]
2

)𝛼m²dJdI

1

𝑎2 ∫ ∫ (
  ∂h

∂I
)

m 
0

n
0

2
𝛼m²dJdI

    121 

 

Bx =  

𝐺

𝑏4 ∫ ∫
1

0  (
1

𝛼4
1

0 [
𝜕2ℎ

𝜕𝑅2]
2

+2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝐼2 ]
2

)𝛼m²dJdI

1

𝑛2 ∫ ∫ (
  ∂h

∂R
)

m 
0

n
0

2
𝛼m²dJdI

     122 

 

Bx =  

G

𝑏2 ∫ ∫
1

0  (
1

𝛼4
1

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝐼2 ]
2

)𝛼m²dJdI

∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
𝛼𝑚²dJdI

     123 

 

Bx =  
G ∫ ∫

1
0  (

1

𝛼4
1

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝐼2 ]
2

)dJdI

𝑚2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

      124 

 

Bx = 
G ∫ ∫

1
0  (

1

𝛼4
1

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2
1

𝛼2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+[
𝜕2ℎ

𝜕𝐼2 ]
2

)dJdI

𝑚2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

      125 

Bx =  
G ∫ ∫

1
0  (𝛼21

0 [
𝜕2ℎ

𝜕𝐽2]
2

+2[
𝜕2ℎ

𝜕𝐽𝜕𝐼
]

2

+
1

𝛼2[
𝜕2ℎ

𝜕𝐼2 ]
2

)dJdI

𝑚2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI
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 This Equations is equivalent to Bx below, which is the Buckling Equation for the Aspect Ratio, p = m/n 

Bx     =     
G ∫ ∫

1
0

1
0 ([

𝜕3ℎ

𝜕𝐽3].
∂ℎ

∂J
+  2

1

𝛼2[
𝜕3ℎ

𝜕𝐽𝜕𝐼
].

∂ℎ

∂J
 + 

1

𝛼4[
𝜕3ℎ

𝜕𝐼
].

∂ℎ

∂I
)dJdI

𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

     127 

Bx     =     
G ∫ ∫

1
0

1
0 (𝛼2[

𝜕3ℎ

𝜕𝐽3].
∂ℎ

∂J
+  2[

𝜕3ℎ

𝜕𝐽2𝜕𝐼
].

∂ℎ

∂J
 + 

1

𝛼2[
𝜕3ℎ

𝜕𝐼3 ].
∂ℎ

∂I
)dJdI

𝑎2 ∫ ∫ (
  ∂h

∂J
)

m 
0

n
0

2
dJdI

    128  

which can be rewritten  

Bx    =   
𝐺(𝛼2c1+  2c2+

1

𝛼2c3)

𝑎2c6
 

where  C1   = (
∂3ℎ

∂𝐼3
) .

∂ℎ

∂J
 , C2 = ( 

∂2ℎ

∂𝐽3 ∂I
).

∂ℎ

∂J
, C3 = (

∂2ℎ

∂𝐼3
) .

∂ℎ

∂J
andC6 =  (

∂ℎ

∂R
) .

∂ℎ

∂J
 

Andc1, c2, c3 and c6 are defined as follows: 

                  c1 =  ∫ ∫ C1
1

0

1

0
= ∫ ∫

∂3ℎ

∂𝐽3
.

∂ℎ

∂J
dJdI  

1

0

1

0
        129 
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         c2 = ∫ ∫ C2 = ∫ ∫
∂3ℎ

∂J2 ∂I
.

∂h

∂I
dJdI  

1

0

1

0

1

0

1

0
        130   

  c3  = ∫ ∫ C3 = 
1

0
∫ ∫

∂3ℎ

∂𝐽3
.

∂ℎ

∂I
dJdI1

0

1

0

1

0
       131  

  c6 = ∫ ∫  C6
1

0

1

0
= ∫ ∫ (

∂h

∂J
)² 

1    

0

1

0
dJdI                132 

These c parameters shall be referred to as stiffness components of the rectangular plate. 

RESULTS AND DISCUSSION. 

The results for the critical buckling load coefficients were gotten for different aspect ratios.For each shape function, the results were presented in two 

tables. The first table represents the values of the critical buckling coefficients for the aspect ratio of m/n while the second tables contains the critical 

buckling coefficients for the aspect ratio n/m. Two graphs were plotted for the rectangular plates with Clamped–Simple–Clamped– Simple edge support 

and also for the plate with Clamped-Simple-Simple- Simple supported edge. The first graph contains the Critical Buckling Load against Aspect Ratio for 

the aspect ofm/n, while the second graph contains the Critical Buckling Load against Aspect Ratio for the aspect ofn/m.   In the first graph, the aspect 

Ratio is of the range 1.0 to 2.0 while in the second graph it ranges from 0.5 to 1.0 at the same interval in each case, From the graph of critical buckling 

load against the aspect ratios plotted, it was observed that in the first graph, as the aspect ratio increases from 1.0 to 2.0, the critical buckling load also 

decreases.  

Table 1.1   Non dimensional buckling load parameters  for CSSS plate for aspect m/n 

 

m/n 

 

   2 

 

 1.9 

 

1.8 

 

1.7 

 

1.6 

 

      B 

 

17.0778 

 

18.036 

 

19.2033         

 

20.6449 

 

22.4537 

 

Bx 

Previous 17.07771
G

n2
 18.03599

D

a2
 19.20324

D

a2
 20.64487

D

a2
 22.45361

D

a2
 

Present 17.07771
D

a2
 18.03599

D

a2
 19.20324

D

a2
 20.64487

D

a2
 22.45361

D

a2
 

 

 

 

 

 

 

 

 

 

Table 1.2   Non dimensional buckling load parameters  for CSCS plate for aspect m/n 

m/n    2 1.9 1.8 1.7 1.6 

B 19.0747 20.44976 22.155 24.30162 27.049 

 

Bx 

Previous 19.1108
G

n2
 20.4874

G

n2
 22.1947

G

n2
 24.34392

G

n2
 27.0956

G

n2
 

    Present 19.0747
G

n2
 20.44976

G

n2
 22.155

G

n2
 24.30162

G

n2
 27.049

G

n2
 

 

 

 

 m/n 

 

   1.5 

 

  1.4 

 

   1.3 

 

  1.2 

 

 1.1 

 

  1 

           B 24.76415 27.77746 31.80291 37.33388 45.19029 56.80228 

 

Bx 

Previous  24.7642
G

n2
 27.7775

G

n2
 31.803

G

n2
 37.3339

G

n2
 45.1903

G

n2
 56.8023

G

n2
 

 

Present 

 

24.76415
G

n2
 

 

27.77746
G

n2
 

 

31.80291
G

n2
 

 

37.33388
G

n2
 

 

45.19029
G

a2
 

 

56.80228
G

n2
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m/n    1.5   1.4    1.3    1.2      1.1   1 

 

B 

 

30.6365 

 

35.42043 

 

41.9632 

 

51.1755 

 

64.5951 

 

84.9468 

 

 

Bx 

 

Previous 

 

30.6866
G

n2
 

 

35.4763
G

n2
 

 

42.0272
G

n2
 

 

51.2509
G

n2
 

 

64.6872
G

n2
 

 

85.0645
G

n2
 

 

Present 

 

30.6365
G

n2
 

 

35.42043
G

n2
 

 

41.9632
G

n2
 

 

51.1755
G

n2
 

 

64.5951
G

n2
 

 

84.9468
G

n2
 


