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ABSTRACT 

This paper aims at determining non-zero distinct integer solutions to the non-homogeneous ternary  sextic  equation 𝑦2 + 3𝑥2 = 16𝑧6. The process of obtaining 

different patterns of  integer solutions to the above equation is illustrated. 
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Introduction 

It is well-known that a diophantine  equation is an algebraic equation with integer coefficients. 

Involving two or more unknowns such that the only solutions focused are integer solutions.  

No doubt that diophantine equations are rich in variety [1-4] .There is no universal method available to know whether a  diophantine   equation has a 

solution or finding all solutions if it exists.For equations with more than three variables and degree at least  three, very little is known.It seems that  much 

work has not been done in solving higher degree  diophantine  equations.While focusing the attention on solving sextic diophantine equations with 

variables at least three,the problems illustrated in [ 5-22]   are observed. This paper focuses on finding integer solutions to the sextic equation with three 

unknowns. 

Method of analysis  

The non-homogeneous ternary sextic equation to be solved is 

                                    𝑦2 + 3𝑥2 = 16𝑧6                                                              (1) 

Different methods of getting integer solutions to (1) are illustrated below: 

Method 1 

The introduction of the linear transformations 

                                  𝑦 = 4𝑌, 𝑥 = 4𝑋                                                                  (2) 

in (1)  leads to  

                                  𝑌2 + 3𝑋2 = 𝑧6                                                                      (3) 

Assume 

                                 𝑧 = 𝑎2 + 3𝑏2                                                                           (4) 

Substituting  (4) in (3) and employing the method of factorization ,define 

                                  𝑌 + 𝑖√3𝑋 = (𝑎 + 𝑖√3𝑏)6                                                       (5) 

Equating the real and imaginary parts in (5) ,note that 

                                   𝑌 = 𝑓(𝑎, 𝑏), 𝑋 = 𝑔(𝑎, 𝑏)                                                        (6) 
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where 

                               𝑓(𝑎, 𝑏) = 𝑎6 − 45𝑎4𝑏2 + 135𝑎2𝑏4 − 27𝑏6,   𝑔(𝑎, 𝑏) = 6𝑎5𝑏 − 60𝑎3𝑏3 + 54𝑎𝑏5 

In view of (2) , we have 

                               𝑦 = 4𝑓(𝑎, 𝑏), 𝑥 = 4𝑔(𝑎, 𝑏)                                                       (7) 

Thus, (4) and (7) represent the integer solutions to (1). 

Note 1: 

It is worth to observe that (1) reduces to (3) on considering the linear transformations 

                            𝑦 = 2𝑌 + 6𝑋, 𝑥 = 2𝑌 − 2𝑋                                                        (8) 

For this choice,the corresponding integer solutions to (1) are given by 

                𝑦 = 2𝑓(𝑎, 𝑏) + 6𝑔(𝑎, 𝑏), 𝑥 = 2𝑓(𝑎, 𝑏) − 2𝑔(𝑎, 𝑏) 

along with (4). 

Note 2: 

In addition to (8) , one may consider the transformations as 

                        𝑦 = 2𝑌 − 6𝑋, 𝑥 = 2𝑌 + 2𝑋                                                           (9) 

In this case ,the corresponding integer solutions to (1) are given by 

                  𝑦 = 2𝑓(𝑎, 𝑏) − 6𝑔(𝑎, 𝑏), 𝑥 = 2𝑓(𝑎, 𝑏) + 2𝑔(𝑎, 𝑏) 

along with (4). 

Method 2 

Write (3) as 

                                                  𝑌2 + 3𝑋2 = 𝑧6 ∗ 1                                            (10) 

Write the integer 1 on the R.H.S. of  (10) as 

                                             1 =
(1+𝑖√3)(1−𝑖√3)

4
                                              (11) 

Substituting  (4) & (11) in (10) and employing the method of factorization, 

define 

                              𝑌 + 𝑖√3𝑋 =
(1+𝑖√3)(𝑎+𝑖√3𝑏)6

2
                                         (12) 

Equating the real and imaginary parts in (12)  and using (2),note that 

                                   
𝑦 = 2[𝑓(𝑎, 𝑏) − 3𝑔(𝑎, 𝑏)],

𝑥 = 2[𝑓(𝑎, 𝑏) + 𝑔(𝑎, 𝑏)]
)                                                 (13) 

Thus,(4) and (13) give the required integer solutions to (1). 

Note 3 : 

Instead of (2),if we consider the transformations given by (8) ,then,the 

corresponding integer solutions to (1) are given by 

                           𝑦 = 4𝑓(𝑎, 𝑏), 𝑥 = −4𝑔(𝑎, 𝑏) 

along with (4). 

Note 4 : 

Also,if we consider the transformations given by (9) ,then,the respective integer  

solutions are seen to be 

    𝑦 = −2𝑓(𝑎, 𝑏) − 6𝑔(𝑎, 𝑏), 𝑥 = 2𝑓(𝑎, 𝑏) − 2𝑔(𝑎, 𝑏) 

 along with (4) . 
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Note 5 : 

Apart from (11),the integer 1 on the R.H.S. of (10) may be written as the product of complex conjugates as below : 

                         1 =
(3𝑟2−𝑠2+𝑖√32𝑟𝑠)(3𝑟2−𝑠2−𝑖√32𝑟𝑠)

(3𝑟2+𝑠2)2
 

The repetition of the above process  leads to three more sets of integer solutions to (1). 

Method 3 

Write (3) as 

                                    𝑌2 + 3𝑋2 = (𝑧3)2                                                          (14) 

which  is satisfied by 

                             𝑋 = 2𝑟𝑠, 𝑌 = 𝑟2 − 3𝑠2                                                          (15) 

and 

                               𝑧3 = 𝑟2 + 3𝑠2                                                                        (16) 

Now,(16) is satisfied by 

                                𝑟 = 𝑝(𝑝2 + 3𝑞2), 𝑠 = 𝑞(𝑝2 + 3𝑞2)                                        (17) 

and 

                                     𝑧 = 𝑝2 + 3𝑞2                                                                    (18) 

Using (17) in (15) ,we have 

        𝑋 = 2𝑝𝑞(𝑝2 + 3𝑞2)2, 𝑌 = (𝑝2 + 3𝑞2)2(𝑝2 − 3𝑞2)                                       (19) 

In view of (2) ,one has 

   𝑥 = 8𝑝𝑞(𝑝2 + 3𝑞2)2, 𝑦 = 4(𝑝2 + 3𝑞2)2(𝑝2 − 3𝑞2)                                         (20) 

Thus,(18) and (20) represent the integer solutions to (1). 

Note 6 : 

In view of the transformations (8) , the corresponding integer solutions 

 to (1) are found to be 

𝑦 = (𝑝2 + 3𝑞2)2(2𝑝2 − 6𝑞2 + 12𝑝𝑞), 𝑥 = (𝑝2 + 3𝑞2)2(2𝑝2 − 6𝑞2 − 4𝑝𝑞) 

along with (18). 

Note 7 : 

In view of the transformations (9) , the corresponding integer solutions 

 to (1) are found to be 

𝑦 = (𝑝2 + 3𝑞2)2(2𝑝2 − 6𝑞2 − 12𝑝𝑞), 𝑥 = (𝑝2 + 3𝑞2)2(2𝑝2 − 6𝑞2 + 4𝑝𝑞) 

along with (18). 

Note 8 : 

It is worth mentioning that (16) is satisfied by 

        𝑟 = 𝑝3 − 9𝑝𝑞2, 𝑠 = 3𝑝2𝑞 − 3𝑞3 

along with (18). In view of (15) ,one has 

𝑋 = 2(𝑝3 − 9𝑝𝑞2)(3𝑝2𝑞 − 3𝑞3), 𝑌 = (𝑝3 − 9𝑝𝑞2)2 − 3(3𝑝2𝑞 − 3𝑞3)2 

Employing the transformations (2) ,(8) and (9) in turn ,one obtains three  

 different sets of integer solutions to (1). 

Method 4 

Rewrite  (3)  as 
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                                 𝑌2 + 3𝑋2 = (𝑧2)3                                                  (21) 

which is satisfied by 

                    𝑌 = 𝑝(𝑝2 + 3𝑞2), 𝑋 = 𝑞(𝑝2 + 3𝑞2)                                    (22) 

and 

                                          𝑧2 = 𝑝2 + 3𝑞2                                                (23) 

Now, (23) is satisfied by 

                                 𝑞 = 2𝑟𝑠, 𝑝 = 𝑟2 − 3𝑠2                                             (24) 

and 

                                    𝑧 = 𝑟2 + 3𝑠2                                                          (25) 

Using (24) in (22) ,we have 

          𝑌 = (𝑟2 − 3𝑠2)(𝑟2 + 3𝑠2)2, 𝑋 = 2𝑟𝑠(𝑟2 + 3𝑠2)2 

 Employing  the transformations (2) ,(8) and (9) in turn ,one obtains three  different sets of integer solutions to (1). 

Conclusion: 

In this paper ,an attempt has been made to determine the non-zero distinct integer solutions to  the non-homogeneous ternary   sextic   diophantine  

equation given in the title through employing transformations. The researchers in this area may search for other choices of transformations to obtain 

integer solutions to the ternary sextic diophantine equation under consideration. 
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