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ABSTRACT 

This research work was conducted to improve the performance of S, M and MM robust estimators in the presence of outliers in regression model using a default 

and adjusted turning constant values of the Huber redescent weights, so as to see the impact of increasing or reducing the turning constant values on the resistibility 

of the robust estimators. Since it has been observed from the literature, the previous researchers stick to the used of the default turning constant values despite the 

fact that the turning constant can be adjusted. A simulation study was used to compare the performance of the robust methods with five and ten independent variables 

on the sample sizes 20, 30, 150, 300 and 20,50, 200, 500  respectively. The result of the study showed that increasing or decreasing the turning constant values for 

S and MM estimators have a significant impact on the resistibility of the estimators on the sample sizes used, while adjusting the turning constant value for M-

estimator has no significant impact on the robust regression result. The study also recommends that analyst should use smaller and higher value than the default 

turning constant for MM-estimation and S-estimator respectively  to have more resistibility against outlying observations in the regression models, because the 

smaller the turning constant value the more resistant the MM-estimator. Secondly the study recommended that analyst should use a value greater than the default  

value for the S-estimation, because the higher the turning constant the more resistant the S-estimator against outlying observations. 
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1. Introduction 

In regression modeling,the relationship between the dependent; y  and a set of independent variables;𝑥1, 𝑥2, … , 𝑥𝑛can be approximated by the model: 

𝑦 = f(𝑥1, 𝑥2,… , 𝑥𝑛)β + 𝑒𝑖𝑗      …   1.1 

Where eijis assumed to be a random error representing the discrepancy in the approximation, it accounts for the failure of the model to fit the data exactly. 

To judge how well the estimated regression model fits the data, we can look at the size of the residuals, which is:  

𝑒𝑖𝑗 = yi − (f(𝑥1, 𝑥2, … , 𝑥𝑛)β)    …    1.2 

A point which lies far from the line and often has a large residual value is called an outlier. However, it is well known that the OLS estimate is extremely 

sensitive to the outliers. When such violation occur, robust regression that is resistant to the influence of outliers may be the reasonable recourse to 

alternate these shortcomings (Yuliana et al., 2014), papageogiou,Bouboulis, and Theodoridis (2015); Barnish and Lagoa(1997); Hansen and 

sargent(2008); Andrews(1974); Street, Carroll, and Ruppert(1988); hogg(1974);(1979); Huber(1996); Krasker and Welsch(1982).  The robust methods 

have been defined to deal with the influential points in regression analysis, where the value of the estimation by using this method is not much affected 

with outliers. Recent years have seen a dynamic development in statistical methods for analyzing data contaminated with outliers. One of the more 

important techniques that can deal with outlying observations is robust regression, which represents four decades of research. Until recently the 

implementation of robust regression methods, such as M-estimation or MM-estimation, was limited owing to their iterative nature. With advances in 

computing power and the growing availability of statistical packages, such as R, SAS and Stata, the applicability of robust regression methods has 

increased considerably (Abonazel and Rabie, 2019). 

According to Abonazel and Rabie, (2019); (Bulletin and 1984 nd); gupta et al, 2014; Montgomery,Peck, and Vining (2001) when the dataset is 

contaminated with a single or few outliers, the problem of identifying such observations is serious problem.  

A common method of robust regression is the M estimate, introduced by Huber (1964), which is as efficient as Ordinary Least Square (OLS), and is 

considered the simplest approach. The S estimation is used to minimize the dispersion of residuals. The MM estimation is a special type of M-estimation 

introduced by Yohai (1987) which combines high breakdown value estimation and efficient estimation. The M estimation has a higher breakdown value 

and greater statistical efficiency than the S estimation. The well-known methods of robust estimation are M-estimation, S- estimation and MM-estimation. 
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1.2 Statement of the Problem  

Controversy surrounding the default value of redescent weight and turning constant (C) that reaches its highest breakdown point and performance in 

robust regression; in other word, which robust regression will produce the highest breakdown point on a data set that is contaminated with outliers and 

high leverage point(s) from among the techniques selected (S, M and MM). A number of researchers posited that live with what you have (use the default 

value of 4.865) while others opined that such value is subject to change for higher break point and performance. A lot of researchers stick to the used of 

default turning constant value C of the redescent weights for the respective robust regression methods despite the fact that the C value can be adjusted. 

Calandra (2021) they studied the default value and recommended for adjustment for better performance. This work is the extension of their work where 

value of the redescent weight is modified and adjusted. 

In his work, Marison (2021) he evaluated the performance of some robust estimators in the presence of outliers using a default turning constant values, 

where he evaluated the constant value for M-estimation, S-estimation, and MM-estimation method which led to improved efficiency and reduce bias in 

estimating the contaminated data set.The question is what will happen when the default value is modified and adjusted, as recommended by Justo and 

Calandra (2021)? Which method will produce the best estimate when there is change in value in both direction (increase or decrease). Since outliers and 

high leverage point often causes a huge explanatory mishap in regression modeling, studies on how to remedy it is required so as to know the possible 

approaches in reaching its highest efficiency and break down point. This is where I based my research. We want to study a situation when all the estimators 

are operating under the same redescent weight and modifying the tuning constants and measure the performance of such operators. 

2. Methodology 

Several methods have been developed to overcome the deficiencies of modeling data set that violate the assumptions of multiple regression. The current 

study explores S, M and MM estimators. Hence these methods will be discussed along with their described algorithms and a numerical example using 

the same data set 

2.1 M - Estimator 

One of the robust regression estimation methods is the M estimation. The letter M indicates that M estimation is an estimation of the maximum likelihood 

type. If estimator at M estimation is 𝛽̂𝑀 = 𝛽𝑛(𝑥1, 𝑥2, … , 𝑥𝑛) then: 

𝐸[𝛽̂ = 𝛽𝑛(𝑥1, 𝑥2, … , 𝑥𝑛)] = 𝛽        

This implies that equation (1) is an unbiased estimator with its corresponding variance given as: 

𝑉𝑎𝑟(𝛽̂) =
[𝛽̃]

2

𝑛. 𝐸 [
𝑑
𝑑𝛽

𝐼𝑛𝑓(𝑥𝑖; 𝛽)]
2 

Where  𝛽̃is the linear unbiased estimator for 𝛽.M estimation is an extension of the maximum likelihood estimate methodand a robust estimation (Yuliana 

& Susanti, 2008); Martin and Zamar(1989); Mohamed,Abdullah and muthu(1989); Dalalyan and Thompson (2019); Deng et al, 2014; Susanti et al (2014) 

2.2 S - Estimator and Algorithms 

The weakness of M estimation is the lack of consideration on the data distribution and not a function of the overall data because only using the median 

as the weighted value. This method uses the residual standard deviation to overcome the weaknesses of M- estimator. According to Salibian and Yohai 

(2006), the S-estimator is defined by 𝛽𝑆 = 𝑀𝑖𝑛𝛽𝜎̂𝑠(𝑒1, 𝑒2, … , 𝑒𝑛) with determining minimum robust scale estimator. 

𝜎̂𝑖 = {

𝑀𝑒𝑑𝑖𝑎𝑛. 𝑒𝑖 . (𝑀𝑒𝑑𝑖𝑎𝑛)(𝑒𝑖)

0.6745
,        𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

1

𝑛𝐾
∑𝑤𝑖𝑒𝑖

2,                           𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 1

 

Where; 

𝑤𝑖 =

{
 
 

 
 
{[1 − (

𝑢𝑖
1.547

)
2

]
2

,              |𝑢𝑖| ≤ 1.547 

0,                                          |𝑢𝑖| > 1.547 

𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1

𝜌(𝑢)

𝑢2
𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 > 1

 

2.3 MM – Estimator and Algorithms 

MM - estimation provide a high breakdown value and more efficient than M and S estimators. Breakdown value is a common measure of the proportion 

of outliers that can be addressed before these observations affect the model. MM-estimator is the solution of; 
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∑𝜌1
. (𝑢𝑖)𝑋𝑖𝑗 = 0 𝑜𝑟

𝑛

𝑖=1

∑𝜌1
. (
𝑌𝑖 − ∑ 𝑋𝑖𝑗𝛽𝑗

𝑘
𝑗=0

𝑆𝑀𝑀
)𝑋𝑖𝑗 = 0

𝑛

𝑖=1

 

Where 𝑆𝑀𝑀 is the standard deviation of S estimation and 𝜌 is the Turkey’s biweight function defined by: 

𝜌(𝑢𝑖) =

{
 

 
𝑢𝑖
2

2
−
𝑢𝑖
4

2𝑐2
+
𝑢𝑖
6

6𝑐2
,                   − 𝑐 ≤ 𝑢𝑖 ≤ 𝑐

𝑐2

6
,                            𝑢𝑖 < −𝑐 𝑜𝑟 𝑢𝑖 > 𝑐 

                                                      3.4 

𝑤𝑖 = {[1 − (
𝑢𝑖

4.685
)
2

]
2

,              |𝑢𝑖| ≤ 4.685 

0,                                          |𝑢𝑖| > 4.685 

 

2.4 Modified Algorithm  

1. Estimate regression coefficients on the data using OLS. 

2. Test assumptions of the regression model 

3. Detect the presence of outliers in the data. 

4. Calculate residual value 𝑒𝑖 = 𝑦𝑖 − 𝑦̂𝑖 of S estimate 

5. Calculate 𝜎̂𝑖 = 𝜎̂𝑠𝑛 

6. Calculate 𝑢𝑖 =
𝑒𝑖

𝜎̂𝑖
 

7. Calculate the weighted value 𝑤𝑖: 

𝑤𝑖 = {
[1 − (

𝑢𝑖
3.685: 6.685

)
2

]
2

,              |𝑢𝑖| ≤ 3.685: 6.685 

0,                                                        |𝑢𝑖| > 3.685: 6.685 

 

8. Calculate 𝛽̂𝑀𝑀 using weighted least square method with weighted 𝑤𝑖 

9. Repeat step 5 – 8 to obtain a convergent value of 𝛽̂ and test whether the independent variables have a significant effect on the dependent variable. 

3. Simulation: Monte Carlo Simulation Study 

A Monte Carlo simulation will be used to assess the merit of our proposed method over the existing method in terms of its ability to excellently separate 

the data set according to regular observations, vertical outliers (regression outliers), collinearity-enhancing observations with large residuals, bad leverage 

collinearity-enhancing observations, good leverage collinearity-enhancing observations and collinearity enhancing observations. To achieve this aim, we 

follow the simulation procedure used by (Bagheri and Habshah, 2015) by considering a linear relation𝑦𝑖 = 𝛽0 + 𝛽1𝑥1  + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝑒𝑖where 𝑖 =

1,2,… , 𝑛. Three explanatory variables (𝑝 = 3) were to be generated from Uniform (0,1) to produce non-collinear data sets in which the true parameters 

were set at 𝛽0 = 𝛽1 = 𝛽2 = 𝛽3 = 1 and 𝜀𝑖~𝑁(0, 𝛿𝐼
2)in such a way that different scenarios were created, namely, high leverage collinearity-

enhancing/reducing observations and vertical outliers. In each scenario, small, medium and large samples of size 20, 40 and 100 with three different 

levels of high leverages points (HLP) of 10%, 15% and 20% for all the sample sizes considered at 500 replications.  

However, to generate high leverage collinearity-enhancing observations, each variable was firstly generated from Uniform (0,1) to produce non-collinear 

data sets. This generated data is referred to as the regular observations. The last 100%α observations of the regular observations of each regressor were 

then replaced with certain percentage of high leverage points to create high leverage collinearity-enhancing observations. To generate the high leverage 

points as collinearity-enhancing observations with unequal weights in non-collinear data sets, the values corresponding to the first high leverage point 

were kept fixed at 10 and those of the successive values are created by multiplying the observations index, 𝑖, by 10. 

As per (Abu Sayed et al., 2020), high leverage collinearity-reducing observations are created by generating three collinear regressors on the outset: 

𝑋𝑖𝑗 = (1 − 𝜌2)𝑍𝑖𝑗 + 𝜌𝑍𝑖4 𝑖 = 1,… , 𝑛; 𝑗 = 1,… ,3. 

Where, the X and Z are independent standard normal random numbers. The value of 𝜌2 represents the correlation between the two explanatory variables, 

is set to 0.95 which cause high collinearity between regressors. High leverage collinearity-reducing observations in collinear data sets were then created 

by replacing the first 100(
𝛼

2
) percent observations of 𝑋1 and the last  100(

𝛼

2
)  percent observations of 𝑋2 with high leverage points. 

Factors and levels for the simulated data sets 

Number of Independent Variables ‘𝑝′ Sample Size ′𝑛′ 

5 20        30150       300 

10 20       50          200       500 
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4. Result and Comparison 

Comparison of Residual Standard Error with P = 5; n =20  

Table 1: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 20 

 RSE RSE RSE 

C=4.685 C=3.685 C=6.685 

M-estimation 

MM-estimation 

S-estimation 

 

0.3291 

0.2994 

k=1.547 

0.2996 

0.3224 

0.2994 

k=0.547 

0.8474 

0.3296 

0.2994 

k=2.547 

0.2134 

Source: Authors’ computation using R package v 4.1.1. 

Comparison of Residual Standard Error P = 5; n = 30 

Table 2: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 30 

 RSE RSE RSE 

C=4.685 C=3.685 C=6.685 

M-estimation 

MM-estimation 

S-estimation 

 

0.3784 

0.3013 

k=1.547 

0.5536 

0.3224 

0.3015 

k=0.547 

0.4732 

0.3296 

0.3007 

k=2.547 

0.195 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 5; n = 150  

Table 3: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 150 

 RSE RSE RSE 

C=4.685 C=2.685 C=5.685 

M-estimation 

MM-estimation 

S-estimation 

 

0.3402 

0.3208 

k=1.547 

0.321 

0.3368 

0.3208 

k=0.547 

0.9078 

0.3423 

0.3208 

k=2.547 

0.1820 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 5; n = 300  

Table 4: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 300 

 RSE RSE  RSE 

C=4.685 C=2.685 C=5.685 

M-estimation 

MM-estimation 

S-estimation 

0.3282 

0.2993 

k=1.547 

0.2995 

0.3103 

0.2993 

k=0.547 

0.8471 

0.3258 

0.2993 

k=2.547 

0.1719 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 10; n =20  

Table 5: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 20 

 RSE RSE RSE 

C=4.685 C=3.685 C=6.685 
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M-estimator 

MM-estimator 

S-estimator 

 

0.3669 

0.3445 

k=1.547 

0.3524 

0.3633 

0.3433 

k=0.547 

0.9897 

0.3634 

0.3359 

k=2.547 

0.2219 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 10; n = 50 

Table 6: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 50 

 RSE RSE RSE 

C=4.685 C=3.685 C=6.685 

M- estimator 

MM- estimator 

S- estimator 

 

0.3899 

0.3543 

k=1.547 

0.3587 

0.3989 

0.3598 

k=0.547 

0.9945 

0.3786 

0.3545 

k=2.547 

0.2231 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 10; n = 200  

Table 7: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 200 

 RSE RSE RSE 

C=4.685 C=2.685 C=5.685 

M- estimator 

MM- estimator 

S- estimator 

 

0.3766 

0.3407 

k=1.547 

0.3459 

0.3678 

0.3354 

k=0.547 

0.9876 

0.3765 

0.5433 

k=2.547 

0.3126 

Source: Authors’ computation using by R package v 4.1.1. 

Comparison of Residual Standard Error P = 10; n = 500  

Table 8: Result of M-estimation, S-estimation and MM-estimation on simulated data with five levels on sample size 500 

 RSE RSE  RSE 

C=4.685 C=2.685 C=5.685 

M-estimator 

MM-estimator 

S-estimator 

0.3987 

0.3576 

k=1.547 

0.3678 

0.3984 

0.3756 

k=0.547 

0.9856 

0.3995 

0.3674 

k=2.547 

0.2556 

Source: Authors’ computation using by R package v 4.1.1. 

Table: 9 Comparing the performance of the robust methods with 5 levels when n=20, 30,150and 300 

 P =5                          n = 20  P = 5                                          n 

= 30 

 P = 5                                         n 

= 150 

P = 5                                n = 300 

Method RSE RSE RSE RSE 

M 0.3291 0.3224 0.3296 0.3784 0.3224 03216 0.3402 0.3368 0.3423 0.3282 0.3103 0.3258 

Mm 0.2994 0.2994 0.2994 0.3013 0.3015 0.3007 0.3208 0.3208 0.3208 0.2993 0.2993 0.2993 

S 0.2996 0.8474 0.2134 0.5536 0.4732 0.195 0.3210 0.9078 0.1820 0.2995 0.8471 0.1719 

Table: 10 Comparing the performance of the robust methods with 10 levels when n= 20, 50,200and 500 

 P =10                         n = 20  P = 10                                          n 

= 50 

 P = 10                                         n 

= 200 

P = 10                               n = 500 

Method RSE RSE RSE RSE 

M 0.3669 0.3633 0.3634 0.3899 0.3989 03786 0.3766 0.3678 0.3765 0.3987 0.3984 0.3995 

Mm 0.3445 0.3433 0.3359 0.3543 0.3598 0.3545 0.3407 0.3354 0.5433 0.3576 0.3756 0.3674 

S 0.3524 0.9897 0.2219 0.3587 0.9945 0.2231 0.3359 0.9876 0.3126 0.3678 0.9856 0.2556 
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5. Discussion  

Table4.1 to 4.4 showed the result of M, MM and S estimators methods of robust regression with five (5) independent variables on sample sizes 20, 30 

150 and 300 respectively. While Table 5.1 to 5.4 showed the result of M, MM and S estimators’ robust regression with 10 independent variables on 

sample sizes 20, 50, 200 and 500 respectively. Table 6 compared the performance of the three methods with 10 independent variables on sample sizes 

20, 50, 200 and 500 respectively. 

As we can see from the table 6 above, for n=20 as we used the default value (4.685) and decrease the value to (3.686), the MM estimator is the best, with 

minimum RSE value. While when we increased the default value S – estimator is the best with minimum value of RSE (0.2134). AlsoTABLE     we have 

seen that by default and decreasing the default value to (3.685) the MM – estimator is also the best with minimum RSE (0.3015), and when we increased 

the default value to (6.686), the S – estimator is also the best with minimum RSE (0.1950). TABLE   and TABLE    also show that the MM – estimator 

is  the best when we used default and decreased the constant value respectively, While S - estimator remain the best when we  increases default value 

from (4.686) to (6.686) respectively. 

When the number of independent variables is 10 with varied sample sizes of 20, 50, 200 and 500 respectively, table 8 shows a comparison between the 

methods when the turning constant is at default, increased and decreased respectively. When the sample size, n = 20 decreasing the C value improves the 

performance of M – estimator and MM-estimator with the RSE value of (0.3633) and (0.3433) respectively while increasing the C value also increases 

the RSE, while for MM-estimator increasing and decreasing the turning constant did not make any significant impact and for the S-estimator increasing 

the C value to (6.685) gives a better result than the default value (4.685).  

Therefore, at default values of the redescent weight of robust regression there is no significant impact of decreasing the value, rather there is significant 

impact or improvement when we increase the value of the redescent weight. 

6. Conclusion 

Based on the findings of this study, we can say that adjusting the turning constant value for M, MM and S estimators have a significant impact on the 

resistibility of the estimators against outlying observations. From the result of the study, we can conclude that decreasing the default turning constant 

value for MM-estimation from (4.685) to (3.685) will increase the resistibility of the estimator against outlying observations on all sample sizes with few 

or more independent variables. The study also concludes that changing the default c value for M-estimator has no significant impact. It also reveal  that 

increasing the default constant value of S-estimator from (4.685) to (6.685) increases the resistibility of the estimator by having smaller RSE on all the 

sample sizes 20,30, 50, 150, 200, 300 and 500 respectively, with p = 5 and p = 10 respectively. 
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