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ABSTRACT 

In this work, we studied mathematical modeling of hepatitis B dynamics with vaccination, antiviral treatment and post exposure treatment. We formulated the 

model and studied its properties to show the biological feasibility. We found the basic reproduction number and discussed the sensitivity analysis. The model was 

demonstrated with the aid of a flow diagram. The disease free equilibrium was determined and the basic reproduction number was computed. Numerically the 

sensitivity of the intervention parameters to the basic reproduction number was studied using python.  The result showed that the basic reproduction number 𝑅0 𝑖𝑠 𝑎  

decreasing function of the post exposure treatment rate, that is increase in the rate of post exposure treatment reduces the 𝑅0. However, The study concludes that 

high rate of post exposure prophylaxis treatment or combining it with vaccination and treatment at chronic stage vaccination are crucial to the success of HBV 

disease control and eradication. 
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1. Introduction 

Hepatitis is referred to as liver inflammation caused by viruses, alcohol or substances, exposure to toxins, and certain diseases and bacterial infection 

(Ganem et al, 2004). In the late 90s, Hepatitis can also result from the disorder of autoimmune, where the body mistakenly sends diseases – fighting cells 

to attack its own healthy tissues (Baker et al, 1996).  

Hepatitis reduces the liver’s ability to perform life preserving functions, including filtering harmful infection agents from the blood, storing blood sugar 

and converting it to usable energy forms, and producing many proteins necessary for life (Edmunds et al, 1993). 

According to WHO (2021), there are five main strains of the hepatitis virus, referred to as types A, B, C, D and E. They all causes liver diseases and they 

also differ in modes of transmission, severity of the illness, geographical distribution and prevention methods. Hepatitis B is a viral infection that attacks 

the liver, caused by hepatitis B virus (HBV). It can cause both acute and chronic diseases and can put people at high risk in death from cirrhosis and liver 

cancer.  

The HBV infection is of two kinds, the acute hepatitis and the chronic hepatitis. The acute infection stays up to six months and the infected individual 

recovers or becomes a chronic carrier of the HBV. Most times, the chronic   infected patient of HBV is infected either vertically or horizontally.  According 

to WHO (2021), some   infected adults will recover naturally within the first year of infection without showing any symptoms of the diseases. This is the 

dangerous aspect of Hepatitis B infection since individuals could be infected but not aware of it thereby placing them at a higher risk of transmitting the 

virus (Rodriguez, 2016).  

Vertical transmission is the most common mode of transmission of hepatitis B virus (HBV). Infants get infected through if the mother is HBsAg and 

HBeAg positive but the percentage of transmission rate reduces if the mother is HBsAg positive but HBeAg negative or anti HBe positive. Even if 

perinatal infection does not occur, the infant has a high risk of developing infection from other family contacts; hence prophylaxis of all infants born to 

HEsAg positive mothers is, therefore recommended regardless of mothers’ HBe or anti HBe status.  

Mathematical modelling is an important tool that is useful in the control of human and animal infectious diseases. It is of great interest to understand the 

connections between the HBV, the human immune responses of the body, effectiveness of the vaccine, waning of vaccine, and response to treatment 

especially the post exposure treatment of the HBV. Mathematical models can be used to gain a clear understanding of disease transmission dynamics and 

the intervention measures.  

Several authors have studied HBV transmission dynamics with focus on the influence of prevention and control measures. 
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In Alrabaiah et al. 2020, they proposed SEACTVR model which stand for Susceptible, Exposed, Acute infected, Chronic infected, treatment class, 

vaccinated class and recovered class respectively. They assumed that there are some individuals who received treatment and still go to chronic class due 

to failure in treatment, that some treated individual recovers and become permanently immune. ( include method of analysis and result) 

Kamyad et al. (2014) formulated a 𝑆𝐸𝐼𝐶𝑅 model where they firstly study two controlling variables are considered (vaccination and treatment) in order 

to prevent the spread of the HBV and finally to put down the infection from the population.  

Zhang et al (2015) formulated a 𝑆𝐸𝐴𝐶𝑅 model in modelling and analyzing the Transmission dynamics of HBV epidemic in Xinjiang, China. Incorporating 

the recruitment into susceptible population is simplified as new birth. Just like Alrabaiah et al (  ), they assumed infected people who experience failure 

in treatment move back to chronic state.   

Otoo et al. (2021) developed a six compartments model S𝐸𝐼𝑇𝑉𝑅 to study and analyze the dynamics of hepatitis B with optimal control. They considered 

recover as not being totally immune, assumed that the vaccine wane after a long period of time and developed a latent class.   

In their study on mathematical modelling of transmission dynamic and optimal control of isolation, vaccination and treatment for hepatitis B virus, Olajide 

et al (2018) created an  𝑆𝐸𝐼𝐶𝑅𝑉 (Susceptible- Exposed- Infective- Carrier- Recovered) model of HBV. They incorporate waning of vaccine – induced 

immunity, disease transmission with constant recruitment.  

Zou et al (2010) proposed a SLICVR model where they took into account that vaccination does not imply permanent immunity and that new born to carrier 

mothers infected at birth proceed to carrier state immediately. Kimbir et al (2014) formulated SLICVR mathematical model for the transmission dynamics 

of hepatitis B virus (HBV) infection incorporating vaccination and treatment as control parameter by extending the model of Zou et al. Here they assumed 

and quoted that chromic carriers are treated, that acute infections are not subjected to antiviral treatment because of possibility of relapse and resistance 

(WHO, 2001), the newborns to carrier mothers infected at birth first enter the latent class and that the treated individuals recovers. In this paper, we aim 

to investigate the transmission dynamics of HBV in the presence Post exposure treatment, vaccination and antiviral treatment.  

2 Model Formulation  

We consider the interventions measures i.e., vaccination, treatment and post exposure prophylaxis (PEP) of Hepatitis B in the model. Let the total 

population be 𝑁(𝑡), Exposed 𝐸(𝑡), Acute infected 𝐴(𝑡), chronic carrier inflections 𝐶(𝑡), Recovered  𝑅(𝑡) and vaccinated 𝑉(𝑡), keeping the characteristics 

of HBV; we also impose the following general assumptions;  

2.1 Basic Assumptions  

a. Recovered individuals from acute and chronic compartments have permanent immunity. 

b. All the new born from non-carrier mothers gets vaccinated/immunized and goes to the vaccinated compartments. 

c. All the new born from carrier mothers gets Post Exposure Prophylaxis of Hepatitis B goes to the vaccinated compartments. 

d. Individual who are aware of being exposed to HBV, takes the Post Exposure Prophylaxis of Hepatitis B and move to vaccinated class. 

e. The only means of influx to the population in by birth and only way to exit the population is by natural death or death induced by HBV.  

f. The vaccine efficacy is 100% but wanes after a long period of time  

g. There are no immigrants and emigrants. 

The total population in of the model  𝑆, 𝐸, 𝐴, 𝐶, 𝑉, 𝑅  a time  𝑡 is  𝑁(𝑡) is   

                                   𝑁(𝑡) = 𝑆(𝑡) +  𝐸(𝑡) +  𝐴(𝑡) +  𝐶(𝑡) +  𝑉(𝑡) +  𝑅(𝑡)          (1) 

Individuals are recruited into the population at constant rate   𝐵. The susceptible population increases by the recruitment of individuals who are not 

vaccinated at rate 𝐵ω0, where 𝜔0 is the population of non- vaccinated recruitment, while the complementary proportion (1 − ω0)𝐵 is protected, that is 

vaccinated and enters the class of vaccinated individuals 𝑉. The population of vaccinated individuals increased by the vaccination of the new born babies 

at the rate  

 (1 − ω0)𝐵 , and vaccination of susceptible individuals at constant rate 𝛾3. Since the vaccination does not confer permanent immunity to all vaccine 

recipient, vaccinated individuals lose their immunity when the vaccine wanes and return to the susceptible class S at a constant rate  𝜑. 

 The susceptible decrease due to HBV infection at rates 𝜆𝑆, where 𝜆 in the force of infection given by         

                                            𝜆 =
𝛽(𝐴+𝜀𝐶)

𝑁
                                                                                 (2) 

Where Β is the transmission coefficient of HBV and 0 < 𝜀 < 1 is a modification parameter that takes into account the fact that acute are most infectious 

than chronic HBV. After infection, newly infected individuals move to the exposed class. Exposed individuals who are aware of being exposed takes 

post-exposure vaccine and move to vaccinated class the rate  𝛾2, while those who are not aware become infectious and move from exposure class to 

Acutely infected class at a constant rate 𝜎. 𝛾1 is the rate at which individuals leaves the acutely infected class, 𝑞 is the proportion that leave acute and 
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progress to chronic class and 1 − 𝑞 is the proportion that leave acutely infected class and progress to recovered when treated.  At the rate 𝛼, individuals 

leaves chronic class to recovered when treated or moves to recovered class at the rate 𝜃 when HBV is naturally cleared without treatment. Egress out of 

the population is by natural and HBV related mortality only at the rate 𝜇0 and 𝜇1 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Structure of the model. 

2.2 The Model Equation 

From the flow chart in figure 1, the HBV transmission model is described by the following system of non-linear ordinary differential equation. 

𝑆′ = 𝐵𝑤0 +  𝜑𝑉 − (𝜆 + 𝛾3 + 𝜇0)𝑆 

𝐸′ =  𝜆𝑆 − (𝛾2 + 𝜇0 +  𝜎)𝐸 

𝐴′ =  𝜎𝐸 − (𝜇0 + 𝛾1)𝐴                                                                                         (3) 

𝐶′ = 𝑞𝛾1A − (𝜇0 + 𝜇1 +  𝛼 +  𝜃)𝐶 

𝑉′ = 𝐵(1 − 𝑤0) + 𝛾3𝑆 + 𝛾2𝐸 − (𝜇0 +  𝜑)𝑉 

𝑅′ = (1 − 𝑞)𝛾1𝐴 + (𝛼 + 𝜃)𝐶 − 𝜇0𝑅 

  

Variables Interpretation Units 

𝑆(𝑡) Number of susceptible individuals at time 𝑡 individuals 

𝐸(𝑡) Number of Exposed individuals at time 𝑡 individuals 

𝐴(𝑡) Number of acutely infected individuals at time 𝑡 individuals 

𝐶(𝑡) Number of chronic carrier individuals at time 𝑡 individuals 

𝑉(𝑡) Number of vaccinated individuals at time 𝑡 individuals 

𝑅(𝑡) Number of recovered individuals at time 𝑡 individuals 

2.3.1 Positivity of the Solutions 

For model to be epidemiological meaningful, it is important to prove that its entire state variables are positive for all time. In other words, solutions of 

the model with positive initial data remain positive for all time  𝑡 > 0 .  
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Theorem 1 

 Let the initial data be 

{𝑆(0) > 0, 𝐸(0) > 0, 𝐴(0) > 0, 𝐶(0) > 0, 𝑉(0) > 0, 𝑅(0) > 0} 

Then the solution set {𝑆𝐸𝐴𝐶𝑉𝑅}(𝑡) of the model system is non negative ∀ 𝑡 ≥ 𝑜 

Proof  

Let’s Define  

𝑡1 = 𝑠𝑢𝑝 {𝑡 > 0: 𝑆(0) > 0, 𝐸(0) > 0, 𝐴(0) > 0, 𝐶(0) > 0, 𝑉(0) > 0, 𝑅(0) > 0} 

The initial conditions above added to continuity of all the function 𝑆, 𝐸, 𝐴, 𝐶, 𝑉, 𝑅  ensures the existence of  𝑡1. If  𝑡1 = ∞, then all solutions of the system 

are positive. Suppose 𝑡1 < ∞  (𝑖. 𝑒 𝑡1 is finite), then there is a least one solution of 

𝑆(𝑡), 𝐸(𝑡)𝐴(𝑡), 𝐶(𝑡), 𝑉(𝑡), 𝑅(𝑡) 

which will be equal to zero at value 𝑡1. (From the definition of 𝑡1 as a supremum). Considering the first equation of the system (3) 

𝑆′(𝑡) = 𝐵𝑤0 +  𝜑𝑉 − (𝜆 + 𝛾3 + 𝜇0)𝑆(𝑡) 

Then we know that    𝑣 𝑡 ∈  (0, 𝑡1), 𝐵𝑤0 +  𝜑𝑉 ≥  0, Then one can deduce that  

𝑆′(𝑡) = (𝜆(𝑡) + 𝛾3 + 𝜇0)𝑆(𝑡)  ≥ 0                                                             (4) 

 From the above equation the integrating factor is  

𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡
𝑡

0

) 

Then, multiplying the both sides of the equation by the integrating factor yields  

𝑆′(𝑡).  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡
𝑡

0

) +  (𝜆 + 𝛾3 + 𝜇0)𝑆(𝑡). 𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡
𝑡

0

)  

= 𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡
𝑡

0

) (𝑆′(𝑡)(𝜆(𝑡) + 𝛾3 + 𝜇0)𝑆(𝑡)) 

=
𝑑

𝑑𝑡
[𝑆(𝑡)  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡

𝑡

0

)]  

Now, from the equation (3.3.1), one has that  

𝑑

𝑑𝑡
[𝑆(𝑡)  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡

𝑡

0

)]  ≥ 0 

Integrating the above from 0 𝑡𝑜 𝑡1  that is  

[𝑆(𝑡)  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡
𝑡

0

)]
0

𝑡1

 ≥ 0 

Then, one can deduce that  

[𝑆(𝑡1)  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡1

𝑡1

0

) −  𝑆(0)]  ≥ 0   

⟹               𝑆(𝑡1)  𝑒𝑥𝑝 (∫ 𝜆(𝑠)𝑑𝑠 + (µ0 + 𝛾3 )𝑡1
𝑡1

0
)  ≥ 𝑆(0) 

⟹          𝑆(𝑡1) >  0  since 𝑆(0) > 0  and thus contradicts the fact that 𝑆(𝑡1) = 0 

Hence 𝑆(𝑡1) > 0, ∀ 𝑡 ≥ 0  

Let now consider the second equation of the model system equation (3): 

𝐸′ =  𝜆𝑆 − (𝛾2 + 𝜇0 +  𝜎)𝐸 

With the same assumption that  𝐸(𝑡1) =  0. From the equation, since 𝜆𝑆 ≥ 0  ∀ 𝑡 ∈ (0, 𝑡1), One has that   

 

𝐸′ + (𝛾2 + 𝜇0 +  𝜎)𝐸 ≥ 0                                                                           (5) 

From which the integrating factor is  

𝑒∫(𝛾2+ 𝜇0+ 𝜎)𝑑𝑡 
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Multiplying both sides with the integrating factor, we have 

𝐸′. 𝑒∫(𝛾2+ 𝜇0+ 𝜎)𝑑𝑡 +  (𝛾2 + 𝜇0 +  𝜎)𝐸. 𝑒∫(𝛾2+ 𝜇0+ 𝜎)𝑑𝑡  ≥ 0 

=
𝑑

𝑑𝑡
[𝐸(𝑡)𝑒(𝛾2+ 𝜇0+ 𝜎)𝑡] 

Then integrating the above equation from 0 𝑡𝑜 𝑡1, we have 

𝐸(𝑡1)𝑒(𝛾2+ 𝜇0+ 𝜎)𝑡1 −  𝐸(0) ≥ 0 

⟹   𝐸(𝑡1) >  0 and this contradicts that  𝐸(𝑡1) = 0. Hence 𝐸(𝑡1) > 0 ∀ 𝑡 ≥ 0. Similarly, it could be deduced that 𝐴(𝑡) > 0, 𝐶(𝑡) > 0, 𝑉(𝑡) > 0 and 

𝑅(𝑡) > 0, hence it is shown that the solutions of the equations in the system are all non-negative.  

2.3.2 Boundedness of the Trajectories.  

Since we are dealing with human population, and having proved that the solution of the system are positive ∀ 𝑡 >  0. Then we will analyze the model in 

a feasible region, that is a region in which the solution of the system of the equation is biological meaningful. By adding the equations of model system 

(3), one obtains the conservation law:  

𝑑𝑁(𝑡)

𝑑𝑡
 =  𝐵 −  µ0𝑁(𝑡)– µ0𝑁 (𝑡)– µ1𝐶 

and 

𝑑𝑁(𝑡)

𝑑𝑡
 =  𝐵 − µ0𝑁(𝑡)– µ0𝑁 (𝑡)– µ1𝐶  ≤  𝐵 − 𝜇0𝑁(𝑡) 

(in the absence of the disease (𝜇1 = 0) )  

⟹                
𝑑𝑁(𝑡)

𝑑𝑡
 ≤ 𝐵 − 𝜇0𝑁(𝑡)  

⟹                
𝑑𝑁(𝑡)

𝐵 − 𝜇0𝑁
 ≤ 𝑑𝑡  

Integrating the both sides, we have 

∫ −
1

𝜇0

𝑙𝑛(𝐵 − 𝜇0𝑁)  ≤ 𝑡 + 𝐴1 

⟹     𝑙𝑛(𝐵 −  𝜇0𝑁)  ≤ −𝜇0𝑡 + 𝐴1 

 ⟹   𝐵 − 𝜇0𝑁 ≥ 𝐴2 𝑒𝜇0𝑡 

⟹   𝐵 − 𝐴2 𝑒𝜇0𝑡 ≥  𝜇0𝑁 

⟹  
𝐵

𝜇0

 ≥  𝑁 

Therefore, all the solutions of the system within the region 

𝛺 = {(𝑆𝐸𝐴𝐶𝑉𝑅) ∈ ℝ+
6 , 𝑁  ≤  

𝐵

𝜇0
}                                                              (6) 

 Now, we show that the region 𝛺  is positively invariant with respect to the dynamical system (3). Recall that the dynamics of the total population satisfies. 

𝑑𝑁(𝑡)

𝑑𝑡
 ≤  𝐵 – µ0𝑁(𝑡), 

That is      

𝑑𝑁(𝑡)

𝑑𝑡
 + µ0𝑁(𝑡)  ≤  𝐵.  

From the equation above, the integrating factor becomes  𝑒𝜇0𝑡. Then we have   

𝑑𝑁(𝑡)

𝑑𝑡
  𝑒𝜇0𝑡 + µ0𝑁(𝑡) 𝑒𝜇0𝑡  ≤  𝐵 𝑒𝜇0𝑡 

=
𝑑

𝑑𝑡
[𝑁(𝑡)𝑒𝜇0𝑡  ]   ≤  𝐵 𝑒𝜇0𝑡 

Integrating the both sides from 0 𝑡𝑜 𝑡, we have 

∫
𝑑

𝑑𝑡
[𝑁(𝑡)𝑒𝜇0𝑡  ]𝑑𝑡

𝑡

0

≤  ∫ 𝐵 𝑒𝜇0𝑡𝑑𝑡
𝑡

0

 

=   𝑁(𝑡)𝑒𝜇0𝑡 −  𝑁(0) ≤
𝐵

𝜇0

[ 𝑒𝜇0𝑡 −  1] 
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⟹    𝑁(𝑡) −  𝑁(0)𝑒−𝜇0𝑡 ≤
𝐵

𝜇0
[ 𝑒𝜇0𝑡 −  1] 𝑒−𝜇0𝑡   

⟹    𝑁(𝑡) ≤
𝐵

𝜇0

[ 𝑒𝜇0𝑡 −  1] 𝑒−𝜇0𝑡  +  𝑁(0)𝑒−𝜇0𝑡 

⟹    𝑁(𝑡) ≤
𝐵

𝜇0

 −  
𝐵

𝜇0

𝑒−𝜇0𝑡  +  𝑁(0)𝑒−𝜇0𝑡 

⟹    𝑁(𝑡) ≤
𝐵

𝜇0

+ (−
𝐵

𝜇0

 +  𝑁(0))𝑒−𝜇0𝑡 

⟹    𝑁(𝑡) ≤
𝐵

𝜇0

+ (𝑁(0) −
𝐵

𝜇0

  ) 𝑒−𝜇0𝑡  

𝑙𝑖𝑚
𝑡→∞

𝑁(𝑡) ≤
𝐵

𝜇0

+ (𝑁(0) −
𝐵

𝜇0

  ) 𝑒−𝜇0𝑡  

=  𝑁(𝑡) ≤
𝐵

𝜇0

  ∀ 𝑡 ≥ 0 

Hence the trajectories of the model system (3) are bounded in the region 𝛺, this means that the system of equations of (3) remains in 𝛺  for all 𝑡 > 0 and 

thus the model is biologically meaningful, epidemiologically and mathematically well posed in the interior of the domain   𝛺. 

3.1 Sensitive Analysis and Basic Reproduction Number,𝑹𝟎 

To establish analytic threshold for when vaccination and treatment are society’s prudent choice, we consider the case of a population at the time of 

eradicating HBV. Mathematically, we must consider the disease free equilibrium (DFE). The disease-free equilibrium (DFE) for an epidemiological 

model is equilibrium such that the disease is absent in the community. Thus, if 𝐷0  =  (𝑆0, 𝐸0, 𝐴0, 𝑉0, 𝑅0)  is the DFE of model system (3), then 𝐸0  =

 𝐴0  =  0.  

As a consequence of model system (3), 𝑅0  =  0 with 𝑆0 and 𝑉0 being solutions of the system:  

𝐵𝜔0  +  𝜑𝑉0 – (µ0  + 𝛾3)𝑆0, 

𝐵(1 – 𝜔0) + 𝛾3𝑆0 – (µ0  +  𝜑 )𝑉0, 

This has the unique solution: 

𝑆0 =
𝐵(𝜑+𝜔0𝜇0)

𝜇0(𝜇0+ 𝜑+ 𝛾3)
           and        𝑉0 =

𝐵(𝜇0( 1−𝜔0)𝛾3)

𝜇0(𝜇0+ 𝜑+ 𝛾3)
 

and  

𝑁0  =  𝑆0  + 𝑉0  =  
𝐵

𝜇0

. 

Then using the next generation matrix, the basic reproductive number is  

R0  =  
𝜎𝑆0𝛽((μ0+ μ1+ α+θ)+ ε𝑞𝛾1)

(𝛾2+𝜇0+ 𝜎)(𝜇0+ 𝛾1)(μ0+ μ1+ α+θ)𝑁0
.                                             (7) 

4. Numerical Simulation 

Table 1 Variables of the system (3) and its interpretation 

Parameters Interpretation Estimate 

𝐵 Recruitment 0.9121 

𝜇0 Natural mortality 0.0121 

𝜇1 HBV-related mortality 0.0091 

𝜔0 Proportion of non-vaccinated recruitment 0.26 

𝜎 Rate of moving from exposed to acute state 0.005 

𝛾2 Post exposed vaccinated of the exposed individuals 0.55 

𝜑 Vaccination rate of the susceptible individuals 0.6  

𝛽 Transmission coefficient 0.45 

𝜀 Reduced transmission rate relative to acute infection by carriers 0.5 

𝛾1 Rate of moving from acute to other compartments 0.44 

𝑞 Rate of moving from acute to carrier 0.5 
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𝛼 Rate of moving from carrier to immune by treatment 0.6 

𝜃 Rate of moving from carrier to immune naturally 0.6 

𝛾3 Rate of susceptible get vaccinated 0.74 

Table 2 Parameters of the model system (3) and its interpretation 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Impact of natural immune of the chronic infected individuals on the basic reproduction. Other parameters values are as in the Table 1. 

 

 

 

 

 

 

 

 

 

 

Figure 3: Impact of Treatment of the chronic infected individuals on the basic reproduction. Other parameters values are as in the Table 1. 

 

 

 

 

 

 

 

 

 

 

Figure 4: Impact of post exposure treatment on the basic reproduction. Other parameters values are as in the Table 1. 
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Figure 5: Numerical simulation of acutely infected individuals and Chronic infected individuals in the absence of immune, Treatment, vaccination and 

post exposure treatment 

 

 

 

 

 

 

 

 

 

 

Figure 6: Numerical simulation of Acutely individuals  and Chronic  individuals in the presence of  immune and  absence of  Treatment, vaccination and 

post exposure treatment, high force of infection, natural immune, 𝜃 = 0.55 and the rest of the values from the table 2 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: Numerical simulation of Acutely infected individuals and Chronic infected  individuals in the presence of  immune and treatment and  absence 

of  vaccination and post exposure treatment with high force of infection, natural immune, 𝜃 = 0.55, Treatment, 𝛼 =  0.83  and the rest of the values from 

the table 2 
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Figure 8: Numerical Simulation of Acutely infected individuals and Chronic infected individuals in the presence of immune, treatment and vaccination, 

and absence of  and post exposure treatment with high force of infection, natural immune, 𝜃 = 0.55, Treatment, 𝛼 =  0.63, vaccination,𝛾3 = 0.64, 𝜔0 =

0.66   and the rest of the values from the table 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Numerical simulation of acutely infected individuals  and Chronic infected individuals in the presence of  immune, treatment, vaccination and 

post exposure treatment. natural immune, 𝜃 = 0.55, Treatment, 𝛼 =  0.83, vaccination, 𝛾3 = 0.74, 𝜔0 = 0.26, post exposure treatment,  𝛾2 = 0.75   and 

the rest of the values from the table 1 

5. Discussion and Conclusion 

In this study, we studied a mathematical model of hepatitis B dynamics which incorporates vaccination, treatment at acute and chronic stage and post 

exposure treatment. The results of the numerical simulation of the study are discussed as follows; 

The interventions parameters have an important effect the basic reproduction number,  𝑅0 . Numerically we explored the sensitivity of the immune, 

treatment on the chronic stage and the post exposure treatment parameters that is 𝛼, 𝜃 𝑎𝑛𝑑 𝛾2 respectively. 

 figure 2 and figure 3 shows  that the basic reproduction number which is greater one and remain constant at  a particular spot as the parameter for the 

rate of  getting immune and treatment at chronic stage increases. 

It is observed from figure 4 that as the rate of post exposure treatment increases, the basic reproduction number decreases 

Considering a state where there is no immune to hepatitis B virus, no treatment, no vaccination and no post exposure treatment. It was observed that the 

number of acutely infected individuals in figure 5 increased first and later started decreasing after a period of time. The number of chronic infected 

individuals reacted the same way but the increment was so much and decreases after a period of time.  In the presence of immune and absence of treatment, 

vaccination and post exposure treatment.  it was observed from  figure 6 that the number acutely infected individuals reacted same way as in the case of 

the absence of immune, Treatment, vaccination and post exposure treatment. While the chronic infected individual increased and took time to decrease 

but not as much time as in the case of the absence of immune, Treatment, vaccination and post exposure treatment.  
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Figure 7 showed that due to the presence of immune and treatment and absence of vaccination and post exposure treatment, the number of acutely infected 

reacted the same as in the case of presence of immune and absence of Treatment, vaccination and post exposure treatment. But the number of the chronic 

infected individuals had hundred percent increment unlike in the case of presence of immune and absence of Treatment, vaccination and post exposure 

treatment and the case of the absence of immune, Treatment, vaccination and post exposure treatment up to four hundred percent and six hundred percent 

respectively.  

For the case where there is presence of immune, treatment and vaccination, and absence of post exposure treatment, figure 8 showed that the number of 

acutely infected individual  increased and decreases after some period of time. The number of chronic infected individuals had a very slit decrease, 

increased after period of time and decreases again after a period of time.    

Lastly, considering the case where there is presence of immune, treatment, vaccination and post exposure treatment. The figure 9 showed that number of 

chronic infected individuals also decreases without having increment but not instantly. The number acutely infected individuals had a slit increment 

before decreasing and the number of vaccinated individuals increased instantly and that of recovered individuals increases with time. 
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