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ABSTRACT.  

We investigate the application of generalized singular value decomposition (GSVD) in accuracy analysis of medical im-age classification. GSVD is a matrix 

decomposition method that can decompose two matrices simultaneously into five simple ma-trices. GSVD can generalize singular value decomposition (SVD) in 

several ways and overcome some of its limitations. We propose a new method for using GSVD to improve the accuracy of medical image classification by extracting 

more informative and discrim-inative features from the image data that can capture the most relevant information from different modalities or contrasts. We conduct 

some experiments on some medical image datasets and compare the performance of the proposed method with some ex-isting methods. The results show that 

GSVD can achieve higher accuracy than SVD, PCA, and Raw on both datasets. 

1. Introduction 

Medical image classification is an important task in biomedical engi-neering and computer vision (see, for example, [14] and [5]). It aims to assign a 

label or category to a given image based on its content, such as  organs, tissues, diseases, etc (see, for example, [22] and [6]). Medical image classification 

can have various applications, such as diagnosis, prognosis, treatment planning, etc (see, for example, [8] and [10]). 

However, medical image classification is also a challenging task due to several factors, such as noise, variability, complexity, ambiguity, etc (see, for 

example, [11] and [18]). Therefore, it is essential to develop effective and robust methods for medical image classification that can achieve high accuracy 

and reliability (see, for example, [21] and [1]). 

One of the key steps in medical image classification is feature ex-traction, which is the process of transforming an image into a vector or matrix of 

numerical values that represent some characteristics or prop-erties of the image (see, for example, [4] and [16]). Feature extraction can reduce the 

dimensionality and complexity of the image data and enhance its discriminative power (see, for example, [20] and [12]). 

A common technique for feature extraction is singular value decom-position (SVD), which is a matrix decomposition method that can de-compose any 

matrix into three simple matrices: a left singular matrix, a diagonal matrix of singular values, and a right singular matrix (see, for example, [17] and [15]). 

SVD can capture the most important in-formation of a matrix in terms of its rank, energy, orthogonality, etc (see, for example, [7] and [9]). 

Medical image classification is a vital task in healthcare, as it sup-ports diagnosis and decision-making (see, for example, [19]). A com-mon technique 

for this task is Singular Value Decomposition (SVD), which decomposes a matrix into simpler components (see, for example, [13]). However, SVD has 

some drawbacks that limit its effectiveness for medical image classification (see, for example, [2]). For instance, it can-not handle multiple matrices or 

tensors jointly, it is sensitive to noise or outliers in the data, and it is computationally costly for large-scale or high-dimensional data (see, for example, 

[3]). 

To address these challenges and improve medical image classifica-tion performance, we explore the use of Generalized Singular Value Decomposition 

(GSVD). GSVD simultaneously decomposes two ma-trices into five components: two left singular matrices, two diagonal  

matrices of Generalized Singular Values (GSVs), and one right singu-lar matrix. GSVD has several advantages over SVD: it can deal with two matrices 

with different numbers of rows, while SVD requires square or rectangular matrices; it can incorporate constraints or weights on the left and right singular 

vectors, while SVD uses only the standard Euclidean norm; and it can reveal correlations or differences between the two matrices, including their common 

and distinct subspaces, while SVD analyzes only one matrix at a time. 

Although GSVD has been applied in various domains, such as bioin-formatics, signal processing, and data mining, its potential for medical image 

classification has not been fully exploited. 

In this paper, we investigate the use of GSVD for accuracy analysis in medical image classification. Our main contributions are: we re-view existing 

works and methods that use GSVD for accuracy analysis in medical image classification and identify their challenges and limi-tations; we propose a 
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novel method that leverages GSVD to enhance medical image classification accuracy by extracting more informative and robust features from the data; 

and we conduct experiments on various medical image datasets to compare our method with existing methods and demonstrate its superiority. 

The rest of this paper is organized as follows: Section 2 surveys re-lated works and methods on GSVD-based accuracy analysis for medical image 

classification. Section 3 describes our proposed method for im-proving medical image classification accuracy using GSVD. Section 4 reports and discusses 

experimental results on different medical image datasets. Section 5 concludes the paper and suggests future work. 

2. Preliminaries 

In this section, we review some existing works and methods on the application of GSVD in accuracy analysis of medical image classification. We first 

introduce some basic concepts and formulas of GSVD and then discuss some examples and applications of GSVD in medical image classification  

2.1. Basic concepts and formulas of GSVD.  

GSVD is a matrix de-composition method that can decompose two matrices simultaneously into five simple matrices. Formally, given two matrices A Î 

Rm1´n and B Î Rm2´n that have the same number of columns but different numbers of rows, GSVD can decompose them as follows: 

 (2.1) A = U1Σ1QT 

(2.2) B = U2Σ2QT 

where U1 Î Rm1´m1      and U2 Î Rm2´m2      are orthogonal matrices, Q Î Rn´n is an orthogonal matrix, Σ1 Î Rm1´n and Σ2 Î Rm2´n are diagonal matrices 

with non-negative entries, and QT denotes the transpose of Q. 

The diagonal entries of Σ1 and Σ2 are called generalized singular values (GSVs) of (A,B). They are related to the singular values (SVs) of A and B as 

follows: 

 (2.3) Σ1 = D−1AQ 

 (2.4) Σ2 = D−1BQ 

where D = diag(σ1,σ2,...,σk) is a diagonal matrix with positive entries σi, which are the SVs of C = [AT BT ]T , a matrix obtained by stacking A and B 

vertically. 

The GSVs can be arranged in decreasing order as follows: 

  

 

 

 

 

 

 

where Ir, Ik−r−s, and Im2−k+r are identity matrices of sizes r, k−r−s, and m2−k+runexpected00inmath, respectively, S1 = diag(αr+1,...,αr+s) and S2 = 

diag(βr+1,...,βr+s) are diagonal matrices with entries αi and βi satisfying 1 > αr+1 ³  ³ αr+s > 0 and 0 < βr+1 £  £ βr+s < 1, and 0A, 0B, and 0 are zero 

matrices of appropriate sizes. 

The columns of U1, U2, and Q are called left singular vectors (LSVs), right singular vectors (RSVs), and generalized singular vectors (GSVs) of (A,B), 

respectively. They are related to the LSVs and RSVs of A and B as follows: 

 

 

 

 

where UA = [U1U3], UB = [U2U4], VA = [QW], VB = [QW], SA = diag(σ1,...,σk), and SB = diag(σ1,...,σk). 

The GSVD can be computed by various algorithms, such as the QR algorithm, the Jacobi algorithm, the divide-and-conquer algorithm, etc. The 

computational complexity of the GSVD is similar to that of the SVD, which is O(n3) for general matrices. 
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2.2. Examples and applications of GSVD in medical image classification. 

GSVD has been applied to various problems in medi-cal image classification, such as feature extraction, dimensionality re-duction, noise reduction, 

image fusion, image registration, etc. Here we review some examples and applications of GSVD in medical image classification. 

One example is the application of GSVD to feature extraction for brain tumor classification. In this problem, the goal is to classify magnetic resonance 

imaging (MRI) images of brain tumors into dif-ferent types or grades based on their appearance and characteristics. A common challenge in this problem 

is that the MRI images can have different modalities or contrasts, such as T1-weighted, T2-weighted, fluid-attenuated inversion recovery (FLAIR), etc., 

which can provide different information about the tumor. Therefore, it is desirable to use multiple modalities or contrasts to improve the accuracy and 

robust-ness of the classification. 

However, using multiple modalities or contrasts can also increase the dimensionality and complexity of the image data, which can affect the performance 

and efficiency of the classification. Therefore, it is essential to extract some informative and discriminative features from the image data that can capture 

the most relevant information from different modalities or contrasts. 

One way to achieve this is to use GSVD to decompose two matrices that represent two different modalities or contrasts of the same image data. For 

example, given two matrices A and B that represent the T1-weighted and T2-weighted images of a brain tumor dataset, respec-tively, GSVD can 

decompose them as follows: 

 (2.9) A = U1Σ1Q
T 

(2.10) B = U2Σ2Q
T 

where Σ1 and Σ2 contain the GSVs of (A,B) and Q contains the GSVs of (A,B). The GSVs can reveal some relationships or correlations between the two 

modalities or contrasts, such as their common and distinct subspaces. For example, 

- The columns of Q corresponding to Σ1 = Ir and Σ2 = 0B span a subspace that is common to both modalities or contrasts. This sub-space can capture 

some common features or information that are shared by both modalities or contrasts. - The columns of Q corresponding to Σ1 = S1 and Σ2 = S2 span a 

subspace that is distinct to both modal-ities or contrasts. This subspace can capture some distinct features or information that are specific to each modality 

or contrast. - The columns of Q corresponding to Σ1 = 0A and Σ2 = IB span a subspace that is orthogonal to both modalities or contrasts. This subspace 

can capture some noise or irrelevant information that are not useful for the classification. 

Therefore, by using GSVD, we can extract some informative and discriminative features from the image data that can capture the most relevant 

information from different modalities or contrasts. For exam-ple, we can use the columns of Q corresponding to Σ1 = Ir and Σ2 = 0B as features for the 

classification, which can represent the common in-formation of both modalities or contrasts. Alternatively, we can use the columns of Q corresponding 

to Σ1 = S1 and Σ2 = S2 as features for the classification, which can represent the distinct information of each modality or contrast. 

Another example is the application of GSVD to dimensionality re-duction for lung nodule classification. In this problem, the goal is to classify computed 

tomography (CT) images of lung nodules into benign or malignant based on their shape, size, texture, etc. A com-mon challenge in this problem is that 

the CT images can have high dimensionality and complexity, which can affect the performance and efficiency of the classification. Therefore, it is desirable 

to reduce the dimensionality and complexity of the image data while preserving its essential information and structure. 

One way to achieve this is to use GSVD to decompose two matrices that represent two different views or perspectives of the same image data. For 

example, given two matrices A and B that represent the axial and coronal views of a lung nodule dataset, respectively, GSVD can decompose them as 

follows: 

 (2.11) A = U1Σ1Q
T 

 (2.12) B = U2Σ2Q
T 

where Σ1 and Σ2 contain the GSVs of (A,B) and Q contains the GSVs of (A,B). The GSVs can reveal some relationships or correla-tions between the 

two views or perspectives, such as their rank, energy, orthogonality, etc. For example, 

- The rank of (A,B) is equal to the number of non-zero GSVs in Σ1 and Σ2. This indicates the intrinsic dimensionality of the image data that can be 

represented by a lower-dimensional subspace. - The energy of (A,B) is equal to the sum of squares of the GSVs in Σ1 and Σ2. This indicates the amount 

of information or variance that is contained in the image data. - The orthogonality of (A,B) is measured by the angles between the GSVs in Σ1 and Σ2. 

This indicates the degree of independence or correlation between the two views or perspectives. 

Therefore, by using GSVD, we can reduce the dimensionality and complexity of the image data while preserving its essential information and structure. 

For example, we can use the first k columns of Q as features for the classification, where k is chosen to be smaller than n but large enough to capture most 

of the energy of (A,B). Alternatively, we can use some criteria or methods to select some columns of Q as features for the classification, such as those 

with large GSVs or small angles. 
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3. Methodology 

In this section, we describe the proposed method for using GSVD to improve the accuracy of medical image classification. We first introduce some 

notation and assumptions and then explain the main steps and procedures of the method. 

3.1. Notation and assumptions.  

We assume that we have a dataset of medical images that need to be classified into different categories 

based on their content. We denote the dataset by X = {xi}i=1, where xi Î Rd is a vector representation of an image and N is the number of images in the 

dataset. We also assume that each image has a label or category that indicates its class membership. We denote the labels by Y =  yii=1 , where yi 

 1, . . . , C  is an integer that represents the class label of an image and C  is the number of classes in the dataset. 

We assume that each image has two different modalities or contrasts that provide different information about the image content. We denote the two 

modalities or contrasts by A  and B ,  respectively. We also assume that each modality or contrast can be represented by a matrix of size m 

  n, where m and n are the numbers of rows and columns of the matrix, respectively. We denote the matrices by A i   R
m  n  

and B i  

 R
m  n  

for each image xi ,  respectively.  

We assume that the matrices Ai and Bi are normalized to have zero mean and unit variance for each row and column, respectively. This can help to reduce 

the effect of noise or outliers and improve the stability and accuracy of the GSVD. 

3.2. Main steps and procedures of the method.  

The proposed method for using GSVD to improve the accuracy of medical image classification consists of four main steps: 

- Step 1: Apply GSVD to each pair of matrices (Ai,Bi) to obtain their GSVs and GSVs.  

- Step 2: Select some GSVs and GSVs as features for each image based on some criteria or methods. 

 - Step 3: Concate-nate the selected features for each image to form a feature vector for each image.  

- Step 4: Use a classifier to classify the feature vectors into different categories based on their labels. 

We explain each step in more detail below. 

3.2.1. Step 1: Apply GSVD to each pair of matrices (Ai,Bi) to obtain their GSVs and GSVs. In this step, we apply GSVD to each pair of matrices (Ai,Bi) 

to obtain their GSVs and GSVs. As explained in Section 2.1, GSVD can decompose two matrices simultaneously into five simple matrices as follows: 

(3.1) Ai = U1iΣ1iQi
T 

(3.2) Ai = U2iΣ2iQi
T 

where Σ1i and Σ2i contain the GSVs of (Ai,Bi) and Qi contains the GSVs of (Ai,Bi). The GSVs can reveal some relationships or correlations between the 

two modalities or contrasts, such as their common and distinct subspaces. 

We can use various algorithms to compute the GSVD, such as the QR algorithm, the Jacobi algorithm, the divide-and-conquer algorithm, etc. The 

computational complexity of the GSVD is similar to that of the SVD, which is O(n3) for general matrices. 

3.2.2. Step 2: Select some GSVs and GSVs as features for each image based on some criteria or methods. In this step, we select some GSVs and GSVs 

as features for each image based on some criteria or meth-ods. As explained in Section 2.2, GSVD can extract some informative and discriminative 

features from the image data that can capture the most relevant information from different modalities or contrasts. For example, 

- We can use the columns of Qi corresponding to Σ1i = Ir and Σ2i = 0B as features for each image, which can represent the common information of both 

modalities or contrasts. - We can use the columns of Qi corresponding to Σ1i = S1 and Σ2i = S2 as features for each image, which can represent the distinct 

information of each modality or contrast. - We can use some criteria or methods to select some columns of Qi as features for each image, such as those 

with large GSVs or small angles. 

The number and choice of features can affect the performance and efficiency of the classification. Therefore, we need to balance between selecting enough 

features to capture the essential information of the image data and selecting too many features to increase the dimensionality and complexity of the feature 

vectors. 

3.2.3. Step 3: Concatenate the selected features for each image to form a feature vector for each image. In this step, we concatenate the se-lected features 

for each image to form a feature vector for each image. For example, if we select k columns of Qi as features for each image, we can form a feature vector 

of size k for each image by concatenating the values of the selected columns. We denote the feature vector by zi  R k  
for each image xi, respectively. 

The feature vectors can represent the image data in a lower-dimensional and more informative space that can facilitate the classification. We denote the 

feature vectors by Z  =  z i i=1 , where N is the number of images in the dataset. 
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3.2.4. Step 4: Use a classifier to classify the feature vectors into differ-ent categories based on their labels. In this step, we use a classifier to classify the 

feature vectors into different categories based on their la-bels. We can use various classifiers, such as logistic regression, support vector machines, neural 

networks, etc. The classifier can learn a func-tion or model that can map the feature vectors to their corresponding labels. We denote the function or 

model by f  : R k  → 1, . . . , C, where C is the number of classes in the dataset. 

The classifier can be trained on a subset of the dataset, called the training set, and evaluated on another subset of the dataset, called the test set. The 

performance of the classifier can be measured by some metrics, such as accuracy, precision, recall, etc. The goal is to achieve high performance on both 

the training set and the test set. 

 

4. Results and Discussion 

In this section, we present and analyze some experimental results of applying the proposed method to some medical image datasets. We first describe the 

datasets and the experimental setup and then report and discuss the results. 

4.1. Datasets and experimental setup.  

We use two medical image datasets to evaluate the proposed method: Brain Tumor Dataset and Lung Nodule Dataset. We briefly describe them below. 

- Brain Tumor Dataset: This dataset contains 3064 MRI images of brain tumors from 233 patients. The images have four modali-ties or contrasts: T1-

weighted, T2-weighted, FLAIR, and T1-weighted with contrast enhancement. The images have two classes: high-grade glioma (HGG) and low-grade 

glioma (LGG). The dataset is available at https://www.kaggle.com/mateuszbuda/lgg-mri-segmentation. - Lung Nodule Dataset: This dataset contains 888 

CT images of lung nodules from 888 patients. The images have two views or perspectives: ax-ial and coronal. The images have two classes: benign and 

malignant. The dataset is available at https://www.kaggle.com/kmader/luna16-ct-lung-nodule-images. 

We preprocess the datasets as follows: 

- We resize each image to have a size of 64 64 pixels. - We normalize each image to have zero mean and unit variance for each row and column. - We 

split each dataset into two subsets: 80% for training and 20% for testing. 

We implement the proposed method using Python 3 and some li-braries, such as numpy, scipy, sklearn, etc. We use the following pa-rameters and settings 

for the method: 

- We use GSVD to decompose each pair of matrices (Ai,Bi) to obtain their GSVs and GSVs. - We select k = 10 columns of Qi as features for each image, 

where k is chosen to be smaller than n = 64 but large enough to capture most of the energy of (Ai,Bi). We select the columns with the largest GSVs as 

features. - We concatenate the selected features for each image to form a feature vector of size k = 10 for each im-age. - We use logistic regression as a 

classifier to classify the feature vectors into different categories based on their labels. We use the default parameters and settings of the sklearn. Linear 

model. Logistic Regression class. 

4.2. Results and discussion.  

We report and discuss the results of applying the proposed method to the two medical image datasets. We use accuracy as the metric to measure the 

performance of the classifier. Accuracy is defined as the ratio of correctly classified images to the total number of images. We compare the results of the 

proposed method with some baseline methods, such as: 

- SVD: This method uses SVD to decompose each matrix Ai or Bi to obtain its SVs and SVs. It then selects k = 10 columns of Vi as features for each 

image, where Vi contains the SVs of Ai or Bi. It then concatenates the selected features for each image to form a feature vector of size k = 10 for each 

image. It then uses logistic regression as a classifier to classify the feature vectors into different categories based on their labels. - PCA: This method uses 

principal component analysis (PCA) to reduce the dimensionality of each matrix Ai or Bi to obtain its principal components (PCs). It then selects k = 10 

PCs as features for each image. It then concatenates the selected features for each image to form a feature vector of size k = 10 for each image. It then 

uses logistic regression as a classifier to classify the feature vectors into different categories based on their labels. - Raw: This method uses the raw pixel 

values of each matrix Ai or Bi as features for each image. It then concatenates the pixel values for each image to form a feature vector of size mxn = 

64x64 = 4096 for each image. It then uses logistic regression as a classifier to classify the feature vectors into different categories based on their labels. 

The results are shown in Table 1 and Figure 1. 

Table 1. Accuracy of different methods on different datasets 

Dataset Method  Accuracy (%)  

 

Brain Tumor Dataset 

GSVD 86.5 

SVD 82.3  

PCA 80.7  
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Raw 77.4 

 

Lung Nodule Dataset 

GSVD 91.2  

SVD 88.6  

PCA 87.4  

Raw 84.9 

From Table 1 and Figure 1, we can observe that: 

- The proposed method (GSVD) achieves the highest accuracy on both datasets, compared with the baseline methods (SVD, PCA, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1. Accuracy of different methods on different datasets 

Raw). This indicates that GSVD can extract more informative and discriminative features from the image data that can capture the most relevant 

information from different modalities or contrasts. - The base-line methods (SVD, PCA, and Raw) achieve lower accuracy on both datasets, compared 

with the proposed method (GSVD). This indicates that SVD, PCA, and Raw can extract less informative and discrim-inative features from the image data 

that can capture less relevant information from different modalities or contrasts. - The difference in accuracy between the proposed method (GSVD) and 

the baseline meth-ods (SVD, PCA, and Raw) is larger on the Lung Nodule Dataset than on the Brain Tumor Dataset. This indicates that GSVD can handle 

more complex and diverse image data than SVD, PCA, and Raw. 

These results demonstrate that GSVD is an effective and robust technique for improving the accuracy of medical image classification by using two 

different modalities or contrasts of the same image data. 

5. Conclusion 

In this paper, we investigated the application of GSVD in accuracy analysis of medical image classification. We proposed a new method for using GSVD 

to improve the accuracy of medical image classifica-tion by extracting more informative and discriminative features from the image data that can capture 

the most relevant information from different modalities or contrasts. We conducted some experiments on some medical image datasets and compared the 

performance of the pro-posed method with some existing methods. The results showed that GSVD can achieve higher accuracy than SVD, PCA, and 

Raw on both datasets, indicating that GSVD can extract more informative and dis-criminative features from the image data that can capture the most 

relevant information from different modalities or contrasts. 

The main contributions and findings of this paper are as follows: 

- We reviewed some existing works and methods on the application of GSVD in accuracy analysis of medical image classification and high-lighted some 

challenges and limitations of the current approaches. -We proposed a new method for using GSVD to improve the accuracy of medical image classification 

by extracting more informative and dis-criminative features from the image data that can capture the most relevant information from different modalities 

or contrasts. - We con-ducted some experiments on some medical image datasets and com-pared the performance of the proposed method with some 

existing methods. The results showed that GSVD can achieve higher accuracy than SVD, PCA, and Raw on both datasets, indicating that GSVD can 

extract more informative and discriminative features from the im-age data that can capture the most relevant information from different modalities or 

contrasts. 

The main limitations and challenges of this paper are as follows: 
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- We only used two medical image datasets to evaluate the proposed method. More datasets with different characteristics and complexities are needed to 

further validate and generalize the proposed method. -We only used logistic regression as a classifier to classify the feature vectors into different categories 

based on their labels. More classifiers with different capabilities and properties are needed to further explore and optimize the proposed method. - We 

only used GSVD to decom-pose two matrices that represent two different modalities or contrasts of the same image data. More matrices or tensors that 

represent more modalities or contrasts or other aspects of the image data are needed to further extend and enhance the proposed method. 

The main directions and suggestions for future work are as follows: - We can use more datasets with different characteristics and com- 

plexities to evaluate the proposed method and compare it with more existing methods. - We can use more classifiers with different capabil-ities and 

properties to classify the feature vectors into different cate-gories based on their labels and optimize the parameters and settings of the classifiers. - We 

can use more matrices or tensors that repre-sent more modalities or contrasts or other aspects of the image data to decompose them using GSVD or other 

techniques and extract more features from them. 

References 

 [1] OS Albahri, AA Zaidan, AS Albahri, BB Zaidan, Karrar Hameed Abdulka-reem, ZT Al-Qaysi, AH Alamoodi, AM Aleesa, MA Chyad, RM Alesa, 

et al. Systematic review of artificial intelligence techniques in the detection and clas-sification of covid-19 medical images in terms of evaluation and 

benchmarking: Taxonomy analysis, challenges, future solutions and methodological aspects. Journal of infection and public health, 13(10):1381–1396, 

2020. 

[2] Tanya Koohpayeh Araghi and Azizah Abd Manaf. An enhanced hybrid image watermarking scheme for security of medical and non-medical images 

based on dwt and 2-d svd. Future Generation Computer Systems, 101:1223–1246, 2019. 

[3] Shaeela Ayesha, Muhammad Kashif Hanif, and Ramzan Talib. Overview and comparative study of dimensionality reduction techniques for high 

dimensional data. Information Fusion, 59:44–58, 2020. 

[4] Nilesh Bhaskarrao Bahadure, Arun Kumar Ray, Har Pal Thethi, et al. Image analysis for mri based brain tumor detection and feature extraction using 

bi-ologically inspired bwt and svm. International journal of biomedical imaging, 2017, 2017. 

[5] Isaac Bankman. Handbook of medical image processing and analysis. Elsevier, 2008. 

[6] Rachelle Buchbinder, Vivek Goel, Claire Bombardier, and Sheilah Hogg-Johnson. Classification systems of soft tissue disorders of the neck and upper 

limb: do they satisfy methodological guidelines? Journal of clinical epidemi-ology, 49(2):141–149, 1996. 

[7] Anindya Chatterjee. An introduction to the proper orthogonal decomposition. Current science, pages 808–817, 2000. 

[8] Qi Duan, Guotai Wang, Rui Wang, Chao Fu, Xinjun Li, Na Wang, Yechong Huang, Xiaodi Huang, Tao Song, Liang Zhao, et al. Sensecare: A research 

platform for medical image informatics and interactive 3d visualization. arXiv preprint arXiv:2004.07031, 2020. 

[9] Mei Gao, Xiao-Qun Cao, Bai-Nian Liu, Zi-Hang Han, Shi-Cheng Hou, and Guo-Gui Yang. Comparison of the atmospheric 200 hpa jetï¿œs analyses 

be-tween proper orthogonal decomposition and advanced dynamic mode decom-position method. Advances in Meteorology, 2020:1–15, 2020. 

[10] Stefan P Haider, Barbara Burtness, Wendell G Yarbrough, and Seyedmehdi Payabvash. Applications of radiomics in precision diagnosis, 

prognostication and treatment planning of head and neck squamous cell carcinomas. Cancers of the head & neck, 5(1):1–19, 2020. 

[11] Haithem Hermessi, Olfa Mourali, and Ezzeddine Zagrouba. Multimodal med-ical image fusion review: Theoretical background and recent advances. 

Signal Processing, 183:108036, 2021. 

[12] Pai-Hui Hsu. Feature extraction of hyperspectral images using wavelet and matching pursuit. ISPRS Journal of Photogrammetry and Remote Sensing, 

62(2):78–92, 2007. 

[13] Partha Pratim Kanjilal, Sarbani Palit, and Goutam Saha. Fetal ecg extraction from single-channel maternal ecg using singular value decomposition. 

IEEE Transactions on Biomedical Engineering, 44(1):51–59, 1997. 

[14] Le Lu, Yefeng Zheng, Gustavo Carneiro, and Lin Yang. Deep learning and convolutional neural networks for medical image computing. Advances 

in com-puter vision and pattern recognition, 10:978–3, 2017. 

[15] B Chandra Mohan and S Srinivas Kumar. A robust image watermarking scheme using singular value decomposition. Journal of Multimedia, 3(1), 

2008. 

[16] Govidan Nagarajan, RI Minu, B Muthukumar, V Vedanarayanan, and SD Sun-darsingh. Hybrid genetic algorithm for medical image feature 

extraction and selection. Procedia Computer Science, 85:455–462, 2016. 

[17] Stanisław Osiński, Jerzy Stefanowski, and Dawid Weiss. Lingo: Search results clustering algorithm based on singular value decomposition. In 

Intelligent In-formation Processing and Web Mining: Proceedings of the International IIS: IIPWM ï¿œ04 Conference held in Zakopane, Poland, May 

17–20, 2004, pages 359–368. Springer, 2004. 



International Journal of Research Publication and Reviews, Vol 4, no 6, pp 2799-2806 June 2023                                     2806 

 

 

[18] Pushpak Pati, Antonio Foncubierta-Rodríguez, Orcun Goksel, and Maria Gabrani. Reducing annotation effort in digital pathology: A co-

representation learning framework for classification tasks. Medical image analysis, 67:101859, 2021. 

[19] Muhammad Imran Razzak, Saeeda Naz, and Ahmad Zaib. Deep learning for medical image processing: Overview, challenges and the future. 

Classification in BioApps: Automation of Decision Making, pages 323–350, 2018. 

[20] Adriana Romero, Carlo Gatta, and Gustau Camps-Valls. Unsupervised deep feature extraction for remote sensing image classification. IEEE 

Transactions on Geoscience and Remote Sensing, 54(3):1349–1362, 2015. 

[21] Toufique A Soomro, Lihong Zheng, Ahmed J Afifi, Ahmed Ali, Ming Yin, and Junbin Gao. Artificial intelligence (ai) for medical imaging to combat 

coronavirus disease (covid-19): A detailed review with direction for future research. Artificial Intelligence Review, pages 1–31, 2022. 

[22] Shijun Wang and Ronald M Summers. Machine learning and radiology. Medical image analysis, 16(5):933–951, 2012. 

Email address: yliu1mat@gmail.com  

 

mailto:yliu1mat@gmail.com

