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ABSTRACT 

In supply chain management, the production is a core process which converts raw material into finished goods in a timely manner. From the inception of industrial 

revolution, technological advancement, economical process, organizational model, market demand has evolved, which has influenced changes in mechanism of 

production planning and scheduling. Scheduling refers to the sequencing of tasks and their assignment to suitable resources. This paper focuses on the various types 

of production scheduling problem, where heuristics techniques have been applied to formulate and solve the problems. Emerging technologies like artificial 

intelligence, blockchain, cloud computing, internet of things (IoT) directly impact the planning and scheduling frameworks used in the production industry. Recent 

development in production scheduling has emerged further due to state-of-the art technology and its perspective to global orientation of manufacturing organization 

and their view towards green manufacturing schedule with enforced security during information sharing. 
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1. Introduction 

A production scheduling problem revolves around processing of jobs or parts on different machines and determining the sequence and timing of each 

operation on each machine such that some given performance criterion is maximized or minimized (Bhongade & Khodke, 2012). Efficient production 

scheduling is very critical for manufacturers to maximize high resource utilization, minimize delays while keeping production cost as low as possible. 

The majority of production shop scheduling problems can be classified into two classes (i) flow shop and (ii) job shop scheduling. In flow shop problem, 

machines are organized in order to process operation on the jobs, whereas in job-shop scheduling problem a set of jobs passes through different machines 

in any sequence. The two classes of production scheduling problems are accordingly named as assembly job shop problem (AJSP) and assembly flow 

shop problem (AFSP). The processing of jobs on different machines in same assembly or processing of parts in same assembly is carried out in parallel. 

The parameters influencing performance of the production system depends mainly on the complexity of the product structure, dispatching rule, and 

scheduling method. 

Since the industrial revolution, technology and the global economy have developed rapidly. Driven by the market demand and the development of science 

and technology, the organisational model of the production system has evolved, which has in turn caused changes in the methods of production scheduling 

(Jiang et. al., 2021). The production scheduling mechanism has evolved from centralised/decentralised scheduling to distributed scheduling. Increasing 

product complexity, manufacturing environment complexity and an increased emphasis on product quality are the factors leading to uncertainties in 

production processes (Morton et. al., 1994). These uncertainties evolve from unplanned machine maintenance, rework, changes in product design, 

production modes, random demand, and random capacity etc.  

Production scheduling has various variants of problem. It can be roughly divided into two categories, (a) general scheduling problem applicable in all 

industries and (b) real industry scenarios. The process overlapping or sequence dependent setup time is one of the realistic aspects in scheduling problem. 

With the rise of Industry 4.0 standards, which has led to a significant increase in data collection activities that is used to build larger and more complex 

models (Schlenkrich & Parragh, 2023). Newly emerging technologies such as internet of things, cloud computing and trend towards digitalization, 

automation and interconnection of systems operating at manufacturing floor has predominantly impacts production planning and scheduling frameworks. 

Industrial use cases consist of several thousand operations on a large variety of machines; therefore, it is necessary to identify and highlight approaches, 

which can meet the challenges of scheduling in the era of Industry 4.0 and are suitable to tackle large scale problems. For large scale scheduling problems 

advanced solution approaches belong to three categories, namely metaheuristics methods, constraint programming and machine learning. 

To formulate different problem and solution approaches, mathematical programming methodology try to solve the underlying scheduling problem to 

optimality, heuristics and metaheuristics focuses on to find good solutions within reasonable computation times, whereas constraint programming is used 

to reduce the search space in the domain. 
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2. Literature review 

The production scheduling approaches can be classified into categories; first type is generic extensions of classical scheduling problems, and the second 

type is specific solution approaches motivated by a certain industry. In the first category production scheduling problems are related to flexible job shop 

scheduling problem (Chaudhry & Khan, 2016; Xie et. al., 2019), assembly flow shop scheduling (Komaki et. al., 2019), non-permutation flow shop 

scheduling (Rossit et. al., 2018) or resource constrained project scheduling (Hartmann & Briskorn, 2010; Pellerin et. al., 2020). At the core of production 

scheduling problem there are two major tasks – the allocation of operations to suitable resources and defining their processing sequences. These tasks 

need to be executed by a scheduling method satisfying a set of constraints, such that an objective function is optimized. The set of constraints may vary 

significantly from one scheduling problem to another and reflect different aspects of the underlying real-world problem. 

The classical scheduling problems consider few and simple restrictions like number of jobs to be processed on number of machines with fixed processing 

time, sequence of machines etc. Though classical job shop problem is a challenging optimization problem, real-world practical problems require to 

consider various other constraints like changing the setup of machines between jobs, processing sequence depending on time, varying processing time 

between multiple resources, characteristics of resources used to perform a given task, complex task relationships and constraints on their timing etc. The 

resources can be staff or machines. Due to variations in experience and skill level of staffs, and variations in the available technology; performing the 

respective production step varies with processing time by the resources. Xie et. al. (2019) proposed e flexible job shop scheduling problem (FJSSP) to 

capture more realistic aspect by choosing processing machine among the list of suitable machines. Kress et. al. (2019) introduced heterogeneous aspect 

of machine operator independent of processing time. There can be specific machines which might also be designed to produce two products in parallel 

which motivates incorporation of batch production constraints to the scheduling models. Ham (2017) investigated FJSSP with parallel batch processing 

machines, which was further developed by Mahmoodjanloo et. al. (2020) by formulating a model for reconfigurable machine tools for FJSSP. In this 

context Zhang & Wang (2018) explored flexible assembly job shop problem with sequence dependent setup times with part sharing. In production 

scheduling, sequence of tasks of resources has a significant influence on the setup time needed between two production tasks. To address this aspect, 

Shen et. al. (2018) developed a metaheuristic called tabu search algorithm in the context of the FJSSP with sequence dependent setup times. Relationship 

between different tasks is not always simple sequence, rather there can be different kind of relations between predecessor and successor. It can be 

overlapping of operations, no-wait constraint, transportation time, earliest and latest start or finish time, tardiness cost etc. 

The four major categories of advanced solution approaches evolved to solve complex real-world scheduling problems, are mixed integer programming, 

metaheuristics, constraint programming, and machine learning. The first category of solution method is metaheuristics, which is used to tackle large scale 

production scheduling problems. Among various types of metaheuristics developed to solve scheduling problems, population based and nature inspired 

methods, trajectory-based approaches, decomposition algorithms or combination of these methods are significant. Population based and nature inspired 

metaheuristics follow principles that can be observed in natural phenomena observed in animal behaviour and natural selection in evolution. Genetic 

algorithms are popular examples for population-based metaheuristic that successively modify a set of solutions (also called population) under the principle 

of survival of the fittest. Defersha and Rooyani (2020) proposed a two-stage genetic algorithm for the FJSSP incorporating constraints sequence dependent 

setup time, release dates and lag time. Ali et. al. (2020) applied genetic algorithm with new virtual crossover operators for the dynamic job shop scheduling 

problem. Zhang et. al. (2019) developed hybrid particle swarm optimization along with genetic algorithm and simulated annealing. Particle swarm 

optimization (PSO) modifies a population of solutions in order to find the best solution within the search space. Simulated annealing is inspired by the 

process of annealing in metallurgy. Ant colony optimization (ACO) approach, which is inspired by the behaviour of ants travelling between their nest 

and potential food sources, applied by Zhang et. al (2020) to investigate multi-objective optimization in flexible assembly job shop scheduling to minimize 

makespan, total tardiness and total workload. Yang et. al. (2022) applied dragonfly metaheuristic, which is a method performing the phases of exploration 

and exploitation in a manner that is inspired by the behaviour of insects during their hunt for prey. To enhance the population initialization and generation 

jumping stage, the researchers incorporated dynamic opposite learning strategy into the algorithm to overcome the limitation of getting stuck in local 

optima. 

There are several trajectory-based approaches which have been identified as suitable for large scale scheduling problems. The trajectory-based methods 

modify a single solution candidate that moves through the search space. Hajibabaei & Behnamian (2021) applied tabu search method for flexible job 

shop scheduling with unrelated parallel machines and resource dependent processing times. The researcher presented metaheuristic method in matrix-

based solution containing information on the operation, sequence assignment of machines and flexible resources. In this approach initial solution is 

improved iteratively by performing modification of the solution, while keeping track of previous modification in the tabu list in order to prevent getting 

stuck in local optima. There are situations where jobs may block the machine after completion until the following machine becomes available. Mogali et. 

al (2021) investigated such blocking job shop problem. Rossit et. al. (2018) modified tabu search methods for job shop scheduling problems with routing, 

batching and release dates and then solved different neighborhood structures efficiently. To minimize the total weighted tardiness of flexible job shops, 

Sobeyko and Monch (2016) developed an iterative local search method using a simulated annealing acceptance criterion and hybridized the approach by 

means of the shifting bottleneck heuristic and a variable neighborhood search. To tackle complex scheduling problem having many real-world restrictions, 

such as sequence flexibility, resumable operations, sequence dependent setup times, partial overlapping between operations, unavailability of machines 

or fixed operations, Lunardi et. al. (2021) used combination of different metaheuristic solution approaches namely genetic algorithm, differential 

evolution, tabu search and iterated local search. From their research it is found that a combination of tabu search and differential evolution appears to be 

the most efficient method and it outperforms the other heuristics and a constraint programming approach. 
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The other metaheuristics approaches applied on large problem instances through decomposition by solving smaller subproblems efficiently and combining 

the results to an overall solution. El-Kholany et al. (2022) presented a method for decomposing a job shop scheduling problem into time windows, whose 

operations are then scheduled using a multi-shot form of declarative programming, called Answer Set Programming (ASP). It is observed that with larger 

instance size, the decomposition method delivered close result to the results provided by the constraint programming solver. The purpose of decomposing 

of job-shop scheduling problem into multiple time windows and solving the results is to optimize the total weighted tardiness and problem instances. 

Another programming methodology, for combinatorial optimization problems, called Constraint programming (CP) uses constraint propagation in order 

to reduce variable domains. This programming has drawn attention from the researchers due to its capability of solving extremely large scheduling 

problems. The constraint programming along with mixed-integer programming used to formulate to a challenging scheduling problems like online 

printing shop scheduling problem (Lunardi et. al., 2020). 

Driven by the aim of Industry 4.0 to automate processes and the availability of large amounts of data, machine learning has grown very fast in the 

production context. The machine learning is another solution approaches for scheduling problems which consists of different learning-based methods, 

such as reinforcement learning and neural networks. The machine learning approaches suitable for dynamically changing scheduling environments, where 

frequently new jobs appear. In machine learning an agent repeatedly performs actions impacting an environment and receiving respective reward signals 

in order to learn a scheduling policy. Lei et. al. (2022) applied deep machine learning, where the agent was represented by a deep neural network, to the 

flexible job shop scheduling problem. To prioritize tasks various parameters can be optimized like earliest due date, shortest processing time etc. Zhang 

et. al. (2020) applied machine learning and developed Markov Decision Process model for priority dispatching. Han & Yang (2020) developed machine 

learning framework to solve job shop scheduling problems combining neural networks and machine learning. 

3. Emerging concept in production planning – Green scheduling problem and blockchain technology 

During the fourth industrial revolution, commonly known as Industry 4.0, with the high level of digitization, the concept of  sustainability has evolved. 

Camarinha-Matos et. al. (2022) remarked that sustainable manufacturing represents the “integration of processes and systems capable to produce high-

quality products and services using less and more sustainable resources (energy and materials), being safer for employees, customers and communities 

surrounding, and being able to mitigate environmental and social impacts throughout its whole life cycle”. The manufacturing scheduling and its 

applications in manufacturing systems in term of sustainability, which is often termed as Green Scheduling Problems (GSP). From the economic 

viewpoint, sustainability in manufacturing in industrial contexts is aimed at reducing total setup times and energy consumption (Xin et. al., 2023). This 

is achieved through efficiently scheduled manufacturing operations, optimal jobs machine allocation, and job sequencing, which ensures optimal product 

quality. According to this viewpoint, manufacturing industries have become increasingly attracted to green manufacturing due to the recent huge increase 

in global energy consumption as well as the variations in energy costs (Ramezanian et. al., 2019). Hence, the quest for the reduction in the environmental 

degradation effects becomes as fundamental as the optimization of industrial production efficiency. In the context of Industry 4.0, smart manufacturing 

changes the traditional job shop scheduling problems into smart distributed scheduling problems. This shift provides increased flexibility, higher product 

quality, reduced lead times, and customized production (Liaqait et al., 2021). GSP could be defined as the problem of assigning multiple jobs to a given 

machine, which are to be processed at specific times, and gaining optimization of a given objective function. The GSP is an extension of the traditional 

Job Shop Scheduling Problem (JSSP), belonging to the family of NP-hard problems. The main characteristic of a traditional JSSP is an increased 

makespan, despite a high energy consumption, as well as the neglection of optimized resource allocation, operation methods, and job sequences. On the 

contrary, GSPs are aimed at lowering the cost of operations and reducing energy consumption. Moreover, in this kind of problem, resource allocation 

and operations sequence optimization are aimed to reduce pollutant emissions. 

The typical problems, related to the GSP, are defined as modifying of the traditional flow shop scheduling problem to achieve opposite objectives, such 

as economic efficiency and sustainable efficiency. Li et al. (2022) developed a two-stage knowledge-driven evolutionary algorithm was proposed to solve 

a multi-objective distributed green flexible job shop scheduling problem. Lu et al. (2022) proposed a Pareto-based multi-objective hybrid iterated greedy 

algorithm to solve a Distributed Hybrid Flowshop Scheduling Problem (DHFSP) by minimizing makespan and total energy consumption (TEC). Zhao 

et. al. (2021) and Zhang et. al. (2019) formulated energy-efficient hybrid flow shop scheduling problems using artificial bee colony algorithms. Xin et al. 

(2021) proposed a modified whale swarm optimization algorithm for improving efficiency in a permutation flow shop scheduling problem with variable 

transportation time. Afsar et al. (2022) proposed an enhanced memetic algorithm combining a multi-objective evolutionary algorithm using e fuzzy 

numbers to manage processing time uncertainties. Gong et al. (2020) proposed a hybrid evolutionary algorithm to solve an energy-efficient flexible flow 

shop scheduling with worker flexibility. Cota et al. (2019) extended the adaptive large neighbourhood search metaheuristic to the multi-objective problem 

to improve the efficiency of the search process and extended to the problems related to large-scale instances. Han et. al. (2022) focused on balanced 

energy costs criterion and developed a model of a distributed blocking flowshop scheduling problem. Zhu et. al. (2022) proposed a distributed no-wait 

flow shop scheduling problem with due windows, with an efficient discrete knowledge-guided learning fruit fly optimization algorithm. Similarly, Guo 

et al. (2022) proposed a discrete fruit fly optimization algorithm based on a differential flight strategy to solve a DPFSP. Iterated greedy algorithms are 

used (Li et. al., 2022; Chen et. al., 2022; Huang et. al., 2020) to efficiently solve the DPFSP and enhance local search. The Non-Dominated Sorting 

Genetic Algorithms (NSGA) alone or combined with other algorithms has been applied in green scheduling manufacturing problems. To highlight few 

researchers namely Geng et. al. (2021), Dong & Ye (2022), Anghinolf et. al. (2021), Xue et. al. (2019), Fernandez-Viagas et. al. (2022) etc. Zeng et. al. 

(2022) used NSGA-II to solve a Multi-Objective Distributed Permutation Flowshop Scheduling Problem (MO-DFSP) by minimizing the makespan and 

carbon emissions, considering production and transportation constraints. Li et. al. (2021) used NSGA-II to solve an Energy-Efficient Distributed 

Permutation Flowshop Scheduling Problem (EEDPFSP) by minimize the total flow time and TEC. Huo et. al. (2020) formulated a multi-objective energy-

saving job-shop scheduling process and optimized to minimize the maximum makespan, total carbon emissions, and total tardiness. In another study, 
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Boufellouh et. al. (2020) used combined NSGA-II and Simulated Annealing (SA) to minimize the total carbon emission and maximum completion time 

in a Permutation Flowshop Scheduling Problem with Constrained Tool (PFS-CT) replacement activities. The NSGA-III-based proposed algorithm was 

efficiently used to optimize the disruption management model. In Zhang et al. (2020), a mathematical model for multi-objective optimization to minimize 

TEC, makespan, and peak power of the job shop was proposed, which used an integrated process planning and scheduling approach. The problem was 

efficiently solved by employing a hierarchical multi-strategy genetic algorithm based on a non-dominated sorting strategy. 

Another recent trend in scheduling problem has emerged as collaborative distributed manufacturing scheduling problem. The collaborative distributed 

manufacturing scheduling (CDMS) has gained significant importance in extended, networked, and virtual manufacturing environments due to its 

adaptability and integration potential. In a distributed manufacturing environment, CDMS can occur within a single factory or across multiple companies 

in a dynamic and variable extended or virtual organization. For effective collaboration, the CDMS system must be secure, transparent, and trustworthy. 

Collaborative distributed manufacturing scheduling (CDMS) involves multiple entities working together and sharing resources to achieve their individual 

and collective goals (Putnik et. al. 2021). In the current complex and rapidly changing manufacturing environments, organizations such as extended 

manufacturing environments (EME) or virtual enterprises (VE) require collaborative distributed manufacturing scheduling (CDMS) to meet the demands 

of Industry 4.0 (Putnik & Ferreira, 2019). Scheduling problems that occur in distributed environments (Guo et. al., 2015) are complex, but CDMS can 

help companies tackle them effectively. The scheduling problems in CDMS (Varela et. al., 2012) are becoming increasingly complex due to the growing 

number of entities and resources involved. These entities and resources may be geographically dispersed and often involve combinatorial optimization 

problems (Varela & Ribeiro, 2014). 

The emerging blockchain model has established its benefit in CDMS in the processing of manufacturing functions, specifically joint process planning 

and scheduling. Unlike existing solutions, which are specific to a particular production environment or programming method, the blockchain-based 

CDMS model makes a novel contribution to the field by integrating various techniques such as mathematical optimization, metaheuristics, machine 

learning, and agent‐based approaches to solve basic scheduling problems. Blockchain technology, with its decentralized and distributed digital registry 

system, has seen widespread use in various industries over the past 15 years, including production planning, where it enhances efficiency and transparency 

through integration with management systems (Skowroński, 2019; Assaqty et.al., 2020). The key idea is to establish a peer‐to‐peer network between 

these enterprises using blockchain technology, enabling coordination and collaboration among them. Each enterprise has its own production facilities for 

manufacturing products. Distributed manufacturing systems (DMS) play a vital role in the current era of globalization since they can be used to manage 

and control distributed systems in organizations or networks. A popular approach called multi‐agent systems (MAS) consists of a set of autonomous 

agents that can work together toward a common goal. To facilitate this, the MAS approach to CDMS uses specific architectures and protocols. These 

frameworks and protocols provide efficient communication and coordination between agents, enabling efficient management and control of the distributed 

system (Shen, 2002). CDMS is the most important part of the modern global manufacturing environment as it provides coordination and management of 

distributed production processes. Varela & Ribeiro (2014) proposed a model for dynamic planning based on a dynamic decision‐making with multiple 

criteria. Their approach aimed to integrate strategies that allow for finding a compromise between different performance indicators such as cost, quality, 

and delivery time. Furthermore, various approaches, algorithms, tools, systems, and platforms support production planning from centralized to 

decentralized architectures. These approaches aim to integrate production planning as well as other management functions such as process planning, 

nesting, system balancing, and layout determination. The significant contributions made in this area by Vieira et. al. (2012), Varela et. al. (2012), Guo et. 

al. (2015), Ramakurthi et. al. (2021,2022). Zhou et. al. (2008) proposed an agent-based approach for distributed production scheduling to achieve global 

combinatorial scheduling optimization by integrating workflow scheduling in a distributed production environment. The proposed agent‐based approach 

is adapted from the particle swarm optimization (PSO) algorithm, in which agents move toward a graph to find an optimal global time interval. Zhang et 

al. (2019) proposed a new task scheduling system in a production environment with multiple factories and workflows that consists of a set of rules that 

are considered necessary to meet the constraints of the production environment. In 2008, Wang et. al. proposed a different task scheduling method that 

uses a special type of computer algorithm called the discrete fruit fly optimization algorithm, designed to reduce costs and power consumption. In 

distributed production environment, communication and collaboration between the hubs should be efficient and effective. In 2017, Manupati et. al. used 

a telefacturing‐based distributed manufacturing environment as a means of optimizing manufacturing services by enhancing the interoperability between 

various hub facilities. This approach led to enhance production outcomes and a more streamlined manufacturing service. In collaborative management 

process, integration of fundamental management functions require flexibility in process planning. Özgüven et. al. (2010) proposed a mathematical model 

for job‐shop scheduling problems with routing which enables to integrate two management functions with a certain degree of flexibility. The task 

scheduling in a multi‐factory manufacturing setting is crucial due to need to balance multiple objectives simultaneously. Fu et. al. (2019) built a task-

scheduling approach with workflow constraints and utilized an integrated brainstorm optimization algorithm to balance multiple objectives 

simultaneously.  

Many researchers explored and applied blockchain technology in distributed manufacturing scheduling. Kapitonov et. al. (2017) implemented blockchain 

model in autonomous object decision‐making processes in an unconstrained environment, Sikorski et. al. (2017) leveraged blockchain technology to 

improve efficiency and to reduce cost in machine‐to‐machine communication, Skowronski et. al. (2019) applied blockchain in a multi‐agent model for 

improved decision‐making in intelligent production systems. Assaqty et. al. (2020) evaluates practical aspects of collaboration between the manufacturing 

environment through the blockchain that are suitable for smart manufacturing, Cambou et. al. (2020) focused on blockchain in additive manufacturing to 

eliminate attacks by intermediaries, Westerkamp et. al. (2019) evaluated potential of blockchain to improve the security aspects of production systems. 

There are many other researchers who used blockchain to improve the privacy and security of data transmission and communication on the Internet of 

Things (IoT); to develop a smart manufacturing security model to enhance security, privacy, and tamper protection; to prevent fraud scenarios and secure 

a logistics business etc. There are eminent researchers in the area of blockchain contributed significantly to improve coordination and collaboration in 
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the smart manufacturing industry (Assaqty et. al., 2020), to create private systems to keep track of products and materials while maintaining privacy. 

Shahbazi and Bain (2021) proposed integrating blockchain technology and machine learning to address security and data management issues in smart 

manufacturing. 

4. Relevance of the study 

The relevance of this study is to explore development and formulation of job-shop scheduling problem over the years and how various methodologies 

have been applied to solve these problems. Our objective can be summarized as below: 

• Review the literature of job-shop scheduling problem with many of its variations. 

• Identify the types of job-shop scheduling problem and related constraints in various phases of production environment. 

• Development of industry specific job-shop scheduling problem with in-built constraints. 

• Identify the methodologies used by various researchers to optimize various constraints in different complex real-life situation. 

• Application of different heuristics techniques which contributed to the solution of diversified and integrated job-shop scheduling problem. 

• Influence of Industry 4.0 specification on job-shop scheduling problem. 

• What a technological development and modern instruments influenced job-shop scheduling problem in distributed manufacturing 

environment. 

• Application of emerging concept like green scheduling problem and blockchain technology in job-shop scheduling problem 

5. Research Gap 

Development of technology and change in aspects of doing business globally, has changed the dimension of job-shop scheduling problem from traditional 

one to complex scheduling problems. The world is now a globally integrated manufacturing hub. The globalisation of manufacturing and changes in 

production modes have compelled the development of production scheduling enabled by state-of-the-art technologies. From literature review, we find 

that there is future research opportunity in the following dimensions: 

• Consideration of added complexities due to changes in product design and production methods brought by product personalization. 

• Future expansion of the customer-centric value chain. 

• Responsiveness of the scheduling system to new work. 

• Integrating production scheduling with Manufacturing Execution and Control Systems. 

• Use of artificial intelligence and blockchain concepts in simulation-based optimization techniques. 

• Application of blockchain technology to improve manufacturing to control machines and to make sure they are doing the job correctly 

through secure data transactions. 

The implementation of sustainable facility layout problem is an emerging concept to develop strategies to implement sustainable facility layout. Though 

blockchain technology has been applied in distributed manufacturing systems, there is an opportunity further focusing on the blockchain scheduling. 

Many researchers have proposed frameworks for scheduling, but blockchain‐based smart contracts for scheduling in the context of distributed production, 

can be explored further. In production management, flexible and adaptive production planning is an excellent differential due to sustainability issues, big 

and complex data processing, and customization for enabling and supporting real-time decision-making in a dynamically changing production 

environment, under the constant transformation of the market. Thus, future production scheduling should be intelligent and flexible enough to the 

decision-maker to customize production decisions according to established priorities, either of the company and/or the customers’ preferences. The 

dynamic production scheduling can be advanced by deep learning-assisted smart process planning, robotic wireless sensor networks, and geospatial big 

data management to optimize resource utilization and enhance productivity in terms of enterprise decision-making. 

6. Conclusion 

This paper studies relevant articles on job-shop scheduling problem, an important domain of supply chain management. Our study reveals that, with the 

increasing complexity of supply chain management, the problems have shifted their nature from discrete to integrated environment. Initially the problems 

had been formulated in isolation where each stage was locally optimized. Growing demand and integrated natured of business environment have 

compelled to explore those in a different way. In these scenarios, the focus shifted from local optimization to global search and optimization. The 

integration of sub-systems was not much effective to achieve global optimization, where development of heuristics and combination of multiple 

methodologies have evolved and transformed the solution at optimum level. The dynamic scheduling which encompasses on-demand scheduling, should 

address optimal allocation of manufacturing resources to overcome uncertain number of manufacturing tasks in different scheduling periods. 
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Due to uncertain disruptions in the real-world manufacturing environment, it is difficult for traditional scheduling methods to effectively solve complex 

dynamic scheduling problems. While heuristic-based methodologies iteratively update solutions to find optimal result, artificial intelligent (AI)-based 

methods can quickly achieve near-optimal solutions. The AI greatly helps to adapt to dynamics based on their sequential decision-making. The AI-

enabled data-driven predictive scheduling is increasingly gaining importance to enable the accurate prediction of various uncertain information which 

naturally figure out accurate uncertainty information from some given historical manufacturing data, that substantially improves the scheduling 

performance. There is a limitation of AI also, which cannot fully manage unrecognized disruptions due to the changes in customer needs or manufacturing 

capabilities. Thus, researchers should refocus on the interactions between humans and intelligent manufacturing systems during scheduling processes and 

should develop intelligent manufacturing systems to improve their ability to respond in a timely manner to various disturbances throughout the scheduling 

process. 

The recent need for a compromise between production and energy-efficiency has led manufacturing industries to tackle the issues of sustainability linked 

to green manufacturing. Themes of costs, energy-efficiency, multi-objective optimization, and process control are trendy topics in GSP in manufacturing. 

Themes related to computational methods, cost reduction, energy storage, and optimal scheduling are emerging topics in the same field. The AI-enabled 

dynamic scheduling will play an important role to enable optimal decisions during the scheduling process in a low-carbon manufacturing environment, 

which will significantly contribute to the sustainability and resilience of our society’s development. 
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