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ABSTRACT 

The aim of the study is to consider a novel approach for solving nonlinear differential equation. The approach consists of combine use of the differential transform 

method and the He’s polynomials. Though very effective, the differential transform method (DTM) still suffers from some short comings which is lack of a systematic 

methodology for derivation of the differential transforms for linear and nonlinear equations. In this paper, it is shown that this defect has be overcome via the use 

of He’s polynomials method. The proposed method in handling of linear and nonlinear differential equations is well illustrated by a number of examples. The 

transformed analogues of some frequent nonlinearity are presented. Numerical experiments demonstrate the effectiveness of the proposed approach for solving 

linear and nonlinear differential equations and it was in good agreement with exact solution.  

Keywords: differential transform method (DTM), modified differential transform method (MDTM), He’s polynomials, and differential equation. 

1.0 INTRODUCTION 

In real world, many physical and natural phenomena are formulated as differential equations. Most of these differential equations are nonlinear. So there 

are difficulties in finding the exact or analytical solutions caused by the nonlinear part Ghorbani (2009). Many methods have been proposed to solve or 

approximate nonlinear differential equations, such as: Adomian decomposition method (ADM)  Tate & Dinde (2019), variational iteration method (VIM) 

 (Wazwaz, 2009), homotopy perturbation method (HPM) Momani & Odibat (2007), differential transform method (DTM) Rashidi, et. al, (2020) and 

many other authors, although these methods provides some useful solutions, but involve some restrictions, linearization and transformations. Nonlinear 

phenomena play a crucial role in designing more realistic mathematical models to describe the physical nature, so there is a need for a method that can 

handle nonlinear terms easily without any form of restrictions, linearization or transformations. The DTM is an effective numerical and analytical method 

for solving different types of differential equations as well as integral equations. This method converts the differential equations into recurrence relations, 

and then by Taylor series expansion, with a different approach,   obtains the convergent series solutions. The concept of DTM was first introduced by 

Zhou in 1986 to solve linear and nonlinear initial value problems in electrical circuit analysis Ayaz (2003). In this study, the DTM will be modified to 

solve nonlinear ODEs. In this paper we modify the DTM through the He’s polynomial to provide semi-analytic solution of nonlinear ODEs and the results 

compared to other methods. 

2.0 MATERIALS AND METHOD  

2.1 The Differential Transform Method (DTM) and He’s Polynomials  

This subsection is devoted to a quick review over the fundamentals of the DTM and the He’s polynomials. 

𝑌(𝑘) =
1

𝑘!
[

𝑑𝑘𝑦(𝑥)

𝑑𝑥𝑘
]                                                                                                               . . . (1) 

where 𝑌(𝑘) is a transformed function. The inverse of 𝑌(𝑘) is express as the inverse 

𝑦(𝑥) = ∑ 𝑌(𝑘)𝑥𝑘 ≈ 𝑌𝑁(𝑥) = ∑ 𝑌(𝑘)𝑥𝑘𝑁
𝑘=0

∞
𝑘=0                                                                                . . . (2) 

In general if 𝑦(𝑥) = 𝑦𝑛(𝑥), then 𝑌(𝐾) 

i. If 𝑦(𝑥) = 𝑢(𝑥) ± 𝑣(𝑥),  then 𝑌(𝑘) = 𝑈(𝑘) ± 𝑉(𝑘) 

ii. If 𝑦(𝑥) = 𝛼𝑢(𝑥), then 𝑌(𝑘) = 𝛼𝑈(𝑘) where “𝛼” is constant. 

iii. If 𝑦(𝑥) = 𝑦′(𝑥),  then 𝑌(𝑘) = (𝑘 + 1)𝑌(𝑘 + 1) 

iv. If 𝑦(𝑥) = 𝑦″(𝑥),  then 𝑌(𝑘) = (𝑘 + 1)(𝑘 + 2)𝑌(𝑘 + 2) 
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v. If 𝑦(𝑥) = 𝑦(𝑛)(𝑥),  then 𝑌(𝑘) =
(𝑘+𝑛)!

𝑘!
𝑌(𝑘 + 𝑛) 

vi. If 𝑦(𝑥) = 𝑥0 𝑜𝑟 𝑦(𝑥) = 1, then 𝑌(𝑘) = 𝛿(𝑘) 

vii. If 𝑦(𝑥) = 𝑥, then 𝑌(𝑘) = 𝛿(𝑘 − 1) 

viii. If 𝑦(𝑥) = 𝑥𝑛(𝑥),  then 𝑌(𝑘) = 𝛿(𝑘 − 𝑛) = 1,  𝑖𝑓 𝑘 = 𝑛 or 𝑌(𝑘) = 𝛿(𝑘 − 𝑛) = 0, 𝑖𝑓 𝑘 ≠ 𝑛 

ix. If 𝑦(𝑥) = 𝑒𝜆𝑘(𝑥),  then 𝑌(𝑘) =
𝜆𝑘

𝑘!
 

x. If 𝑦(𝑥) = 𝑢(𝑥)𝑣(𝑥), then 𝑌(𝑘) = ∑ 𝑈(𝑘)𝑉(𝑘 − 𝑛)𝑘
𝑛=0  

2.2 He’s Polynomials and their evaluation 

He’s polynomials are indispensable in nonlinear analyses by the HPM. Let N be a nonlinear operator acting upon an unknown function 𝑦. For treating 

functional equations including such nonlinear terms like 𝑁𝑢, HPM entails decomposition of 𝑁𝑦into an infinite summation of the He’s polynomials, 𝐻𝑛𝑠, 

corresponding to 𝑁as: 

𝑁𝑦 = ∑ 𝐻𝑛,∞
𝑛=0                                                                                                                                              . . . (3) 

where 𝐻𝑛𝑠are classically suggested in Ghorbani (2009) and to be obtained by 

𝐻𝑛(𝑦0, … , 𝑦𝑛) =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
[𝐹 (∑ 𝑝𝑖𝑦𝑖

𝑛

𝑖=0

)]

𝑝=0

       ,                                                        𝑛 ≥ 0           … (4) 

This gives 

𝐻0 = 𝐹(𝑦0),                                                                                                                                           

 𝐻1 =
𝜕

𝜕𝑝
[𝐹 (∑ 𝑝𝑖𝑦𝑖

1

𝑖=0

)]

𝑝=0

= 𝑦1𝐹′(𝑦0),                                                                                    

𝐻2 =
1

2!

𝜕2

𝜕𝑝2
[𝐹 (∑ 𝑝𝑖𝑦𝑖

2

𝑖=0

)]

𝑝=0

= 𝑦2𝐹′(𝑦0) +
1

2!
 𝑦1

2𝐹′′(𝑦0),                                                 

𝐻3 =
1

3!

𝜕3

𝜕𝑝3
[𝐹 (∑ 𝑝𝑖𝑦𝑖

3

𝑖=0

)]

𝑝=0

= 𝑢3𝐹′(𝑦0) + 𝑦1𝑦2𝐹′′(𝑦0) +
1

3!
 𝑦1

3𝐹′′′(𝑦0).                 

2.3 Analysis of the proposed DTM 

We illustrate the steps of our new modification of the DTM by considering the first-order initial value problem (IVP), second-order IVP, third-order IVP, 

and move to generalize to the 𝑛𝑡ℎ-order IVP.   

2.4 First-order homogeneous nonlinear IVP 

𝑦′(𝑥) + 𝑎𝑦(𝑥) + 𝑏𝑓[𝑦(𝑥)] = 0, 𝑦(0) = 𝑦0                                                                                     . . . (5)  

By applying subsection 2.1 and 2.2 on Eqn. (5), we get 

(𝑘+1)!

𝑘!
𝑌𝑘+1 + 𝑎𝑌𝑘 + 𝑏[𝐻𝑛] = 0                                                                                                . . . (6) 

Where 𝑘 = 0,1,2, . .. and 𝑛 = 0,1,2, . .. and 

𝑦0 = 𝑌(0)                                                                                                                          . . . (7) 

𝑌(𝑘+1) = −
𝑘!

(𝑘+1)!
[𝑎𝑌𝑘 + 𝑎𝑛(𝐻𝑛)]                                                                                              . . . (8) 

Lastly, the series solution is obtained as follows: 

𝑌(𝑥) = 𝑌0𝑥0 + 𝑌1𝑥1+. . . +𝑌𝑛𝑥𝑛                                                                                               . . . (9) 

2.5 Second-order homogeneous nonlinear IVP 

𝑦″(𝑥) + 𝑎𝑦′(𝑥) + 𝑏𝑦(𝑥) + 𝑐𝑓[𝑦(𝑥)] = 0, 𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1                                                    . . . (10)  

By applying subsection 2.1 and 2.2 on Eqn. (10), we get 

(𝑘+2)!

𝑘!
𝑌𝑘+2 + 𝑎

(𝑘+1)!

𝑘!
𝑌𝑘+1 + 𝑏𝑌𝑘 + 𝑐[𝐻𝑛] = 0                                                                           . . . (11) 
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Where 𝑘 = 0,1,2, . .. and 𝑛 = 0,1,2, . .. and 

),0(0 Yy = 𝑦1 = 𝑌′(0)                                                                                                     . . . (12) 

𝑌(𝑘+2) = −
𝑘!

(𝑘+2)!
[𝑎

(𝑘+1)!

𝑘!
𝑌𝑘+1 + 𝑏𝑌𝑘 + 𝑐(𝐻𝑛)]                                                                  . . . (13) 

Lastly, the series solution is obtained as follows: 

𝑌(𝑥) = 𝑌0𝑥0 + 𝑌1𝑥1+. . . +𝑌𝑛𝑥𝑛                                                                                               . . . (14) 

2.6 Third-order homogeneous nonlinear IVP 

  ,0)()()()()( =++++ xydfxcyxybxyaxy
𝑦0 = 𝑦(0) 

),0(1 yy =
𝑦2 = 𝑦″(0)                   . . . (15)  

By applying subsection 2.1 and 2.2 on Eqn. (15), we get 

(𝑘+3)!

𝑘!
𝑌𝑘+3 + 𝑎

(𝑘+2)!

𝑘!
𝑌𝑘+2 + 𝑏

(𝑘+1)!

𝑘!
𝑌𝑘+1 + 𝑐𝑌𝑘 + 𝑑(𝐻𝑛) = 0                                                . . . (16) 

Where 𝑘 = 0,1,2, . .. and 𝑛 = 0,1,2, . .. and 

𝑦0 = 𝑌(0), ),0(1 Yy = 𝑦2 = 𝑌″(0)                                                                                    . . . (17) 

𝑌(𝑘+3) = −
𝑘!

(𝑘+3)!
[𝑎

(𝑘+2)!

𝑘!
𝑌𝑘+2 + 𝑏

(𝑘+1)!

𝑘!
𝑌𝑘+1 + 𝑐𝑌𝑘 + 𝑑(𝐻𝑛)]                                                . . . (18) 

Lastly, the series solution is obtained as follows: 

𝑌(𝑥) = 𝑌0𝑥0 + 𝑌1𝑥1+. . . +𝑌𝑛𝑥𝑛                                                                                                  . . . (19) 

2.7 𝒏𝒕𝒉- order homogeneous nonlinear IVP 

Consider the equation of 𝑛𝑡ℎ order ODE as follows 

𝑦𝑛(𝑥) + 𝑎1𝑦𝑛−1(𝑥)+. . . +𝑎𝑛−1𝑦′(𝑥) + 𝑎𝑛𝑦(𝑥) = 0                                                                   . . . (20) 

where𝑎𝑛, 𝑎𝑛−1,..., 𝑎1 are real constants with the initial conditions; 

𝑦(0) = 𝑦0, 𝑦′(0) = 𝑦1, …,𝑦(𝑛−1)(0) = 𝑦(𝑛−1)                                                                        . . . (21) 

where 𝑦0, 
,...,0y

𝑦0
(𝑛−1)

 are real constants. 

By applying subsection 2.1 and 2.2 on Eqn. (20) and Eqn. (21), we get 

(𝑘+𝑛)!

𝑘!
𝑌𝑘+1 + 𝑎1 [

(𝑘+𝑛−1)!

𝑘!
𝑌𝑘+𝑛−1] +. . . 𝑎𝑛−1[(𝑘 + 1)𝑌𝑘+1] + 𝑎𝑛[𝐻𝑛] = 0                                        . . . (22) 

Where 𝑘 = 1,2, . . . , 𝑚 and 𝑛 = 1,2, . . . , 𝑙 and 

),0(0 Yy =
𝑦1 = 𝑌(1), . . .,                                                                                                      . . . (23) 

𝑌(𝑚+𝑛) = −
1

(𝑚+𝑛)!
[𝑎1[(𝑚 + 𝑛 − 1)! 𝑌𝑚+𝑛−1]+. . . +𝑎𝑛−1[𝑘! (𝑚 + 1)𝑌𝑚+1] + 𝑎𝑛(𝑘! 𝐻𝑛)]                           . . . (24) 

Lastly, the series solution is obtained as follows: 

𝑌(𝑥) = 𝑌0𝑥0 + 𝑌1𝑥1+. . . +𝑌𝑛𝑥𝑛                                                                                               . . . (25) 

3.0 RESULTS AND DISCUSSION 

3.1 Nonlinear Differential Equation 

The effectiveness of MDTM for solving non-linear ordinary differential equations can be illustrated as follows: 

Problem 1:  

Consider the first order nonlinear differential equation [Ogunrinde, (2019)]: 

𝑦′(𝑥) = 𝑦2(𝑥) , 𝑦(0) = 1                                                                                                          . . . (26)           

where the exact solution is  

𝑦(𝑥) =
1

1−𝑥
                                                                                                                                   . . . (27) 

Now, applying the MDTM, on Eqn. (26), gives: 



International Journal of Research Publication and Reviews, Vol 4, no 6, pp 1577-1584 June 2023                                     1580

 

 

(𝑘+1)!

𝑘!
𝑌𝑘+1(𝑥) = 𝑌𝑘

2(𝑥)                                                                                                                                  . . . (28) 

Thus, 

𝑌𝑘+1(𝑥) =
𝑘!𝐻𝑘(𝑥)

(𝑘+1)!
,                                                                                                                                      . . . (29) 

where 𝐻𝑘 = 𝑌𝑘
2                                                                                                                                      . . . (30) 

and from initial condition we get 

𝑦(0) = 1 = 𝑌0(𝑥) = 1                                                                                                                                . . . (31) 

Applying the transform initial condition Eqn. (31) in Eqn. (29), we obtain the following 

When 𝑘 = 0, Eqn. (29) becomes 

𝑌1(𝑥) =
0!×(𝑌0)2

(0+1)!
= 1                                                                                                                                         . . . (32) 

When 𝑘 = 1, Eqn. (29) becomes 

𝑌2(𝑥) =
1!×2𝑌0𝑌1

(1+1)!
= 1                                                                                                                                       . . . (33) 

When 𝑘 = 2, Eqn. (29) becomes 

𝑌3(𝑥) =
2!×[(𝑌1)2+2𝑌0𝑌2]

(2+1)!
= 1                                                                                                                    . . . (34) 

When 𝑘 = 3, Eqn. (29) becomes 

𝑌4(𝑥) =
3!×[2𝑌1𝑌2+2𝑌0𝑌3]

(3+1)!
= 1                                                                                                                . . . (35) 

When 𝑘 = 4, Eqn. (29) becomes 

𝑌5(𝑥) =
4!×[(𝑌2)2+2𝑌1𝑌3+2𝑌0𝑌4]

(4+1)!
= 1         . . (36)  

we finally obtain the series solution up to fifth term as 

𝑌(𝑥) ≈ ∑ 𝑌𝑘
5
𝑘=0 𝑥𝑘 ≈ 1 + 𝑥 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5                                                                            . . . (37) 

Table 1: Numerical solution of MDTM, DTM and Exact solution 

x Exact solution MDTM (n=5) DTM (n=7) 

0 1 1 1 

0.1 1.111111 1.11111099 1.11111 

0.2 1.249984 1.24998398 1.24992 

0.3 1.428259 1.42825897 1.42753 

0.4 1.663936 1.66393596 1.65984 

0.5 1.984375 1.98437495 1.96875 

0.6 2.430016 2.43001594 2.38336 

0.7 3.058819 3.05881893 2.94117 

0.8 3.951424 3.95142392 3.68928 

0.9 5.217031 5.21703091 4.68559 
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Figure 1: the graph of numerical solution for exact solution, MDTM and DTM 

Figure 1 shows the numerical solution for the exact solution, MDTM, and DTM obtains by using MAPLE18 software. The trend of the graph for MDTM 

and DTM is slightly the same as the exact solution. In Table 2, the absolute error for MDTM and DTM shows that the numerical solution for both methods 

is close to the exact solution. But, by comparing the absolute solution for both methods, the minimum absolute error goes to MDTM. This shows that 

MDTM is more accurate than DTM. 

Table 2: the absolute error of MDTM, DTM and the minimum absolute error to the exact solution 

x Exact solution MDTM (n=5) DTM (n=7) MDTM DTM Minimum 

0 1 1 1 0 0 0 

0.1 1.111111 1.11111099 1.11111 1E-08 1E-06 1E-08 

0.2 1.249984 1.24998398 1.24992 2E-08 6.4E-05 2E-08 

0.3 1.428259 1.42825897 1.42753 3E-08 0.000729 3E-08 

0.4 1.663936 1.66393596 1.65984 4E-08 0.004096 4E-08 

0.5 1.984375 1.98437495 1.96875 5E-08 0.015625 5E-08 

0.6 2.430016 2.43001594 2.38336 6E-08 0.046656 6E-08 

0.7 3.058819 3.05881893 2.94117 7E-08 0.117649 7E-08 

0.8 3.951424 3.95142392 3.68928 8E-08 0.262144 8E-08 

0.9 5.217031 5.21703091 4.68559 9E-08 0.531441 9E-08 

Problem 2:  

We consider the first order nonlinear inhomogeneous IVP given as:  

𝑦′(𝑥) + 𝑦2(𝑥) = 1  , 𝑦(0) = 0     [Ogunrinde, (2019)]                                                              . . . (38)           

With the exact solution   

𝑦(𝑥) = 𝑡𝑎𝑛ℎ( 𝑥)                                                                                                                                        . . . (39) 

Now, applying the MDTM, on Eqn. (38), gives: 

(𝑘+1)!

𝑘!
𝑌𝑘+1(𝑥) = 1. 𝛿(𝑘) − 𝑌𝑘

2(𝑥)                                                                                                            . . . (40) 

This leads to the following recurrence relation 

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Y(X)

X

Exact solution

MDTM (n=5)

DTM (n=7)
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𝑌𝑘+1(𝑥) =
𝑘![1.𝛿(𝑘)−𝐻𝑘(𝑥)]

(𝑘+1)!
                                                                                                                       . . . (41) 

Where 𝐻𝑘 = 𝑌𝑘
2  and 𝛿(𝑘) = { 0,𝑘≥1

1,𝑘=0
                                                                                                        . . . (42) 

and from initial condition we get 

𝑦(0) = 0 = 𝑌0(𝑥) = 0                                                                                                                                . . . (43) 

Applying the transform initial condition Eqn. (43) in Eqn. (41), we obtain the following 

When 𝑘 = 0, Eqn. (41) becomes 

𝑌1(𝑥) =
0![1.𝛿(0)−(𝑌0)2]

(0+1)!
= 1                                                                                                                       . . . (44) 

When 𝑘 = 1, Eqn. (41) becomes 

𝑌2(𝑥) =
1![1.𝛿(1)−2𝑌0𝑌1]

(1+1)!
= 0                                                                                                             . . . (45) 

When 𝑘 = 2, Eqn. (41) becomes 

𝑌3(𝑥) =
2!×[1.𝛿(2)−((𝑌1)2+2𝑌0𝑌2)]

(2+1)!
= −

1

3
                                                                                          . . . (46) 

When 𝑘 = 3, Eqn. (41) becomes 

𝑌4(𝑥) =
3!×[1.𝛿(3)−(2𝑌1𝑌2+2𝑌0𝑌3)]

(3+1)!
= 0                                                                                               . . . (47) 

When 𝑘 = 4, Eqn. (41) becomes 

𝑌5(𝑥) =
4!×[1.𝛿(4)−((𝑌2)2+2𝑌1𝑌3+2𝑌0𝑌4)]

(4+1)!
=

2

15
                                                             . . . (48) 

𝑌6(𝑥) = 0                                                                                                                                                   . . . (49) 

When 𝑘 = 6, Eqn. (41) becomes 

𝑌7(𝑥) =
6!×[1.𝛿(6)−((𝑌3)2+2𝑌0𝑌6+2𝑌1𝑌5+2𝑌2𝑌4)]

(6+1)!
= −

17

315
                            . . . (50)  

We finally obtain the series solution up to seventh term as 

𝑌(𝑥) ≈ ∑ 𝑌𝑘
7
𝑘=0 𝑥𝑘 ≈ 𝑥 −

1

3
𝑥3 +

2

15
𝑥5 −

17

315
𝑥7                                                                              . . . (51) 

Table 3: Numerical solution of MDTM, DTM, ADM and Exact solution 

x Exact solution DTM (k=10) MDTM (k=7) ADM (n=8) 

0 0 0 0 0 

0.1 0.099667995 0.09966799 0.099667995 0.099668 

0.2 0.19737532 0.19737531 0.19737532 0.1973753 

0.3 0.291312612 0.2913122 0.291312612 0.2913122 

0.4 0.379948962 0.37994358 0.37994894 0.3799436 

0.5 0.462117157 0.46207837 0.462116759 0.4620784 

0.6 0.537049567 0.53685723 0.537045473 0.5368572 

0.7 0.604367777 0.60363148 0.60433874 0.6036315 

0.8 0.66403677 0.66170604 0.663879964 0.661706 

0.9 0.71629787 0.70991915 0.715610462 0.7099192 

1 0.761594156 0.74603175 0.759037999 0.7460317 
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Figure 2: the graph of numerical solution for exact solution, MDTM, DTM and ADM 

Figure 2 shows the graph for exact solution, MDTM, DTM, and ADM that obtained by using Maple software. The trend of the graph for MDTM and 

exact solution is similar but graph for DTM and ADM slightly diverges from the exact solution. By comparing the absolute error for both methods in 

Table 4, the MDTM has the minimum absolute error compared to DTM and ADM. This shows that the numerical solution for MDTM is closer to the 

exact solution compared to the DTM and ADM. 

Table 4: the absolute error of MDTM, DTM, ADM and the minimum absolute error to the exact solution 

x Exact 

solution 

DTM MDTM ADM MDTM 

Error 

DTM 

Error 

ADM 

Error 

Minimum 

0 0 0 0 0 0 0 0 0 

0.1 0.099667995 0.099668 0.099668 0.099667995 4.44089E-16 2.178E-11 2.178E-11 4.44089E-16 

0.2 0.19737532 0.197375 0.197375 0.197375309 2.89574E-12 1.102E-08 1.102E-08 2.89574E-12 

0.3 0.291312612 0.291312 0.291313 0.291312197 5.52547E-10 4.153E-07 4.153E-07 5.52547E-10 

0.4 0.379948962 0.379944 0.379949 0.379943578 2.26384E-08 5.384E-06 5.384E-06 2.26384E-08 

0.5 0.462117157 0.462078 0.462117 0.462078373 3.98151E-07 3.878E-05 3.878E-05 3.98151E-07 

0.6 0.537049567 0.536857 0.537045 0.536857234 4.09421E-06 0.0001923 0.0001923 4.09421E-06 

0.7 0.604367777 0.603631 0.604339 0.603631482 2.90373E-05 0.0007363 0.0007363 2.90373E-05 

0.8 0.66403677 0.661706 0.66388 0.661706037 0.000156807 0.0023307 0.0023307 0.000156807 

0.9 0.71629787 0.709919 0.71561 0.709919151 0.000687408 0.0063787 0.0063787 0.000687408 

1 0.761594156 0.746032 0.759038 0.746031746 0.002556157 0.0155624 0.0155624 0.002556157 

4.0 Conclusion 

The differential transform method (DTM) is a straightforward and popular tool for handling many types of functional equations. However, the draw backs 

of the method lie in handling of linear and nonlinear unknown terms: not a general alternative is available for evaluation of the differential transforms of 

linear and nonlinearities. In this work, we have overcome this defect by proposing a simple general routine involving the He’s polynomials. For 

illustration, the differential transforms of some famous nonlinear operators are provided. The application of the proposed method is shown in solution of 

some linear and nonlinear differential equations. We conclude that the findings disclosed in this work will broaden the applicability and popularity of 
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the MDTM considerably. Our modification of the differential Transform Method (DTM) has helped us in successfully solving some nonlinear Differential 

Equations addressed by this study. A quick inspection of all the problems considered revealed that the MDTM results corresponded with the exact 

solutions to the problems in series form. Similarly, it could be observed that the MDTM was implemented without any need for transformation of the 

nonlinear term and also does not require perturbation or linearization. Thus, for ease of solution to any nonlinear Differential equation problems without 

cumbersome algebraic computations, this study therefore recommends MDTM for future and as an alternative to other semi-analytical method of solution. 
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