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A B S T R A C T 

In this study, using the motion of a vertical oscillating cylinder in an unsteady MHD Jeffery fluid flow with heat radiation through a porous media and chemical 

reaction, we explored the effects of various flow parameters. A set of nonlinear partial differential equations govern the problem's mathematical model. Using the 

Crank Nicolson finite difference approach, the partial differential equations that control flow have been quantitatively solved. Results have been disclosed by the 

cylinder's radius and distance from the wall (cylinder). Tables are used to show the properties of skin friction, the Nusselt number, and the Sherwood number, while 

graphs are used to show the characteristics of velocity, temperature, and concentration. 
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I. 1. Introduction 

For each experiment in the prior-year literature reviews, only the Newtonian fluid model was used. Very little research has been done to examine how 

non-Newtonian fluids flow in porous-walled channels and tubes, despite the fact that the majority of industrial and biological fluids are non-Newtonian 

and the classical Newton's law of viscosity fails to describe the complex rheological properties of non-Newtonian fluids. One non-Newtonian fluid model 

that has drawn attention from researchers is the Jeffrey fluid model, which is thought to be the best model for physiological fluids. The unsteady MHD 

Jeffery flow on a vertical porous plate with first order chemical reaction is of interest to many mathematicians. In recent years, it has become more crucial 

than ever to examine how mass transfer affects both Newtonian and non-Newtonian fluids. Heat transmission through radiation is used in many different 

industries, including semiconductor wafer manufacturing, the production of transient crystals, energy transfer in furnaces, and solar energy. Engines and 

combustion chambers are designed to run at greater temperatures to boost thermal efficiency. Flow happens in solid mechanics because of the wide range 

of natural convection MHD applications used in the chemical industry, including drying, food processing, oil extraction, and other processes. This is the 

motivating factor for many researchers to pursue this field of study. Moreover, astrophysical flows as well as the heating and cooling of thermal chambers 

typically employ radiative-convective flow. The fluid dynamics theory of mass transfer is applied in the burning oil pool, leaching by spray, and drying. 

Several scientists and engineers have studied the impacts of Soret and Dufour on flow issues because of their applications in such fields, such as isotope 

separation. 

The numerical result of nonlinear radiation for nanofluid heat transport across a vertical plate was examined by Sandeep and Babu [1]. Unsteady nanofluid 

flow phenomena in the presence of chemicals of a higher order were studied by Rushi et al. [2]. A power-law fluid's MHD boundary layer slip flow and 

heat transfer over a flat plate were the focus of Mastroberardino et al. [3] research. The change Soret-Dufour on MHD flow of a viscoelastic fluid over a 

semi-infinite vertical plate is examined by Idowu and Falodun [4]. The combined effects of Soret and Dufour on the MHD flow of a power-law fluid 

across a flat plate in a slip flow regime were investigated by Saritha et al. [5]. The effects of second-order chemical reaction on MHD free convection 

dissipative fluid flow past an inclined porous surface by way of Heat Generation were examined by Malik and Rahman [6]. In the flow of a viscous fluid 

by a curved stretching surface, Imtiaz et al. [7] observed the effects of Soret and Dufour. In a porous media, MHD mixed convection flow towards a 

vertical plate was investigated by Anuradha and Harianand [8]. The precise solution of Heat and mass transport in MHD Poiseuille flow with porous 

walls was investigated by Ahmed [9]. In the presence of a heat source and chemical reaction, Das and Dorjee [10] examined the MHD flow with Soret 

and Dufour effects. In the presence of Newtonian heating, a nonlinear radially stretched sheet causes a Jeffrey liquid to flow in MHD, according to T. 

Hayat et al. [11]. S. Sreenadh and M. Eswara Rao [12] describes the MHD Boundary Layer Flow of Jeffrey Fluid over a stretching/shrinking sheet through 

a porous medium. Simultaneous impacts of melting heat and internal heat generating instagnation point flow of Jeffrey fluid approaching a nonlinear 

stretching surface with varying thickness, T. Hayat et al. [13]. Three-dimensional Couette flow of a Jeffrey fluid along periodic injection/suction, M.A. 

Rana et al. [14]. M.A. Imran [15], uniform heat flux and MHD fractional Jeffrey's fluid flow with thermodiffusion, thermal radiation effects, and first 

order chemical reactions. Radiative Flow of Jeffrey Fluid Across a Convectively Heated Stretching Cylinder, T. Hayat et al. [16]. Radiative flow of MHD 
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Jeffrey fluid past a stretching sheet with surface slip and melting heat transfer, K. Das et al. [17]. M. Ali Abbas and M.M. Bhatti Simultaneous effects of 

slip and MHD on the Jeffrey fluid model's peristaltic blood flow through a porous medium are discussed in [18]. Peristaltic pumping of a power-Law 

fluid in contact with a Jeffrey fluid in an inclined channel with porous walls, S. Sreenadh et al. [19]. Magneto hydrodynamic peristalsis of variable 

viscosity Jeffrey liquid with heat and mass transfer, S. Farooq et al. [20]. Unsteady MHD Mixed Convection of Jeffrey Fluid Past an Inclined Permeable 

Moving Plate in the Presence of Thermophoresis Heat Production and Chemical Reaction, K. Venkateswara et al. [21]. Multivariate Jeffrey Fluid Flow 

through a Vertical Plate via Porous Media, D. Dastagiri Babu et al. [22]. 

 

The aim of the present work is to analyze the effect of first-order chemical reaction on unsteady MHD Jeffery flow of viscous incompressible fluid 

through a vertical oscillating cylinder immersed in a porous medium. The results of variation in different parameters on velocity, heat transfer, and mass 

transfer as well as in physical quantities like skin friction, Nusselt number, and Sherwood number are received by solving the governing equations of the 

flow field with considering changes with appropriate parameters using Crank-Nicolson implicit finite difference method. 

II. 2. Formulation of the problem 

The flow of a viscous, incompressible electrically conducting fluid through an infinite, impulsively/oscillatorily started vertical cylindrical surface with 

customizable temperature and mass distribution, as well as chemical reaction and radiation effect, has been considered in the context of unsteady MHD 

Jeffery flow. The cylinder is upright and oscillating in a porous medium. The y-axis is seen as perpendicular to the cylinder and the x-axis as parallel to 

it. Also, it is first believed that the radiation heat flux in the x-direction is much smaller than that in the y-direction. The temperature and concentration 

of the fluid and the cylinder are identical. The cylinder's surface temperature and concentration decline exponentially over time when it is moved 

impulsively in the x direction against the gravitational field at time t. The flow variables are just functions of y and t since the x-direction is infinite. The 

governing partial differential equations for this unstable Jeffery MHD flow field problem are provided by the mathematical model using the standard 

Boussinesq's approximation: 

1) 2.1 Continuity equation: 

𝜕𝑣

𝜕𝑦
= 0 ⇒ 𝑣 = 0                                                          (1)  

2.1 Momentum equation: 

𝜕𝑢

𝜕𝑡
= (

𝜈

1+𝜆
) (

𝜕2𝑢

𝜕𝑟2
+

1

𝑟

𝜕𝑢

𝜕𝑟
) + 𝑔𝛽𝑇(𝑇 − 𝑇∞) + 𝑔𝛽𝐶(𝐶 − 𝐶∞) −

𝜎𝐵0
2𝑢

𝜌
−

𝜇𝑢

𝜌𝐾
                                      (2)         

2) 2.2 Energy equation:        

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
) = 𝑘 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) −

𝜕𝑞𝑟

𝜕𝑟
+ 𝑎𝑇(𝑇 − 𝑇∞) + 𝑎𝐶(𝐶 − 𝐶∞)                                                                               (3)                                                                                                                                                                             

𝜕𝐶

𝜕𝑡
= 𝐷𝐶 (

𝜕2𝐶

𝜕𝑟2
+

1

𝑟

𝜕𝐶

𝜕𝑟
) − 𝑘𝑟(𝐶̄ − 𝐶̄∞)                                                                                                                                       (4)                     

𝐶̄ concentration 𝑇̄ temperature 𝑇̄∞temperature of free stream, 𝐶̄∞concentration of free stream, λ is  Jeffery fluid parameter, in Equation 4,  𝑘𝑟(𝐶 − 𝐶∞
̅̅ ̅̅ ) 

has been introduced for first order chemical reaction, 𝑘𝑟 is chemical reaction constant βc is coefficient of volume expansion for mass transfer , βT is 

volumetric coefficient of thermal expansion, Tm  mean fluid temperature, 𝑞𝑟 radiative heat along y ∗ -axis,  ν is kinematic viscosity, 𝐾̄is coefficient of 

permeability of porous medium, Dc is molecular diffusivity, k is thermal conductivity of fluid, Cp denotes specific heat at constant pressure, µ is for  

viscosity, ρ fluid density, σ electrical conductivity, g is acceleration due to gravity. 

The following are taken to be the model's boundary conditions: 
𝑡 = 0 ; 𝑢(𝑟, 0) = 0, 𝑇(𝑟, 0) = 𝑇∞, 𝐶(𝑟, 0) = 𝐶∞∀𝑟

𝑡 > 0 ; 𝑢 = 𝑢0𝐶𝑜𝑠𝜔𝑡, 𝑇 = 𝑇∞ + (𝑇𝑤 − 𝑇∞)𝑒−𝛼𝑡, 𝐶̄ = 𝐶̄∞ + (𝐶̄𝑤 − 𝐶̄∞)𝑒−𝛼𝑡𝑎𝑡𝑟 = 𝑅
𝑢 → 0, 𝑇 → 𝑇∞, 𝐶 → 𝐶∞𝑎𝑠𝑟 → ∞

}  (5)                           

 Where 𝛼 =
𝑣0

2

𝜈
 

Roseland explained the term radiative heat flux approximately as 

                                               𝑞𝑟 = −
4𝜎𝑠𝑡

3𝑎𝑚

𝜕𝑇4

𝜕𝑟
                                                                                                              (6) 

Here Stefan Boltzmann constant and absorption coefficient are 𝜎𝑠𝑡and 𝑎𝑚respectively.  

In this case temperature differences are very-very small within flow, such that 𝑇̄4 can be expressed linearly with temperature. It is realized by expanding 

in a Taylor series about T∞′ and neglecting higher order terms, so 

                                                 𝑇4 ≅ 4𝑇∞
3𝑇 − 3𝑇∞

4                                                                                                                     (7) 

With the help of equations (6) and (7), we write the equation (3) in this way 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡
) = 𝑘 (

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
) +

16𝑇∞
3𝜎𝑠𝑡

3𝑎𝑚

𝜕2𝑇

𝜕𝑟2
+ 𝑎𝑇(𝑇 − 𝑇∞) + 𝑎𝐶(𝐶 − 𝐶∞)                                         (8) 
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Let us introduce similarity variables and  the following dimensionless quantities as 
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Using substitutions of Equation (9), we get non-dimensional form of partial differential Equations (2), (8) and (4) respectively 

𝜕𝜉

𝜕𝜏
= (

1

1+𝜆
)

1

𝑅𝑒
2 (

𝜕2𝜉

𝜕𝜂2
+

1

𝜂

𝜕𝜉

𝜕𝜂
) + 𝐺𝑟𝜃 + 𝐺𝑐𝜓 − (𝑀 +

1

𝐾𝑝
) 𝜉                                         (10) 

𝜕𝜃

𝜕𝜏
=

1

𝑃𝑟𝑅𝑒
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𝜕2𝜃
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1
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𝜕𝜂
) + 𝑁

𝜕2𝜃

𝜕𝜂2
+ 𝐴𝜃 + 𝐵𝜓                                                             (11)                                             

The constant A and B here are often very small and can be omitted in practice. So equation(11) becomes 

𝜕𝜃

𝜕𝜏
=

1

𝑃𝑟𝑅𝑒
2 (

𝜕2𝜃
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+

1
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𝜕𝜃

𝜕𝜂
) + 𝑁

𝜕2𝜃

𝜕𝜂2
                                                                                            (12) 

𝜕𝜓

𝜕𝜏
=

1

𝑆𝑐𝑅𝑒
2 (

𝜕2𝜓

𝜕𝜂2
+

1

𝜂

𝜕𝜓

𝜕𝜂
) − 𝐾𝑟𝜓                                                                                          (13) 

The boundary conditions for this model are assumed as: 

𝜏 = 0 ; 𝜉 = 0, 𝜃 = 0, 𝜓 = 0∀𝜂

𝜏 > 0 ; 𝜉 = 𝐶𝑜𝑠𝛾𝜏, 𝜃 = 𝑒−𝜏, 𝜓 = 𝑒−𝜏𝑎𝑡𝜂 = 1
𝜉 → 0, 𝜃 → 0, 𝜓 → 0𝜂 → ∞

}                                           (14)                

The degree of practical attention include the Skin friction coefficients Г, local Nusselt Nu, and local Sherwood Sh numbers are known as follows: 

𝛤 = (
𝜕𝑢

𝜕𝑦
)

𝑦=0
,                         𝑁𝑢 = − (

𝜕𝜃

𝜕𝑦
)

𝑦=0
,                   𝑆ℎ = − (

𝜕𝐶

𝜕𝑦
)

𝑦=0
                                     (15) 

                     

III. 3. Mathematical Model for Solution 

  Analytical solution of system of partial differential Equations 10, 12 and 13 with boundary conditions given by Equation 14 is not possible. 

So, these equations, we have used to solve by Crank-Nicolson implicit finite difference method. The Crank-Nicolson finite difference implicit method is 

a second order method in time (o(Δt2)) and space, hence no restriction on space and time steps, that is, the method is unconditionally stable. The 

computation is executed for ∆y = 0.1, ∆t = 0.002 and procedure is repeated till y = 4. Equations 10, 12 and 13 are expressed as 

𝜉𝑖,𝑗+1 − 𝜉𝑖,𝑗

𝛥𝜏
= (

1

1 + 𝜆
) (

1

𝑅𝑒
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𝜉𝑖−1,𝑗 − 2𝜉𝑖,𝑗 + 𝜉𝑖+1,𝑗 + 𝜉𝑖−1,𝑗+1 − 2𝜉𝑖,𝑗+1 + 𝜉𝑖+1,𝑗+1

2(𝛥𝜂)2
+

1

𝛥𝜂
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) 

+𝐺𝑟 (
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2
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2
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1

𝐾𝑝
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)                (16)                               

 

𝜃𝑖,𝑗+1−𝜃𝑖,𝑗

𝛥𝜏
= (

1

𝑃𝑟𝑅𝑒
2 + 𝑁) (

𝜃𝑖−1,𝑗−2𝜃𝑖,𝑗+𝜃𝑖+1,𝑗+𝜃𝑖−1,𝑗+1−2𝜃𝑖,𝑗+1+𝜃𝑖+1,𝑗+1

2(𝛥𝜂)2
) + (

1

𝑃𝑟𝑅𝑒
2)

𝜃𝑖+1,𝑗−𝜃𝑖,𝑗

𝛥𝜂
             (17)                                                     

𝜓𝑖,𝑗+1−𝜓𝑖,𝑗

𝛥𝜏
=

1

𝑅𝑒
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(
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2(𝛥𝜂)2

+
1

𝛥𝜂
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𝛥𝜂

) − 𝐾𝑟 (
𝜓𝑖,𝑗+1+𝜓𝑖,𝑗

2
)   (18)                 

 

Initial and boundary conditions are also rewritten as: 

𝜉𝑖,0 = 0, 𝜃𝑖,0 = 0, 𝜓𝑖,0 = 0∀𝑖 

𝜉0,𝑗 = 𝐶𝑜𝑠𝜔𝑡, 𝜃0,𝑗 = 𝑒−𝑗𝛥𝑡, 𝜓0,𝑗 = 𝑒−𝑗𝛥𝑡∀𝑗 

𝜉𝑙,𝑗 → 0, 𝜃𝑙,𝑗 → 0, 𝜓𝑙,𝑗 → 0                                                    (19)                               

Where index i represents to ղ and j represents to time τ, ∆𝜏 = 𝜏𝑗+1 − 𝜏𝑗 and∆𝜂 = 𝜂𝑗+1 − 𝜂𝑗. Getting the values of ξ, θ and ψ at time τ, we may compute 

the values at time τ+∆τ as following method: we substitute i = 1, 2, ..., l−1 , where l correspond to ∞ ,equations 17 & 18 give tridiagonal system of 

equations with boundary conditions in equation 19, are solved employing Thomas algorithm as discussed in Carnahan et al.[23], we find values of θ and 

ψ for all values of ղ at τ + ∆τ. Equation 16 is solved by same to substitute these values of θ and ψ, we get solution for ξ till desired time τ. 
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IV. 4. Investigations on Results 

The goal of the current project is to assess the boundary layer unsteady MHD Jeffery flow on a cylindrical surface that is oscillating vertically. The 

numerical findings of the velocity profile, temperature profile, and concentration profile have been described with the use of graphs in order to see a 

physical view of the work, while skin friction coefficients, Nusselt number, and Sherwood number are presented using tables. The following values are 

used for investigation Gr = 7, Gc = 8, K= 3, N = 5, M = 4, Pr = 0.7, Sc= 3, λ = 1.5, ω =𝜋/4. Figures 5 and 11 show that as parameter N is increased, 

temperature and velocity both rise. This is a valid observation because the rise in radiation indicates the movement of heat energy. Reynolds number has 

a significant impact on velocity and concentration distribution, as shown in Figures 3 and 15. Analysis shows that as Re increases, velocity and 

concentration fall. Figures 2 and 14 show how the Schmidt number Sc varies as velocity and concentration fall off as Sc increases. In figure 6, velocity 

reduces as magnetic parameter M is increased, along with a reduction in the momentum boundary layer. Figure 4 illustrates how velocity decreases as 

oscillation parameter ω is increased. Figures 1, 10, and 13 show that as time goes on, velocity, temperature, and concentration all raise. Figures 7 and 12 

depict the temperature and velocity variations, which rise with increasing Prandtl number. Figure 8 shows the variational behaviour of the Jeffery fluid 

parameter as the Jeffery fluid parameter increases velocity increases. The effect of chemical reaction parameter Kr has been shown through Figures 9 and 

16, when Kr increases then velocity and concentration decrease. 

It is observed from Table. I that on increasing Schmidt number Sc, Reynolds’s number Re, Magnetic parameter M, parameter N, Jeffery fluid parameter 

λ and chemical reaction parameter Kr effect skin friction coefficient Г decreases while it increases with the increase in Prandtl number Pr, Oscillation 

parameter ω and time t. On increasing parameter N skin friction coefficient Г increases and decreases simultaneously while it only decreases with the 

increase in Reynolds’s number Re, Prandtl number Pr and time t. Sherwood number only increases only for  Reynolds’s number Re, Schmidt number Sc, 

time t and chemical reaction parameter Kr and remains same with the effect of other parameters. 

V. 5. Conclusions 

Effects of unsteady MHD flow past a vertical oscillating cylindrical surface in a porous medium have been analyzed. This investigation the following 

conclusions or outputs have come:   

a) The flow velocity and temperature profile hike sharply over time. 

b) It's interesting to note that when the Reynolds number Re increases, velocity and concentration profiles decrease. 

c) Schmidt number greatly influences the concentration profile in the concentration boundary layer. 

d) Increase values of parameter Kr shows great influence of decrement on concentration profile and somewhat on velocity profile. 

 

 

 

 

 

 

 

 

 

 

 

                           Fig.1 Velocity profile for different values of time t                   Fig.2 Velocity profile for different values of Sc 
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        Fig.3 Velocity profile for different values of Re   Fig.4 Velocity profile for different values of ω 

 

 
 

 

 
 

 

 
 

 
 

 

 
 

 

 
 

Fig. 5 Velocity profile for different values of N   Fig.6 Velocity profile for different values of M 

 

 

   Fig.7 Velocity profile for different values of Pr     Fig.8 Velocity profile for different values of λ 

 

                Fig.9 Velocity profile for different values of Kr   Fig.10 Temperature profile for different values of t 
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                Fig.11 Temperature profile for different values of N    Fig.12 Temperature profile for different values of Pr 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

             Fig.13 Concentration profile for different values of t     Fig.14 Concentration profile for different values of Sc 

 

 

                Fig.15 Concentration profile for different values of Re                  Fig.16 Concentration profile for different values of Kr 

 

Table1- Skin friction coefficient Г, Nusselt number Nu and Sherwood number Sh for different values of parameters 

Re M Pr N λ ω Sc t Kr Г Nu Sh 

4 4 1.7 5 1.5 4 3 0.2 2.1 0.102845 0.0747384 0.878289 

8.1 4 1.7 5 1.5 4 3 0.2 2.1 0.0219934 0.0740127 1.02994 

12 4 1.7 5 1.5 4 3 0.2 2.1 -0.008159 0.0738849 1.07094 

18.1 4 1.7 5 1.5 4 3 0.2 2.1 -0.025082 0.0738249 1.0241 

8.1 0.5 1.7 5 1.5 4 3 0.2 2.1 0.325529 0.074013 1.02994 

8.1 4 1.7 5 1.5 4 3 0.2 2.1 0.0219934 0.074013 1.02994 

8.1 7.3 1.7 5 1.5 4 3 0.2 2.1 -0.17184 0.074013 1.02994 

8.1 9 1.7 5 1.5 4 3 0.2 2.1 -0.247879 0.074013 1.02994 

8.1 4 0.3 5 1.5 4 3 0.2 2.1 0.0210088 0.075103 1.02994 

8.1 4 1.7 5 1.5 4 3 0.2 2.1 0.0219934 0.074013 1.02994 

8.1 4 4.1 5 1.5 4 3 0.2 2.1 0.0221178 0.073875 1.02994 

8.1 4 6.2 5 1.5 4 3 0.2 2.1 0.0221476 0.073842 1.02994 

8.1 4 1.7 2 1.5 4 3 0.2 2.1 -0.031508 0.116286 1.02994 
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