Dental Problem Classification Using Deep Learning and Image Processing

Shubhangi Babasaheb Goykar¹, Sayali Deepak Kakade², Pratiksha Dhananjay Farande³, Rameshwari Anil Sarkale⁴, Mr. S. N. Dhage⁵

¹Student (B.E. Computer) VPKBIET Baramati shubhangigoykar06@gmail.com
²Student (B.E. Computer) VPKBIET Baramati sayalikakade007@gmail.com
³Student (B.E. Computer) VPKBIET Baramati rameshwarisarkale674@gmail.com
⁴Student (B.E. Computer) VPKBIET Baramati pratikshafarande678@gmail.com
⁵Dept. name of organization (of Aff.) VPKBIET Baramati shrikant.dhage@vpkbiet.org

ABSTRACT—Detecting cavities in dental images plays a crucial role in early diagnosis and effective treatment of oral health issues. This paper presents a novel approach for cavity detection using a combination of deep learning and image processing techniques. The proposed method utilizes Convolutional Neural Networks (CNNs) to automatically learn and extract relevant features from dental images. Specifically, a CNN model is trained using a large dataset of annotated dental images to accurately identify cavities. The trained model is then applied to unseen images to detect and localize cavities. Additionally, image processing techniques such as segmentation and feature extraction are employed to refine the cavity detection results and improve the accuracy of the system. Experimental evaluations were conducted on a diverse dataset of dental images, and the proposed method achieved promising results in terms of accuracy and efficiency. The combination of deep learning and image processing techniques proves to be effective in cavity detection, providing a valuable tool for dentists and clinicians in early identification and intervention of oral health issues.

Index Terms—Convolutional Neural Network (CNN), Image Processing, Deep Learning

I. INTRODUCTION

Cavities, also known as dental caries, are one of the most common oral health problems affecting individuals of all ages. Early detection and accurate diagnosis of cavities are vital for effective treatment and prevention of further dental deterioration. In recent years, the advancements in deep learning and image processing techniques have opened up new possibilities for automated cavity detection in dental images. Deep learning, a subfield of artificial intelligence, has demonstrated remarkable capabilities in various image analysis tasks. Convolutional Neural Networks (CNNs), a prominent deep learning algorithm, have particularly shown great potential in recognizing patterns and extracting meaningful features from complex visual data. Leveraging the power of CNNs, dental images can be analyzed in a more precise and efficient manner, facilitating the identification of cavities with high accuracy. Image processing techniques complement deep learning approaches by providing tools to enhance, segment, and preprocess dental images. By applying image processing operations, such as image filtering, edge detection, and segmentation, the dental structures and potential cavity regions can be delineated more clearly, facilitating subsequent analysis. The fusion of deep learning and image processing methodologies presents a compelling approach for automated cavity detection in dental images. By harnessing the strengths of CNNs in feature learning and image processing techniques in refinement, the proposed system aims to improve the accuracy and efficiency of cavity detection. In this paper, we present a comprehensive study on cavity detection using deep learning and image processing techniques, with a particular focus on CNN algorithms. We aim to develop an automated system capable of accurately identifying and localizing cavities in dental images. Through extensive experiments and evaluations, we assess the performance of our proposed approach and compare it with existing methods. The outcomes of this research have the potential to contribute to advancements in dental healthcare by enabling early cavity detection and facilitating timely interventions for improved oral health outcomes.

II. LITERATURE SURVEY

Cavity detection in dental images using deep learning and image processing techniques, particularly the utilization of Convolutional Neural Networks (CNNs), has garnered significant attention in recent research. In this literature survey, we review relevant studies and approaches that have been proposed in this domain, highlighting the advancements, challenges, and potential future directions.
IV. PROPOSED METHODOLOGY

To address the task of cavity detection in dental images, we propose a comprehensive methodology that combines deep learning techniques, specifically Convolutional Neural Networks (CNNs), with image processing operations. The proposed methodology aims to achieve accurate and efficient cavity detection, leveraging the strengths of both approaches. The step-by-step description of our proposed methodology is as follows:

A. Dataset Collection and Preprocessing

Define abbreviations and acronyms the first time they are used in the text, even after they have been defined in the abstract. Abbreviations such as IEEE, SI, MKS, CGS, ac, dc, and rms do not have to be defined. Do not use abbreviations in the title or heads unless they are unavoidable.

B. CNN Model Training

Design and configure a CNN architecture suitable for cavity detection in dental images. This architecture should consist of multiple convolutional layers, pooling layers, and fully connected layers.

- Convolutional Layer: In a typical neural network each input neuron is connected to the next hidden layer. In CNN, only a small region of the input layer neurons connect to the neuron hidden layer
- Pooling Layer: The pooling layer is used to reduce the dimensionality of the feature map. There will be multiple activation pooling layers inside the hidden layer of the CNN.
- Flatten: - Flattening is converting the data into a 1-dimensional array for inputting it to the next layer. We flatten the output of the convolutional layers to create a single long feature vector.
• Fully-Connected layer: Fully Connected Layers form the last few layers in the network. The input to the fully connected layer is the output from the final Pooling or Convolutional Layer, which is flattened and then fed into the fully connected layer.

• CNN implementation steps:
 1) Convolution Operation (Filter image)
 a) ReLU Layer
 2) Pooling (used max pooling function)
 3) Flattening (Convert Matrix into 1D Array)
 4) Full Connection.
 a) Dense()
 b) Optimizer()
 c) Compile()

Fig. 1. CNN Architecture

C. Cavity Detection

Apply the trained CNN model to unseen dental images for cavity detection. Preprocess the input images by applying image enhancement techniques, such as contrast adjustment and noise reduction, to improve the clarity of dental structures. Pass the preprocessed images through the trained CNN model to obtain a probability map indicating potential cavity regions. Apply a suitable thresholding technique to convert the probability map into a binary mask, where cavity regions are represented by foreground pixels.

D. Image Processing

Utilize image processing techniques to refine the initial cavity detection results obtained from the CNN. Perform image segmentation using techniques like morphological operations, region growing, or active contours to separate individual teeth and further isolate cavity regions. Apply feature extraction methods, such as texture analysis or shape descriptors, to extract relevant features from the cavity regions. Employ post-processing techniques, such as noise removal or smoothing filters, to eliminate false positives and enhance the accuracy of the final cavity detection.

E. Evaluation and Performance Analysis

Evaluate the performance of the proposed methodology using appropriate metrics such as accuracy, sensitivity, specificity, and F1-score. Compare the results with ground truth annotations to assess the accuracy of cavity detection. Conduct comparative studies with existing approaches to demonstrate the effectiveness and superiority of the proposed methodology. By integrating deep learning with image processing techniques, our proposed methodology offers a robust framework for cavity detection in dental images. The CNN model learns discriminative features for cavity identification, while image processing operations refine the detection results and improve accuracy. The effectiveness of the methodology will be validated through comprehensive evaluations and comparisons with state-of-the-art approaches, demonstrating its potential to assist dental professionals in early cavity detection and improved oral health management.
IV. SYSTEM ARCHITECTURE

V. RESULTS

Fig. 2. Home Page
Fig. 3. Registration Form

Fig. 4. Login Page

Fig. 5. Cavity not found
VI. CONCLUSION

In this study, we developed a method to detect cavities in dental images using a combination of advanced computer techniques. Our goal was to create a system that can help dentists find cavities early and accurately. We used a special kind of computer program called a Convolutional Neural Network (CNN) to learn from a large collection of dental images. By using this method, dentists can detect cavities earlier and provide timely treatment. This can prevent further damage to teeth and improve overall oral health. However, there are still some challenges to overcome. For example, we need more annotated dental image datasets to improve the system. We also need to standardize how we evaluate the system’s performance to make fair comparisons. In conclusion, our method combining advanced computer techniques shows great promise in cavity detection. It can help dentists find cavities early and provide better care for their patients’ oral health.

REFERENCES

[1] Lawrence Y. Deng, See Sang Ho and Xiang Yann Lim.Diseases Classification Utilizing Tooth Xray Images Based On Convolutional Neural Network. https://doi.org/10.1109/IS3C50286.2020.00084

