

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Review Article on Phytochemical and Pharmacological Properties of *Tabebuia rosea* (Bertol.) D

¹Usha Bagal, ²Dr shyamlila Bavage, ³Mrs Dhanraj wasmate

¹ Bachelor of pharmacy student ,Lcop latur

² Phd in pharmacognosy principal of latur college of Pharmacy, Hasegaon tq -Ausa Dist – Latur 413512

³ HOD Of chemistry Department , Latur College of pharmacy, Hasegaon ,tq -Ausa Dist – Latur 413512

Corresponding author &Email -ushabagal9307@gmail.com

ABSTRACT

Tabebuiarosea (Bertol.) DC. is commonly known as "Pink Trumpet Tree" belonging to family Bignoniaceae were selected to study phytochemical screening and pharmacological properties. To study about taxonomical classification of Tabebuia rosea (Bertol.) DC. Alcoholic extracts of Tabebuia rosea contains various phenols, glycosides, flavonoids and aromatic compound. Ethanolic extract of flower of Tabebuia rosea contains lots of phytochemical which shows anticancer activity, larvicidal activity, etc. whereas ethanolic extract of leaf of Tabebuia rosea shows antibacterial activity. Hence extracts from different parts of Tabebuia rosea (Bertol.) DC shows various medicinal use and pharmacological activity of such as anticancer, antiulcer, antidiabetic, etc.

KEY WORDS Tabebuiarosea (Bertol.) DC, Taxonomy, phytochemicals, pharmacological properties, etc.

INTRODUCTION

Nature is the biggest source for lots of medicines. Now a day's numbers of modern drugs extracted from natural source. In the traditional days, different part of plants was used for various medicinal purposes. Natural products play major and important role in the development of drugs.^[1] *Tabebuia rosea* (Bertol.) DC belonging to family is commonly known as "Pink Trumpet Tree" well known for its beautiful flowers. They are mostly found in tropical region. The phytochemical analysis of *Tabebuia rosea* shows the presence of phenols, flavonoids, sugar glycoside, heterocyclic quinoline, aromatic compound, etc. The timber is widely used for general construction in many European countries.^[2,3] Tea made from the leaves and bark shows fever reducing effect. The herbal products obtained from the bark of *Tabebuia rosea* tree are knownastaheebo, lapacho, pandarco and iperovo.^[4]

A decoction of the cortex of the *Tabebuia rosea* utilized for anaemia and constipation. The flowers, leaves and roots also were used to reduce fever, pain, cause sweating, tonsil inflammation and many other disorders. A lapacholisa botanical product that has been isolated from *Tabebuia rosea* which is considered to be an anticancer drug and also recommended for anti-malarial and anti-panasomal effects. ^[7,8] The phytochemical found in *Tabebuiarosea* are generally used for treating cancer, ulcer, syphilis, gastrointestinal problem, diabetics, candidiasis, prostatitis, constipation and allergies.^[4]

Image 1: Tabebuiarosea Flower

Image 2: Tabebuiarosea Leaf

Image 3: Tabebuiarosea seed

TAXONOMIC CLASSIFICATION

Kingdom:	<u>Plantae</u>
Sub Kingdom:	<u>Viridiplantae</u>
Division: Sub division:	<u>Tracheophyte</u> Spermatophyte
Class:	Magnoliopsida
Order:	Lamiales
Family: Genus:	<u>Bignoniaceae</u> Tabebuia
Species:	Rosea. ^[5]

Image 4: Tabebuiarosea fruit

Image 5: Tabebuiarosea Tree

TAXONOMIC DESCRIPTION

This plant is belonging to family *Bignoniaceae* is flowering plant. *Tabebuia rosea* can grow up to 15 meter and well known for its beautiful flowers. They are mostly found in tropical region. The fruits are green, long and bean pod-like with a length of 20-40 cm (8-16 inches). The fruits turn brown when ripe and contain flat, heart shaped seeds with tiny wings.^[2] *Tabebuiarosea* is propagated by seed and can grow in moderate water. **Leaves:** Leaves are oppositely arranged, palmately compound with 5 leaflets on each stalk. Leaflets are nearly 5 - 22cm by 2 - 11cm in

dimension. Leaflets are elliptic in shape, with pointed ends.

Flowers: Flowers are trumpet shaped with 5 petals, nearly 5 - 8cm long, large and showy. They are polycarpic in habitat and pink in colour. They are thin and bilateral. Flowering period of *Tabebuiarosea* is hot and dry such as in moths of March, April, August and September.

Fruits: Fruits split open when matured. Mature fruits are yellow or golden in colour. They are dehiscent dry fruit.

Seeds: The seeds are attached to the central wall. Seeds have winged features, which are dispersed by wind.^[6]

PHYTOCHEMICAL SCREENING

The leaf of *Tabebuiarosea* were washed in tap water and completely shade dried. Dried leaves are made into fine powder of 40 mesh size. 100gm of powder was filled in the thimble and extracted using 500ml ethanol in Soxhlet apparatus for 8-10 hours. The extract was filtered using Whatman No. 1 filter paper to remove all unextractable matter. The entire extract was dried and different concentrations are made for further process.^[10] The flowers of *Tabebuia rosea* were extracted by similar process as leaf extraction.

Different parts of the *Tabebuiarosea* were extracted using alcoholic (ethanolic) solvent. GC-MS analysis of *Tabebuiarosea* showed presence of alkane, sugar glycoside, phenol, alkane ethanol, flavonoid, heterocycle quinoline, phenolic aldehyde, aromatic compound, coumarin, organo borane, epoxide, fatty alcohol, terpenoid, essential oil, aromatic carboxylic acid.

Phytocomponents identified in the ethanolic extracts of the whole plant of *Tabebuia rosea* by GC-MS are cyclopentane methyl, 1,6:2,3-dianhydro-4-o-acetyl-beta-d- allopyranose,3-hydroxy phenyl acetylene, cyclohexaneethanol,4-methyl-beta-methylene- trans, 4H-pyran-4-one,2,3-dihydroxy-6-methyl, 7-quinolinol, cinnamaldehyde, benzene, 1-methyl-2-nitro, benzofuran, 2,3-dihydro, cyclohexane,1-ethyl-4-methyl,cis, 2- furancarboxaldehyde,5(hydroxymethyl), 9-borabicyclo(3.3.1)nonane, phenol,2-(2- methylpropyl), D-erythro pentose,2-deoxy, oxirane, hexadecyl-, 1-hexacosanol, santolina triene, 2-methyl benzoic acid.^[3]

Table 1: The phytochemical profile of Tabebuiarosea

Phytochemicals	Presence/Absence	
Alkane	+	
Sugar glycoside	+	
Phenol	+	
Flavonoid	+	
Heterocyclic quinoline	+	
Phenolic aldehyde	+	
Aromatic compound	+	
Coumarin	+	
Ester	-	
Resin	-	
Steroid	-	
Phenolic acid	+	
Sugar	+	
Fatty alcohol	+	
Epoxide	+	
Essential oil	+	

Table 1: Phytochemical compounds identified in the ethanolic extracts of Tabebuiarosea by GC- MS analysis.

No	Name of the compound	Molecular	MW	Peak
		Formula		Area(%)
1.	Cyclopentane methyl	C6H12	84.17	3.46
2.	1,6:2,3-dianhydro-4-o-acetyl-beta-d- allopyranose	C8H10O5	186.16	3.22
3.	3-hydroxy phenyl acetylene	C8H6O	102.13	1.44
4.	Cyclohexaneethanol,4-methyl-beta-methylene-trans	C10H16O	152.24	0.73
5.	4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6- methyl	C6H8O4	144.13	6.07
6.	7 - Quinolinol	C9H7NO	145.16	6.01
7.	Cinnamaldehyde	C9H8O	132.16	2.42
8.	Benzene, 1-methyl-2-nitro	C7H7NO2	137.14	1.79
9.	Benzofuran, 2,3-dihydro	C8H8O	120.15	3.18
10.	Cyclohexane, 1-ethyl-4-methyl,cis	C9H18	126.24	2.89

11.	2-Furancarboxaldehyde,5(hydroxymethyl)	C6H6O3	126.11	19.39
12.	9-Borabicyclo(3.3.1)nonane	C8H15B	244.03	2.57
13.	Phenol,4-(2-methylpropyl)	С10Н14О	150.22	5.41
14.	D-erythropentose,2-deoxy	C5H10O4	134.13	11.01
15.	Oxirane, hexadecyl	С 18Н36О	268.48	3.34
16.	1 - hexacosanol	С26Н54О	382.71	2.03
17.	Santolinatriene	С10Н16	136.23	8.28
18.	2-methyl Benzoic acid	C ₈ H ₈ O ₂	136.2	2.31

Table 2: Activity of phytochemical compounds identified in the ethanolic extracts of *Tabebuiarosea* by GC-MS analysis.

No	Name of the compound	Compound Nature	Activity
1.	Cyclopentane, methyl-	Alkane	Precursor for cyclopentane mono terpenoid synthesis
2.	1,6:2,3-dianhydro-4-o-acetyl-beta-d- allopyranose	Sugar glycoside	Preservative
3.	3-hydroxy phenyl acetylene	Phenol	Antibacterial
4.	Cyclohexaneethanol,4-methyl-beta-methylene- trans	Alkane ethanol	Antibacterial
5.	4H-pyran-4-one,2,3-dihydro-3,5-dihydroxy-6- methyl	Flavonoid	anti-proliferative
6.	7 - Quinolinol	Heterocyclic quinoline	Metal chelator, antifung al
7.	Cinnamaldehyde	Phenolic aldehyde	Flavoring, anti- cancer, antimicrobe
8.	Benzene, 1-methyl-2-nitro-	Aromatic compound	Anthelmintic
9.	Benzofuran, 2,3-dihydro-	Coumarin	Anti-inflammatory, anti-diarrheal
10.	Cyclohexane, 1-ethyl-4-methyl,cis	Alkane	Antibacterial
11.	2-Furancarboxaldehyde,5(hydroxymethyl)	Aldehyde	Antimicrobial,

			preservative
12.	9-Borabicyclo(3.3.1) nonane	Organo Borane	Antimicrobial
13.	Phenol,2-(2-methylpropyl)-	Phenol	Antibacterial
14.	D-erythropentose,2-deoxy	Sugar	Preservative
15.	Oxirane, hexadecyl-	Epoxide	Adhesives
16.	1 - hexacosanol	Fatty alcohol	Antibacterial
17.	Santolinatriene	Terpenoid essential oil	Cytotoxic,
			antifungal
18.	2-methyl Benzoic acid	Aromatic carboxylic	Antimicrobial
		acid	

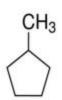


Figure 1: Methyl

cyclopentane

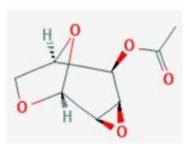


Figure 2: 1,6:2,3dianhydro-4-o-acetyl-betad-allopyranose

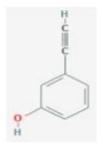


Figure 3: 3-hydroxy

phenyl acetylene

Figure 4: 4H-pyran-4-one, 2,3-dihydro-3,5-dihydroxy-6-methyl.

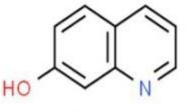


Figure 5: 7-Quinolinol

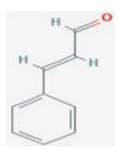


Figure 6: Cinnamaldehyde

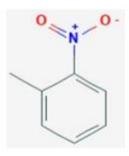


Figure 7: 1-methyl-2-nitro benzene

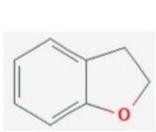


Figure 8: 2,3-dihydrobenzofuran

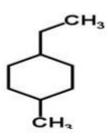
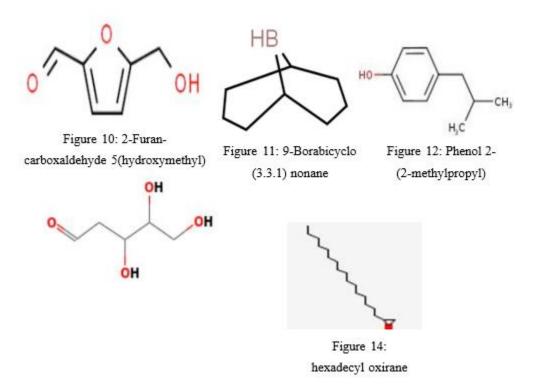
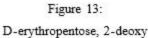
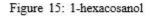





Figure 9: 1-ethyl-4methyl cyclohexane

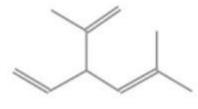


Figure 16: Santolina

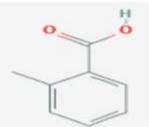
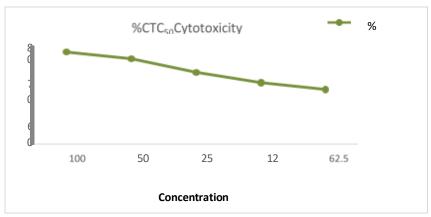
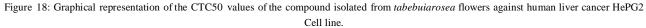


Figure 17: 2-methyl benzoic acid

Structure of active constituent

PHARMACOLOGICAL ACTIVITY


Anti-cancer activity


Cancer is an abnormal type of tissue growth in which the cells exhibit an uncontrolled division, relatively in an autonomous fashion, leading to a progressive increase in the number of dividing cells. Cancer is the one of the ailments which cannot be completely subdued by chemotherapy. The

flower of *Tabebuiarosea* was tested for its anticancer activity against liver cancer HePG2 cell line by MTT assay. The CTC50 value of the sample was $205.3 \mu g/ml$ against liver cancer HePG2 cell lines.^[9]

Concentration of test	%CTC50	CTC50 (µg/ml)
sample (µg/ml)	Cytotoxicity (µg/ml)	
1000	74.95	
500	69.43	
250	58.12	205.3
125	49.52	
62.5	43.86	
	sample (µg/ml) 1000 500 250 125	sample (µg/ml) Cytotoxicity (µg/ml) 1000 74.95 500 69.43 250 58.12 125 49.52

Table 3: The CTC50 values of compound isolated from tabebuia rosea flower against human liver cell line

Antibacterial Activity

The preliminary phytochemical analysis of the leaf extract revealed the presence of sugars, tannins, flavonoids, saponins, terpenoids, glycosides and acids are present, which results that it showed the antibacterial activity. The leaf extracts were tested for antibacterial activity using agar disc diffusion assay. The strains of microorganism obtained were inoculated in conical flask containing 100ml of nutrient broth. Media were prepared using Muller Hinton Agar, poured on petri dishes and incubated with the following gram-positive bacteria: *Staphylococcus epidermis*, *Micrococcus luteus*, *Staphylococcus aureus*, *Streptococcus* sp. and *Bacillus subtilis* and gram-negative bacteria *Salmonella typimurium*, *Pseudomonas aeruginosa*, *Klebsiellapneumonia*, *Escherichia coli*, *Pseudomonas* sp.

Antibacterial activity was assigned by measuring the inhibition zone formed around the discs. The experiment was done three times and mean values were presented. ^[10]

Table 4: Antibacterial activity of ethanolic extract of tabebuiarosea

Sr.	Bacterial strains	Zone of Inhibition in mm						
No.	used	Streptomycin	Penicillin	50mg/ml	100mg/ml	200mg/ml	300mg/ml	
1.	Salmonella Typhimurium	16.80±0.81	19.70±0.35	09.85±0.66	11.65±0.47	13.55±0.66	14.90±0.89	
2.	Pseudomonas Aeruginosa	10.30±0.33	16.90±0.47	08.95±0.09	11.78±0.45	13.95±0.90	15.55±0.68	
3.	Klebsiella Pneumonia	12.10±0.25	17.60±0.71	09.90±0.68	12.12±0.76	13.80±0.88	16.04±0.66	
4.	Escherichia Coli	14.70±0.60	10.10±0.25	08.90±0.75	11.98±0.44	14.90±0.65	16.88±0.78	

5.	Pseudomonas	18.70±0.15	21.60±0.19	08.70±0.50	10.88±0.77	13.48±0.68	15.76±0.47
	sp.						
6.	Staphylococcus Epidermis	24.10±0.19	22.10±0.33	08.40±0.60	10.33±0.66	12.64±0.60	13.78±0.65
7.	Micrococcus Luteus	20.80±0.61	19.10±0.55	08.55±0.88	10.12±0.56	12.70±0.55	14.87±0.70
8.	Staphylococcus Arius	22.80±0.25	24.40±0.35	09.64±0.44	10.24±0.80	11.60±0.77	12.67±0.55
9.	Streptococcus Sp.	24.10±0.50	20.80±0.45	09.09±0.38	11.22±0.87	13.86±0.60	15.75±0.58
10.	Bacillus subtilis	19.50±0.25	22.60±0.40	08.96±0.44	10.76±0.55	12.50±0.44	15.06±0.46

Antioxidant activity

In vitro study of ethanolic extract of *Tabebuia rosea* showed the strong antioxidant activities. The scavenging activities observed against DPPH, hydroxyl radicals, metal chelating, ferric thiocyanateas well as the thiobarbituric acid assay, leads to propose *Tabebuia rosea* as promising natural sources of antioxidants.

Ethanolic solution of DPPH was added 40μ l of extract solution of different concentration. The mixture was left to stand for 5 min and absorbance was measured spectrophotometrically at 517nm. A blank sample containing the same amount of ethanol and DPPH was also prepared. All determination were performed in triplicate. The radical scavenging activities of the tested samples, expressed as percentage of inhibition were calculated.

Assay of nitric oxide-scavenging activity was performed to check antioxidant activity. Also, superoxide anion scavenging, reducing power assay and total antioxidant activity by phosphomolybdenum method.^[11]

Name of sample	Concentrations of Plant Extract (µg)	% of Scavenging Activity					
-		DPPH	Reductant Activity	Nitrous Oxide	Super Oxide	Total Antioxidant	
	100	21.11	36.67	31.67	13.33	21.00	
	200	33.38	50.00	33.33	20.00	23.00	
	300	50.69	58.33	36.67	25.00	30.00	
Tabebuia rosea	400	51.47	65.00	40.00	33.33	32.00	
	500	59.02	68.33	41.67	40.00	44.00	
	600	77.79	75.00	46.67	46.67	77.00	
	700	80.43	80.00	53.33	53.33	80.00	
	800	84.69	83.33	56.67	61.67	82.00	
	900	87.91	86.67	60.00	70.00	84.00	
	1000	89.92	86.67	63.33	73.33	86.00	

Table 5: % of Antioxidant Scavenging Activity of Tabebuia rosea at different concentrations.

Anti-inflammatory activity

Inflammation is the body's immune system's response to an irritant. The irritant might be a germ, but it could also be a foreign object. Murine macrophages were selected for the in vitro studies of anti-inflammatory activity. The potential of *tabebuia rosea* extracts to inhibit the production of key inflammatory mediators such as NO, PGE2, and TNF-á. From this study it shows that the anti-inflammatory activity of the methanol extract obtained from the stems of *Tabebuiarosea* and the isolation ofnew iridoid esters from the inner ofbark of *Tabebuiarosea* with anti-inflammatory activity. The study of different species from the genus *Tabebuia* is important to evaluate new natural sources of biologically active molecules that could be used for drug development.

Antiproliferative activity

Proliferation is rapid production of new parts or cells. Antiproliferative activity was determined with the MTT assay. Chloroform extract of the inner bark of *Tabebuiarosea* were tested against tumour cells such as HepG2, B16F10, MCF7 and HeLa cell lines which showed anti-proliferative activity.^[12]

Part of plant	Extract	CC50±SEM	IC50±SEM (µg/mL)				
Presit		(µg/mL) НЕК-293	B16F10	MCF7	HepG2	HeLa	
Inner	<i>n</i> -hexane	178.4±1.4	125.6±1.6	172.2±1.5	>200	173.2±1.2	
bark	Chloroform	115.9±1.3	36.4±1.7	45.5±1.2	21.1±1.4	57.6±1.2	
			(SI=3.18)	(SI=2.55)	(SI=5.50)	(SI=2.01)	
	Ethyl acetate	137.1±1.4	>200	155.08±1.3	>200	>200	
	<i>n</i> -butanol	>400	>200	>200	>200	>200	
	Water	>400	>200	>200	>200	>200	
Leaves	<i>n</i> -hexane	164.5±1.3	182.0±1.8	114.4±1.2	>200	119.1±1.3	
	Chloroform	1.1±1.2	17.6±1.3	5.0±1.2	17.3±1.3	24.7±1.4	
			(SI=0.06)	(SI=0.22)	(SI=0.06)	(SI=0.05)	
	Ethyl acetate	24.9±1.2	187.8±1.7	112.4±1.3	175.2±1.4	>200	
	<i>n</i> -butanol	49.0±1.4	>200	>200	>200	>200	
	Water	>400	>200	>200	>200	>200	

Table 6: Antiproliferative effect of extracts obtained from the inner bark and leaves of Tabebuiarosea

Larvicidal activity

The flower extract of *Tabebuia rosea* showed larvicidal activity against the larvae, *Culexquinquefasciatus* and *Anopheles subpictus*. To check the activity larvicidal bioassay was performed, one gram of crude extract was first dissolved in 100ml of methanol (stock solution). From stock solution, different concentration was prepared. Polysorbate80 was used as as an emulsifier. Experiment was conducted for 24hr at room temperature. To check the activity, larvae were taken in 5 batches of 20 in 249ml of water and0.1ml of desired plant extracts concentration. The number of dead larvae were counted after 24hr of exposure and the percentage mortality was reported from the average of five replicates. The regression value of *Culexquinquefasciatus* was 0.974 and LC50 were 586.68, and for *Anopheles subpictus* regression value was 0.981 and LC50 were 241.72.^[13] **Table 6: Larvicidal activity of methanol extract of** *tabebuiarosea*

Larvae name	Concentrations	Percent mortality (ppm)±SE	LC50 (ppm)
	(ppm)		
	1000	69 ±0.78	
	500	31±0.45	
Culexquinque fasciatus	250	24±1.02	586.68
	125	14±0.84	(475.43-723.96)
	62.5	06±0.32	
	1000	90±1.32	
	500	74±0.79	
Anopheles subpictus	250	51±1.01	241.72
	125	27±0.83	(206.60-282.80)
	62.5	14±2.87	_

Traditional Use of Tabebuiarosea

Tabebuiarosea (Bertol.) DC. considered to bean anticancer drug and also recommended anti-malarial and anti-panasomal effect. The flowers, leaves and roots also were used to reduce fever, pain, cause sweetening, tonsil, inflammation and many other disorders. The flowers of *Tabebuiarosea* shows the larvicidal activity. ^[7,8]

CONCLUSION

Plants are natural sources of bioactive compound to treat life threatening disease. *Tabebuia rosea* has showed various phytochemical properties, which can be used for treating various health ailments. The article makes us bound for further study on *Tabebuia rosea* in future.

REFERENCES

- 1. Cragg G. M. and Newman D. J., "Plants as source of anticancer agents", J Ethnopharmacology., 2005, 100, 72-79.
- Gentry A. H., "A Synopsis of Bignoniaceae Ethnobotany and Economic Botany", Annals of the Missouri Botanical Garden, 1992, vol 79, No.1, 53-64.
- Ramalakshmi S. and Muthuchelian K., "Analysis of Bioactive constituents from the Ethanolic leaf extract of Tabebuiarosea (Bertol.) DC by Gas Chromatography – Mass Spectroscopy", International Journal of ChemTech Research, 2011, Vol.3, No.3, 1054-1059.
- 4. Chung T. H., Kim J. C. and Kim M. K., "Investigation of Korean plant extracts for potential Phyto therapeutic agents against Hepatitis B-Virus", Phytotherapy research
- 1. 1995, (9), 429-34.
- 5. https://www.itis.gov/servlet/SingleRpt/SingleRpt?search_topic=TSN&search_value= 182287#null
- 6. https://www.nparks.gov.sg/florafaunaweb/flora/3/1/3171
- 7. Jayakumar D., Mary S. J. and Santhi R. J., Indian Journal of Science and Technology, 2010, 7, 720-723.
- 8. Cai Y. Z., Sun M., Xing J., Luo Q. and Corke H., Journal of Life sciences, 2006, 100, 72-79.
- S. Solomon, N. Muruganantham and M. M. Senthamilselvi "Anti-cancer activity of Tabebuia rosea (Flowers) against human liver cancer" International Journal of Pharmacy and Biological Sciences, 2015, vol. 5, 171-174.
- Sathiya M., and Muthuchelian K. "Studies on Phytochemical Profile and Antibacterial Activity of Ethanolic Leaf Extract of Tabebuia rosea (Bertol.) DC." Ethnobotanical Leaflets, 2008, 12, 1153-57.
- 2. 11. P. Sobiyana, G. Anburaj and Dr. R. Manikandan, "Comparative analysis of the in vitro antioxidant activity of Tabebuia rosea and Tabebuia argentea" Journal of Pharmacognosy and Phytochemistry, 2019, 8(1), 2673-2677.
- F. Javier, J. González, J. Marcela, V. Gomez, J. J. Melchor-Moncada, L. A. Veloza, J. C. Sepulveda-Arias, "Antioxidant, Anti-inflammatory, and Antiproliferative Activity of Extracts Obtained from Tabebuia Rosea (Bertol.) DC." Pharmacogn.Mag. 2018, Vol. 14(55), S25-S31.
- 12. G. Madhumitha, K. Divya and J. Fowsiya "A study on phytochemical analysis, antioxidant and larvicidal activity of dried flower of Tabebuia rosea" Journal of chemical and Pharmaceutical Research, 2015, 7(10): 693-698.