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A B S T R A C T 

There are so many researches adapted on River water and its parameters for further development. As being of so many researches available, there was a need to 

have a compatible idea which can show that the values of your study is validating with the actual values. Structural Equation Modeling is a concept which performs 

factor analysis like Good Fit, IFI, RMSEA and other valuable factors which are proven to be helpful to the studies. In this research we have perform structural 

modelling on the river water parameters of Krishna River, India. After analyzing this method with the actual observed values, it was found that the 74 % of values 

are corelating with each other and as the model has alco given result which proves the factor analysis to be correct. So, we can go for Structural Equation Modeling 

for knowing that the observed value on-situ is perfectly fit for the model or not, so this study will be useful for analysis of water quality parameters. 
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1. Introduction 

A group of statistical approaches known as structural equation modelling (SEM) enable the examination of a set of interactions between one or more 

independent variables (IVs), which may be continuous or discrete, and one or more dependent variables (DVs), which may also be continuous or discrete. 

Factors or measurable variables can both be IVs and DVs. Other names for structural equation modelling include route analysis, confirmatory factor 

analysis, causal analysis, simultaneous equation modelling, causal modelling, and analysis of covariance structures. Actually, the last two are specific 

varieties of SEM. 

Multiple regression factor analyses can be used to answer queries using SEM. At its most basic, a study proposes a correlation between one measured 

variable (like acceptability of dangerous behaviour) and other measured factors (like gender, academic achievement, and institutional ties). 

As an illustration, think about the connection between academic success and peer acceptance. The topic is utilised using a single data set to illustrate and 

compare several structural equation methodologies, and is used with multiple data sets in a number of illustrations, making it a key example for this study. 

2. Methodology 

For performing SEM, it was important to first create a statistical data in a manner that a software can read. The first analysis performed was Principal 

Component Analysis (PCA), which provides minimum, maximum and mean value. After obtaining the value we can move further to create a file in SPSS 

Software which will be useful for the procedure of SEM as shown in figure 1 and Table no. 1. Next to data view we need to develop a variable view with 

the code language of the software. After completing this procedure, we can import that file into IBM AMOS Graphics 26 which will help us to create a 

SEM. There also we need to make a regression path of multiple regression model. And this leads to Structural Equation Modeling shown in Figure 2.  
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Fig. 1 

 Name Type Width Decimals Label Values Missing 

1 Month Numeric 8 2 Month {1.00, 

December} 

None 

2 Season Numeric 8 2 Season {1.00, 

Winter} 

None 

3 Station Numeric 8 2 Station {1.00, S1} … None 

4 pH Numeric 8 2 pH None None 

5 EC Numeric 8 2 EC None None 

6 Turbidity Numeric 8 2 Turbidity None None 

7 TDS Numeric 8 2 TDS None None 

8 BOD Numeric 8 2 BOD None None 

9 Nitrate Numeric 8 2 Nitrate None None 

10 DO Numeric 8 2 DO None None 

11 Phosphate Numeric 8 2 Phosphate None None 

 

Table No. 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2 
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3. Results and Discussion 

As we can observe how the values are inserted and how the SEM model looks the results comes with the tool itself. There are two main methods we can 

adapt for SEM validation, one if Good Fit Model (GFI/RMR) and second one is Chi-square (CMIN). All these analyses are only possible after PCA of 

month December, January and February as shown in figure and table no. 3, 4 and 5 respectively. After that we need to insert the observed values in data 

view and save it as a .sav file which can easily be accessible by IBM Amos tool. The GFI , CMIN output should be below than or equal to 1, if it under 

the value then it is fitting with the model. The outputs of GFI, IFI , RMSEA and CMIN is shown in figure and table no 6,7,8 and 9 respectively.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3 

 F1 F2 F3 F4 

Eigenvalue 3.534 3.110 1.044 0.313 

Variability 44.171 38.875 13.045 3.908 

Cumulative 44.171 83.046 96.092 100.000 

     

Eigenvectors     

     

 F1 F2 F3 F4 

pH -0.087 -0.511 -0.026 0.715 

Conductivity 0.381 -0.394 -0.063 -0.072 

Turbidity 0.477 0.246 -0.001 -0.167 

TDS 0.386 0.264 0.392 0.553 

BOD -0.265 0.151 0.808 -0.044 

Nitrate 0.414 -0.293 0.321 -0.259 

DO 0.459 0.261 -0.176 0.177 

Phosphate -0.139 0.526 -0.234 0.222 

     

 

Table no. 3 
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Fig. 4 

 

 F1 F2 F3 F4 

Eigenvalue 4.317 1.921 1.097 0.665 

Variability (%) 53.962 24.019 13.707 8.313 

Cumulative % 53.962 77.981 91.687 100.000 

     

Eigenvectors     

     

 F1 F2 F3 F4 

pH 0.456 -0.129 -0.030 0.318 

Conductivity 0.350 -0.442 0.274 -0.137 

Turbidity 0.421 -0.151 -0.199 0.469 

TDS 0.351 0.455 0.084 -0.304 

BOD 0.285 0.520 -0.157 0.394 

Nitrate 0.061 0.120 0.920 0.205 

DO 0.372 -0.420 -0.072 -0.298 

Phosphate -0.381 -0.310 0.033 0.530 

     

 

Table no. 4 
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Fig. 5 

 

 F1 F2 F3 F4 

Eigenvalue 2.949 2.664 2.280 0.107 

Variability (%) 36.867 33.296 28.503 1.334 

Cumulative (%) 36.867 70.163 98.666 100.000 

     

Eigenvectors     

     

 F1 F2 F3 F4 

pH 0.303 0.114 -0.545 -0.407 

Conductivity 0.181 -0.469 -0.353 0.552 

Turbidity 0.228 0.124 0.594 -0.001 

TDS 0.333 0.502 0.009 -0.169 

BOD 0.386 0.403 -0.208 0.529 

Nitrate -0.371 0.453 0.103 0.461 

DO 0.323 -0.363 0.387 0.084 

Phosphate 0.567 -0.027 0.147 0.035 

     

 

Table no. 5 
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Following are the results of SEM analysis with Maximum likelihood, Good fit and RMSEA. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6 

 

 CMIN 

Mode NPAR CMIN DF PCMIN/DF 

Saturated Model 36 0.000 0   

Independence model 8 24.475 28 .656 .874 

Zero model 0 56.000 36 .018 1.556 

      

 

Table no. 6 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 

 

 

RMR, GFI 

Model RMR GFI AGFI PGFI 

Saturated model .000 1.000   

Independence model 1102.357 .563 .438 .438 

Zero model 1475.359 .000 .000 .000 

     

 

Table no. 7 

 

 

 

 

 

 

 

 

 

 

Fig. 8 
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RMSEA 

Model RMSEA LO 90 HI 90 PCLOSE 

     

Independence model .000 .000 .172 .700 

     

 

Table no. 8 

1.1 Absolute fit indices 

Absolute fit indices show which proposed model has the best fit to the sample data and determine how well an a priori model matches the data (McDonald 

and Ho, 2002). The most basic indicator of how well the suggested hypothesis fits the data is provided by these metrics. In contrast to incremental fit 

indices, 

Calculation is based on how well the model fits in comparison to no model at all rather than comparison with a baseline model (Jöreskog and Sörbom, 

1993). The Chi-Squared test, RMSEA, GFI, AGFI, the RMR, and the SRMR fall under this group. 

1.2 Model Chi Square 

According to Hu and Bentler (1999: 2), the Chi-Square value is the conventional metric for assessing overall model fit and "assesses the magnitude of 

discrepancy between the sample and fitted covariances matrices." The Chi-Square statistic is frequently referred to as a "badness of fit" (Kline, 2005) or 

"lack of fit" (Mulaik et al, 1989) measure because a decent model fit would produce an insignificant result at a 0.05 threshold (Barrett, 2007). Although 

the Chi-Squared test continues to be widely used as a fit statistic, there are a number of serious restrictions on its application. First of all, even while the 

model is adequately defined, large departures from multivariate normality may cause this test to reject a model (McIntosh, 2006). The Chi-Square statistic 

is sensitive to sample size because it is essentially a statistical significance test, which means that it almost always rejects the model when large samples 

are utilised (Bentler and Bonnet, 1980; Jöreskog and Sörbom, 1993). On the other hand, the Chi-Square statistic lacks power when using small samples, 

which may make it difficult to distinguish between models that fit the data well and those that don't (Kenny and McCoach, 2003). Due to the Model Chi-

Square's limitations, researchers have looked for alternate metrics to judge model fit. The relative/normed chi-square (2/df) by Wheaton et al. (1977) is 

an illustration of a statistic that minimises the effect of sample size on the Model Chi-Square. Although there is no agreement on the appropriate ratio for 

this statistic, recommendations range from 5.0 (Wheaton et al., 1977) to 2.0 (Tabachnick and Fidell, 2007) notwithstanding the lack of a consensus. 

1.3 Root mean square error of approximation (RMSEA) 

The RMSEA was created by Steiger and Lind (1980, cited in Steiger, 1990) and is the second fit statistic presented in the LISREL programme. The 

RMSEA indicates how well the model would fit the population's covariance matrix if its parameter estimates were unknown but carefully selected (Byrne, 

1998). Due to its sensitivity to the number of estimated parameters in the model, it has recently come to be known as "one of the most informative fit 

indices" (Diamantopoulos and Siguaw, 2000: 85). To put it another way, the RMSEA supports parsimony by picking the model with the fewest 

parameters. In the past fifteen years, recommendations for RMSEA cut-off points have been significantly lowered. Prior to the early 1990s, an RMSEA 

between 0.05 and 0.10 was seen as a sign of fair fit, whereas values more than 0.10 denoted poor fit (MacCallum et al., 1996). According to MacCallum 

et al. (1996), an RMSEA of 0.08 to 0.10 indicates a decent fit and less than 0.08 indicates a mediocre fit. However, more recently, the general agreement 

among experts in this field appears to be a cut-off value close to.06 (Hu and Bentler, 1999) or a strict upper limit of 0.07 (Steiger, 2007). The ability to 

construct a confidence interval around the RMSEA's value is one of its major benefits (MacCallum et al., 1996). This is made possible by the statistic's 

known distribution values, which enables a more accurate test of the null hypothesis (poor fit) (McQuitty, 2004). It is typically provided along with 

RMSEA, and in a well-fitting model, the top limit should be less than 0.08 and the lower limit should be near to 0. 

1.4 Goodness-of-fit statistics (GFI) 

Jöreskog and Sorbom developed the Goodness-of-Fit statistic (GFI) as an alternative to the Chi-Square test, which determines the percentage of variance 

that is explained by the estimated population covariance (Tabachnick and Fidell, 2007). The variances and covariances that the model accounts for 

demonstrate how well the observed covariance matrix is replicated by the model (Diamantopoulos and Siguaw, 2000). With larger samples, this statistic's 

value rises from 0 to 1. The GFI has a downward bias when there are many degrees of freedom relative to the sample size (Sharma et al., 2005). The GFI 

has also been discovered to rise as the number of parameters rises (MacCallum and Hong, 1997) and and also has an upward bias with large samples 

(Bollen, 1990; Miles and Shevlin, 1998). A higher cut-off of 0.95 is preferable when factor loadings and sample sizes are low, contrary to the conventional 

recommendation of an omnibus cut-off point of 0.90 for the GFI (Miles and Shevlin, 1998). This index has lost popularity in recent years due to its 

sensitivity, and it has even been suggested that it not be employed (Sharma et al., 2005). 

The AGFI, which modifies the GFI depending on degrees of freedom, is related to the GFI and reduces fit as more saturated models are used (Tabachnick 

and Fidell, 2007). As a result, simpler models are preferred while complex ones are penalised. Furthermore, AGFI tends to rise with sample size. Similar 

to the GFI, the values for the AGFI similarly fall between 0 and 1, and values of 0.90 or higher are typically considered to be indicative of well-fitting 
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models. These two fit indices are not used as a stand-alone index due to the frequently negative effects of sample size, but rather because of their historical 

significance, they are frequently reported in covariance structure analyses. 

1.5 Incremental Fit Indices (IFI)  

Incremental fit indices are a class of indices that do not use the chi-square in its raw form but instead compare the chi-square value to a baseline model 

(Miles and Shevlin, 2007; McDonald and Ho, 2002). According to McDonald and Ho (2002), the null hypothesis for these models is that all of the 

variables are uncorrelated. 

1.6 Comparative Fit Index (CFI) 

A modified version of the NFI that takes sample size into consideration (Byrne, 1998) and has good performance even with small sample sizes is the 

Comparative Fit Index (CFI: Bentler, 1990). Bentler (1990) originally presented this measure, which was later added as one of the fit indices in his EQS 

programme (Kline, 2005). This statistic, like the NFI, compares the sample covariance matrix with this null model by assuming that all latent variables 

are uncorrelated (null/independence model). This statistic's values, like those of the NFI, vary from 0.0 to 1.0, with values nearer 1.0 suggesting good fit. 

Initially, a cut-off criterion of CFI 0.90 was advanced. Recent research, however, indicates that in order to guarantee that incorrectly described models 

are rejected, a value greater than 0.90 is required (Hu and Bentler, 1999). This led to the current recognition of a value of CFI 0.95 as being indicative of 

good fit (Hu and Bentler, 1999). Due to being one of the measures least affected by sample size, this index is now a component of all SEM programmes 

and is one of the most often reported fit indices (Fan et al., 1999). 

4. Conclusion 

The aim of this study was to evaluate the SEM analysis to prove whether the observed on-situ parameters are fit or not for the model. Before analysing 

without the factor analysis it was very difficult to determine whether the values are good or not. But, after the operation with soft tools like SPSS Statistics 

and IBM Amos, we reach out to the conclusion that the GFI, IFI CMIN And RMSEA shows a truthful value on which we can depend for out further 

research. Hence use of Multivariate Analysis for Structural Equation Modeling is good. Another thing which is associated with it, is the iteration 

frequency, this one SEM can provide the data of numerous number of iteration required by the user which will save time and efficiency and provide the 

best results for it. 

References 

Akaike, H. (1974), "A New Look at the Statistical Model Identification," IEE Transactions on Automatic Control, 19 (6), 716-23. 

Bagozzi, R.P., Yi, Y., and Phillips, L.W. (1991), "Assessing Construct Validity in Organizational Research," Adminstrative Science Quarterly, 36 (3), 

421-58. 

Barrett, P. (2007), "Structural Equation Modelling: Adjudging Model Fit," Personality and Individual Differences, 42 (5), 815-24. 

Bentler, P.M. (1990), "Comparative Fit Indexes in Structural Models," Psychological Bulletin, 107 (2), 238-46 

Bentler, P.M. and Bonnet, D.C. (1980), "Significance Tests and Goodness of Fit in the Analysis of Covariance Structures," Psychological Bulletin, 88 

(3), 588-606. 

Bollen, K.A. (1990), "Overall Fit in Covariance Structure Models: Two Types of Sample Size Effects," Psychological Bulletin, 107 (2), 256-59. 

Gerbing, D.W. and Anderson, J.C. (1984), "On the Meaning of Within-Factor Correlated Measurement Errors," Journal of Consumer Research, 11 (June), 

572-80. 

Hu, L.T. and Bentler, P.M. (1999), "Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria Versus New Alternatives," 

Structural Equation Modeling, 6 (1), 1-55. 

Kenny, D.A. and McCoach, D.B. (2003), "Effect of the Number of Variables on Measures of Fit in Structural Equation Modeling," Structural Equation 

Modeling, 10 (3), 333-51. 

MacCallum, R.C., Browne, M.W., and Sugawara, H., M. (1996), "Power Analysis and Determination of Sample Size for Covariance Structure Modeling," 

Psychological Methods, 1 (2), 130-49. 

Marsh, H.W., Hau, K.T., and Wen, Z. (2004), "In Search of Golden Rules: Comment on Hypothesis-Testing Approaches to Setting Cutoff Values for Fit 

Indexes and Dangers in Overgeneralizing Hu and Bentler's Findings " Structural Equation Modeling, 11 (3), 320-41. 

McDonald, R.P. and Ho, M.-H.R. (2002), "Principles and Practice in Reporting Statistical Equation Analyses," Psychological Methods, 7 (1), 64-82. 

Sharma, S., Mukherjee, S., Kumar, A., and Dillon, W.R. (2005), "A simulation study to investigate the use of cutoff values for assessing model fit in 

covariance structure models," Journal of Business Research, 58 (1), 935-43. 

Steiger, J.H. (1990), "Structural model evaluation and modification," Multivariate Behavioral Research, 25, 214-12. 



International Journal of Research Publication and Reviews, Vol 4, no 5, pp 6097-6105 May 2023                                     6105

 

 

Steiger, J.H. (2007), "Understanding the limitations of global fit assessment in structural equation modeling," Personality and Individual Differences, 42 

(5), 893-98. 

Tomarken, A.J. and Waller, N.G. (2003), "Potential Problems With ''Well Fitting'' Models," Journal of Abnormal Psychology, 112 (4), 578-98. 

Yuan, K.H. (2005), "Fit Indices Versus Test Statistics," Multivariate Behavioral Research, 40 (1), 115-48. 

 


