

International Journal of Research Publication and Reviews

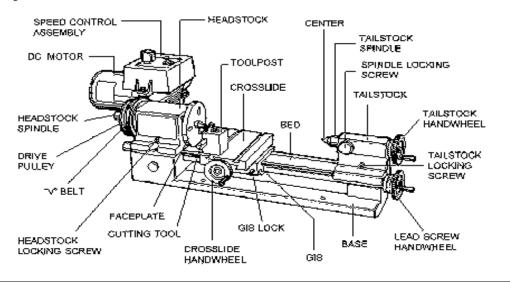
Journal homepage: www.ijrpr.com ISSN 2582-7421

Review Study on Lathe Machines

¹Abhinav Gautam,²Abdullah Ahmad,³Abhinav Aggarwal,⁴Prof. A.K. Madan

¹B. TECH Student,² B. TECH Student,³ B. TECH Student,⁴Professor Delhi Technological University, Delhi-110042, India

ABSTRACT -


In this segment, we discuss systematic review, which is a study design used to summarize the results of several primary research studies performed on lathe machines to deeply understand their mechanisms for further studies and development.

Keywords: Research design, systematic review

1. Introduction

1.1 What is a lathe machine?

The lathe machine is an ancient tool used in production machines and is often referred to as the "mother of all machines." Its purpose is to eliminate unwanted material from a rotating workpiece, producing chips with the aid of a tool that moves across and into the work. This machine is highly versatile and is used extensively across the globe as a machine tool.

1.2 List of papers

In this study we referred to the following conferences and journals.

• Research on Remote Intelligent Fault-diagnosis of CNC Lathe Based on Bayesian Networks. The intelligent model based on BN was proven to be reliable and advantageous in a case study that involved compensating for the self-detection of machine tool faults in both hardware and programming

- Design of the detection system of CNC Lathe thread machining. This is aimed at addressing various issues that arise during screw-cutting, such as accurately counting pulses, differentiating between directions, ensuring precise control, maintaining synchronization, and minimizing interference.
- Design of A High Force Electromechanical Actuator for Electrically Driven Lathe Machine. The article presents a proposal for the design and driving mechanism of an electromechanical actuator system that integrates a single drive motor, intended for use in computer numerical control (CNC) lathe machines.
- Feed rate compensation for constant cutting force turning. What makes this approach unique is that it involves using an offline computer simulation to determine the control system gains, which enable stable operation across a broad range of spindle speeds.
- Roundness Error Compensation in Lathe Turning Through 2-D ARMAX Model Based FCC. The article outlines the process of designing, simulating, and implementing a compensatory control (FCC) system for a lathe turning machine, using a two-dimensional (2-D) exogenous autoregressive moving average (ARMAX) model-based forecasting approach.
- Machining Simulation of the three-axes CNC lathe of the drilling. The article presents an algorithm for generating a three-axis CNC lathe
 processing program tool path, building upon traditional CNC lathe processing programs. Machining simulation is conducted using the CAXA
 platform. The algorithm includes end face G01 drilling and radial G01 drilling.
- Mechatronic modeling and control of the lathe machine equipped with a MR damper for chatter suppression. The article introduces a new technique for suppressing chatter vibration in machining, using tunable magnetorheological (MR) dampers and a semi-active intelligent control approach.
- Design of an automated vibration monitoring system for condition based maintenance of a lathe machine. The objective of this study was to develop a vibration monitoring system for a lathe machine, utilizing an electronic circuit in the system and incorporating a liquid crystal display for improved user interface. The system also incorporates vibration sensors to accurately measure the machine's vibration levels.
- A new reconfigurable logic for CNC lathe controllers. This paper developed a new resampling algorithm for the synchronized movement in threading and a reconfigurable logic in a CNC lathe.
- *Cutting force monitoring and control system for CNC lathe machines.* This study details the process of designing and constructing a cutting force sensor, and integrating it with a fuzzy logic controller to create a comprehensive system for monitoring and controlling cutting forces during rough turning operations.
- A stiffener structural design method for worktable of heavy duty vertical lathe combining topology optimization and size optimization. The article presents a method for designing worktable stiffeners that combines topology optimization and size optimization. This approach is intended to enhance the static and dynamic performance of the stiffeners.
- On-machine measurements and a evaluation for the turned wheel profile of rail vehicle. This article examines the on-machine measurement and evaluation method for the out-of-roundness (OOR) of wheel profiles, using an underfloor wheelset lathe as a basis. The objective of this method is to enable high-precision online machining and measurement of wheel profiles.
- A hybrid method based on macro-micro modeling and infrared imaging for tool temperature The article introduces a hybrid method that takes into account both the macroscale tool heat transfer and microscale machining mechanics. This approach is used to reconstruct the three-dimensional (3-D) tool temperature field from non-obstructed infrared (IR) images.

1.3 Review Table

			PUBLISHER	YEAR OF
S.No	TITLE	JOURNAL/CONFERENCE	/LIBRARY	PUBLICATION
	Machining Simulation of the	2015 IEEE 10th Conference	IEEE	
1	Three-axes	on	INTERNATIONAL	2015
	CNC Lathe of the Drilling	Industrial Electronics and		
		Applications (ICIEA)		
	Mechatronic Modeling and		IEEE	
2	Control	2010 8th IEEE International	INTERNATIONAL	2010
	of a lahte machine equipped			
	with	conference on control		

	a MR Damper for Chatter			
	Suppression	and Automation		
3	Design of an Automated Vibration			
3	Monitoring System for	2016 International	IEEE	
	Condition based	Conference	INTERNATIONAL	2016
	Maintenance of a Lathe	Comercinee		2010
	Machine	on System Reliability and Scie	nce	
	A New Reconfigurable Logic	i i	IEEE	
4	for CNC	2009 IEEE	INTERNATIONAL	2009
	Lathe controllers	International Conference on		
		Mechatronics and		
		Automation		
	Cutting Force Monitoring and	IEEE International	IEEE	
5	Control	Conference on	INTERNATIONAL	2016
	system for CNC Lathe			
	Machines	Advanced Intelligent Mechatro		
6	A Stiffener Structural Design Method for	6th International Conference on	IEEE INTERNATIONAL	2018
0	Worktable of Heavy-duty	Mechanical. Automotive	INTERNATIONAL	2018
	Vertical Lathe	and		
	Combining Topology			
	Optimization and	Materials Engineering		
	size optimization			
	•	2010 International	IEEE	
7	Research on Remote Intelligent	Conference on	INTERNATIONAL	2010
	Fault-diagnosis of CNC			
	LATHE	Mechanic Automation and con		
	Based on Bayesian Networks	engineering		
~	Design of a high force	IEEE Transactions on	IEEE	2020
8	electromechanical	Industrial	INTERNATIONAL	2020
	actuator for electrically driven lathe	Electronics		
	machine	Licentonies		
	machine			
	On Machine Measurement and	IEEE Transactions on	IEEE	
9	evaluat-	Industrial	INTERNATIONAL	2021
	ion for the turned wheel profile			
	of raid	Electronics		
	vehicle			
	A hybrid method based on	IEEE/ASME Transactions	IEEE	
1(macro-micro	on	INTERNATIONAL	2018
	modeling and infrared imaging			
	for tool	Mechatronics		
	temperature reconstruction in			
	dry turning			
	turning Feedrate compensation for	IEEE Control Systems	IEEE	
11	constant	Magazine	INTERNATIONAL	1993
	cutting force turning			
	Roundness error compensation	IEEE Transaction on	IEEE	
13	in lathe	Control	INTERNATIONAL	2002
	turning through 2-D ARMAX			
	model based	Systems Technology		
	FCC			

1.4 References

- [1] https://ieeexplore.ieee.org/Xplore/home.jsp
- [2] https://themechanicalengineering.com/lathe-machine/