A Search on Integer Solutions to the Homogeneous Quadratic Equation with Three Unknowns $x^{2}+17 y^{2}=21 z^{2}$

J. Shanthi ${ }^{1}$, T. Mahalakshmi ${ }^{2}$, S. Vidhyalakshmi ${ }^{3}$, M. A. Gopalan ${ }^{4}$
${ }^{1,2,3}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy - 620002 , Tamil Nadu, India.
${ }^{4}$ Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy - 620 002, Tamil Nadu, India.
Email id: shanthivishvaa@gmail.com, aakashmahalakshmi06@ gmail.com, vidhyasigc@gmail.com, mayilgopalan@gmail.com

ABSTRACT:

This paper focuses on finding non-zero distinct integer solutions to the Homogeneous Quadratic Diophantine Equation with three unknowns given by $x^{2}+17 y^{2}=$ $21 z^{2}$

Various sets of integer solutions are obtained. A few interesting properties among the solutions are given. Also, knowing a solution of the given equation, formulas for obtaining sequence of integer solutions based on the given solution are presented

KEYWORDS: Ternary quadratic, Homogeneous quadratic, Integer solutions, Legendre equation
2010 Mathematics Subject Classification: 11D09

INTRODUCTION:

The Ternary quadratic Diophantine equations offer an unlimited field for research because of their variety [1-3]. For an extensive review of various problems, one may refer [4-19] for quadratic equations with two and three unknowns. This communication concerns with yet another interesting ternary quadratic equation $x^{2}+17 y^{2}=21 z^{2}$ representing a cone for determining its infinitely many non- zero integral solutions. Also a few interesting properties among the solutions have been presented.

METHOD OF ANALYSIS

The Ternary Quadratic Diophantine equation representing homogeneous cone under consideration is
$x^{2}+17 y^{2}=21 z^{2}$
We present below different methods of solving (1).

METHOD I:

Equation (1) is written in the form of ratio as
$\frac{x+2 z}{z+y}=\frac{17(z-y)}{x-2 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0$
which is equivalent to the system of double equations
$\beta x-\alpha y+(2 \beta-\alpha) z=0$
$\alpha x+17 \beta y-(17 \beta+2 \alpha) z=0$
Applying the method of cross multiplication, the corresponding values of x, y, z satisfying (1) are given by
$x(\alpha, \beta)=2 \alpha^{2}-34 \beta^{2}+34 \alpha \beta$
$y(\alpha, \beta)=-\alpha^{2}+17 \beta^{2}+4 \alpha \beta$
$z(\alpha, \beta)=\alpha^{2}+17 \beta^{2}$

Note 1: Apart from (2), (1) is also written in the form of ratios as presented below
(i) $\frac{x-2 z}{(z+y)}=\frac{17(z-y)}{x+2 z}=\frac{\alpha}{\beta}$
(ii) $\frac{x+2 z}{(z-y)}=\frac{17(z+y)}{x-2 z}=\frac{\alpha}{\beta}$
(iii) $\frac{x-2 z}{(z-y)}=\frac{17(z+y)}{x+2 z}=\frac{\alpha}{\beta}$

Following the above procedure, the solutions of (1) for choices (i), (ii), (iii) are presented below

Solutions for choice (i):

$x(\alpha, \beta)=-2 \alpha^{2}+34 \beta^{2}+34 \alpha \beta$
$y(\alpha, \beta)=-\alpha^{2}+17 \beta^{2}-4 \alpha \beta$
$z(\alpha, \beta)=\alpha^{2}+17 \beta^{2}$

Solutions for choice (ii):

$x(\alpha, \beta)=-2 \alpha^{2}+34 \beta^{2}-34 \alpha \beta$
$y(\alpha, \beta)=-\alpha^{2}+17 \beta^{2}+4 \alpha \beta$
$z(\alpha, \beta)=-\alpha^{2}-17 \beta^{2}$

Solutions for choice (iii):

$x(\alpha, \beta)=2 \alpha^{2}-34 \beta^{2}-34 \alpha \beta$
$y(\alpha, \beta)=-\alpha^{2}+17 \beta^{2}-4 \alpha \beta$
$z(\alpha, \beta)=-\alpha^{2}-17 \beta^{2}$

METHOD II:

Introduction of the linear transformations
$x=2 P, \quad y=X+21 T, \quad z=X+17 T$
in (1) leads to
$X^{2}=357 T^{2}+P^{2}$
which is satisfied by
$T=2 r s, P=357 r^{2}-s^{2}, X=357 r^{2}+s^{2}$
In view of (3), the corresponding integer solutions to (1) are given by
$x=714 r^{2}-2 s^{2}$
$y=357 r^{2}+s^{2}+42 r s$
$z=357 r^{2}+s^{2}+34 r s$

Also, (4) is written as the system of double equations as presented below in Table 1

Table 1: System of double equations

System	1	2	3	4	5	6
$X+P$	$357 T^{2}$	$3 T^{2}$	$7 T^{2}$	$17 T^{2}$	$21 T^{2}$	$51 T^{2}$
$X-P$	1	119	51	21	17	7

System	7	8	9
$\mathrm{X}+\mathrm{P}$	17 T	51 T	3 T
$\mathrm{X}-\mathrm{P}$	21 T	7 T	119 T

Solving each of the above systems, the value of X, P and T are obtained. Substituting these in (3), the corresponding solutions to (1) are found. For simplicity, we present the solutions below

Solutions for system 1:

$x=1428 K^{2}+1428 K+356$
$y=714 K^{2}+756 K+200$
$z=714 K^{2}+748 K+196$

Solutions for system 2:

$x=12 K^{2}+12 K-116$
$y=6 K^{2}+48 K+82$
$z=6 K^{2}+40 K+78$

Solutions for system 3:

$x=28 K^{2}+28 K-44$
$y=14 K^{2}+56 K+50$
$z=14 K^{2}+48 K+46$

Solutions for system 4:

$$
\begin{aligned}
& x=68 K^{2}+68 K-4 \\
& y=34 K^{2}+76 K+40
\end{aligned}
$$

$$
z=34 K^{2}+68 K+36
$$

Solutions for system 5:

$x=84 K^{2}+84 K+4$
$y=42 K^{2}+84 K+40$
$z=42 K^{2}+76 K+36$

Solutions for system 6:
$x=204 K^{2}+204 K+44$
$y=102 K^{2}+144 K+50$
$z=102 K^{2}+136 K+46$

Solutions for system 7:

$x=476 K^{2}+476 K+232$
$y=238 K^{2}+280 K+82$
$z=238 K^{2}+272 K+78$

Solutions for system 8:

$x=-8 K-4$
$y=80 K+40$
$z=72 K+36$

Solutions for system 9:

$x=88 K+44$
$y=100 K+50$
$z=92 K+46$

Solutions for system 10:

$x=-232 K-116$
$y=164 K+82$
$z=156 K+78$

METHOD III:

Assume
$z(a, b)=a^{2}+17 b^{2}$
Case (i):
Write 21 as
$21=(2+i \sqrt{17})(2-i \sqrt{17})$

Using (5) and (6) in (1) and employing the method of factorization, consider
$x+i \sqrt{17} y=(2+i \sqrt{17})(a+i \sqrt{17} b)^{2}$
Equating real and imaginary parts, we have
$x=2 a^{2}-34 b^{2}-34 a b$
$y=4 a b+a^{2}-17 b^{2}$
$z=a^{2}+17 b^{2}$

Case(ii):

Write 21 as
$21=\frac{(11+i 2 \sqrt{17})(11-i 2 \sqrt{17})}{3^{2}}$
Using (5) and (7) in (1) and employing the method of factorization, consider
$x+i \sqrt{17} y=\frac{(11+i 2 \sqrt{17})}{3}(a+i \sqrt{17} b)^{2}$
Equating real and imaginary parts and replacing a by 3 A , b by 3 B , we have
$\left.\begin{array}{l}x(A, B)=33 A^{2}-561 B^{2}-204 A B \\ y(A, B)=6 A^{2}-102 B^{2}+66 A B\end{array}\right\}$
and from we have
$z(A, B)=9 A^{2}+153 B^{2}$

Thus (8) and (9) represent the integer solutions to (1)

Note :1

It is seen that 21 is also represented as follows
(iv) $21=\frac{(31+i 2 \sqrt{17})(31-i 2 \sqrt{17})}{49}\left(a^{2}+17 b^{2}\right)$

Following the above procedure, the solutions of are obtained.

$$
\begin{aligned}
& x(A, B)=217 A^{2}-3689 B^{2}-476 A B \\
& y(A, B)=14 A^{2}-238 B^{2}-434 A B \\
& z(A, B)=49 A^{2}+833 B^{2}
\end{aligned}
$$

METHOD IV:

Equation (1) is written as
$x^{2}+17 y^{2}=21 z^{2} * 1$
Write 1 as
$1=\frac{(8+i \sqrt{17})(8-i \sqrt{17})}{81}$

Substituting (5), (6) and (11) in (10) and following the procedure as above and replacing a by $9 A$ and b by $9 B$, the corresponding solutions to (1) are given by
$x(A, B)=-9 A^{2}+153 B^{2}-3060 A B$
$y(A, B)=90 A^{2}-1530 B^{2}-18 A B$
$z(A, B)=81 A^{2}+1377 B^{2}$

METHOD V:

Write (1) as
$21 z^{2}-17 y^{2}=x^{2} * 1$
Let
$x=21 a^{2}-17 b^{2}$

Consider 1 as

$$
\begin{equation*}
1=\frac{(\sqrt{21}+\sqrt{17})(\sqrt{21}-\sqrt{17})}{4} \tag{14}
\end{equation*}
$$

Using (13) \& (14) in (12) and employing the method of factorization, consider

$$
\sqrt{21} z+\sqrt{17} y=\frac{1}{4}(\sqrt{22}+\sqrt{17})(\sqrt{21} a+\sqrt{17} b)^{2}
$$

Equating the coefficients of corresponding terms, we have
$z=\frac{1}{2}\left(21 \sqrt{21} a^{2}+17 b^{2}+34 \sqrt{21} a b\right)$
$y=\frac{1}{2}\left(21 \sqrt{17} a^{2}+17 \sqrt{17} b^{2}+42 \sqrt{17} a b\right)$

Replacing a by 3 A and b by 3 B in (13) \& (15) the corresponding integer
$x=84 A^{2}-68 B^{2}$
$y=42 A^{2}+34 B^{2}+84 A B$
$z=42 A^{2}+34 B^{2}+68 A B$

Then (16) gives the integer solution to (1).
GENERATION OF INTEGER SOLUTIONS
Let $\left(x_{0}, y_{0}, z_{0}\right)$ be any given integer solution to (1). We illustrate below the method of obtaining a general formula for generating sequence of integer solutions based on the given solution.

Case (i)

Let
$x_{1}=-x_{0}+9 h$
$y_{1}=y_{0}$
$h \neq 0$
$z_{1}=-z_{0}+2 h$
be the second solution of (1).
Substituting (17) in (1) \& performing a few calculations, we have
$h=6 x_{0}+28 z_{0}$
and then
$x_{1}=53 x_{0}+252 z_{0}$
$z_{1}=12 x_{0}+55 z_{0}$

This is written in the form of matrix as
$\binom{x_{1}}{z_{1}}=M\binom{x_{0}}{z_{0}}$
where
$M=\left(\begin{array}{cc}53 & 252 \\ 12 & 55\end{array}\right)$

Repeating the above process, the general solution $\left(x_{n}, z_{n}\right)$ to (1) is given by
$\binom{x_{n}}{z_{n}}=M^{n}\binom{x_{0}}{z_{0}}$

To find M^{n}, the eigen values of M are $\alpha=152, \beta=-87$

We know that $M^{n}=\frac{\alpha^{n}}{(\alpha-\beta)}(M-\beta I)+\frac{\beta^{n}}{(\beta-\alpha)}(M-\alpha I)$

Using the above formula, we have
$M^{n}=\left(\begin{array}{cc}\frac{54 \alpha^{n}+56 \beta^{n}}{110} & \frac{252\left(\alpha^{n}-\beta^{n}\right)}{110} \\ \frac{12 \alpha^{n}-12 \beta^{n}}{110} & \frac{56 \alpha^{n}+54 \beta^{n}}{110}\end{array}\right)$

Thus the general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1) is given by
$x_{n}=\left(\frac{54 \alpha^{n}+56 \beta^{n}}{110}\right) x_{0}+\frac{252}{110}\left(\alpha^{n}-\beta^{n}\right) z_{0}$
$y_{n}=y_{0}$
$z_{n}=\left(\frac{12\left(\alpha^{n}-\beta^{n}\right)}{110}\right) x_{0}+\left(\frac{56 \alpha^{n}+54 \beta^{n}}{110}\right) z_{0}$

Case (ii)

Let
$x_{1}=4 x_{0}$
$y_{1}=h+4 y_{0} \quad, \boldsymbol{h} \neq \mathbf{0}$
$z_{1}=h-4 z_{0}$

Repeating the process as in the case (i) the corresponding general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1)
is given by
$x_{n}=4^{n} x_{0}$
$y_{n}=\left(\frac{\alpha^{n}(\sqrt{3297}-21)+\beta^{n}(21+\sqrt{3297}}{2 \sqrt{3297}}\right) y_{0}+\frac{84\left(\alpha^{n}-\beta^{n}\right)}{2 \sqrt{3297}} z_{0}$
$z_{n}=\frac{34\left(\alpha^{n}-\beta^{n}\right)}{2 \sqrt{3297}} y_{0}+\left(\frac{\alpha^{n}\left(21+\sqrt{3297}+\beta^{n}(-21+\sqrt{3297}\right.}{2 \sqrt{3297}}\right) z_{0}$

Let
$x_{1}=h-18 x_{0}$
$y_{1}=h-18 y_{0}, h \neq 0$
$z_{1}=18 z_{0}$

Repeating the process as in the case (i) the corresponding general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1) is given by

$$
\begin{aligned}
& x_{n}=\left(\frac{2 \alpha^{n}-2 \beta^{n}}{36}\right) x_{0}+\frac{34\left(\alpha^{n}-\beta^{n}\right)}{36} y_{0} \\
& y_{n}=\frac{2\left(\alpha^{n}-\beta^{n}\right)}{36} x_{0}+\left(\frac{34 \alpha^{n}-\beta^{n}}{36}\right) y_{0} \\
& z_{n}=18^{n} z_{0}
\end{aligned}
$$

Case (iv)

Let
$x_{1}=3 x_{0}+h$
$y_{1}=3 y_{0}+h, h \neq 0$
$z_{1}=h-3 z_{0}$
Repeating the process as in the case (i) the corresponding general solution $\left(x_{1}, y_{1}, z_{1}\right)$ to (1) is given by
$x_{1}=5 x_{0}+34 y_{0}+42 z_{0}$
$y_{1}=2 x_{0}+37 y_{0}+42 z_{0}$
$z_{1}=2 x_{0}+34 y_{0}+39 z_{0}$

The required matrix is represented below:
$\left(x_{1}, y_{1}, z_{1}\right)^{t}=\left(\begin{array}{lll}5 & 34 & 42 \\ 2 & 37 & 42 \\ 2 & 34 & 39\end{array}\right)\left(x_{0}, y_{0}, z_{0}\right)^{t}$
$M^{2}=\left[\begin{array}{lll}219 & 3570 & 6237 \\ 210 & 3579 & 6237 \\ 198 & 3366 & 5868\end{array}\right]$
$M^{3}=\left[\begin{array}{lll}20709 & 351594 & 612927 \\ 20682 & 351621 & 612927 \\ 19458 & 330786 & 576612\end{array}\right]$

The general term of the matrix is denoted by
$M^{n+1}=\left[\begin{array}{ccc}\frac{y_{n}-3^{n+1}}{18}+3^{n+1} & \frac{17\left(y_{n}-3^{n+1}\right)}{18} & 21 x_{n} \\ \frac{y_{n}-3^{n+1}}{18} & \frac{17\left(y_{n}-3^{n+1}\right)}{18} & 21 x_{n} \\ x_{n} & 17 x_{n} & y_{n}\end{array}\right]$

$$
\begin{aligned}
& x_{n}=x_{0} y_{n-1}+y_{0} x_{n-1} \\
& \text { Where } \\
& y_{n}=y_{0} y_{n-1}+378 x_{0} x_{n-1} \\
& y_{-1}=1, x_{-1}=0
\end{aligned}
$$

CONCLUSION

In this paper, we have made an attempt to obtain all integer solutions to (1). As (1) is symmetric in x, y, z it is to be noted that, if (x, y, z) is any positive integer solution to (1), then the triples $(-x, y, z),(x,-y, z),(x, y,-z),(x,-y,-z),(-x, y,-z),(-x,-y, z)(-x,-y,-z)$ also satisfy (1). To conclude, one may search for integer solutions to other choices of homogeneous cones along with suitable properties.

REFERENCES:

[1]. L.E. Dickson, History of Theory of Numbers, vol2, Chelsea publishing company, New York, (1952).
[2]. L.J. Mordell, Diophantine Equations, Academic press, London, (1969).
[3]. R.D. Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).
[4]. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha and D. Marymadona, On the Ternary Quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-2 x y=4 z^{2}$, International Journal of Engineering science and Management, 5(2) (2015) 11-18.
[5]. K. Meena, S. Vidhyalakshmi, E. Bhuvaneshwari and R. Presenna, On ternary quadratic Diophantine equation $5\left(X^{2}+Y^{2}\right)-6 X Y=20 Z^{2}$, International Journal of Advanced Scientific Research, 1(2) (2016) 59-61.
[6]. S. Devibala and M.A. Gopalan, On the ternary quadratic Diophantine Equation $7 x^{2}+y^{2}=z^{2}$, International Journal of Emerging Technologies in Engineering Research, 4(9) (2016).
[7] N. Bharathi, S. Vidhyalakshmi, Observation on the Non-Homogeneous Ternary Quadratic Equation $x^{2}-x y+y^{2}+2(x+y)+4=12 z^{2}$, Journal of mathematics and informatics, vol.10, 2017, 135-140.
[8] A. Priya, S. Vidhyalakshmi, On the Non-Homogeneous Ternary Quadratic Equation $2\left(x^{2}+y^{2}\right)-3 x y+(x+y)+1=z^{2}$, Journal of mathematics and informatics, vol.10, 2017, 49-55.
[9] M.A. Gopalan, S. Vidhyalakshmi and U.K. Rajalakshmi, On ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y=196 z^{2}$, Journal of mathematics, 3(5) (2017) 1-10.
[10] M.A. Gopalan, S. Vidhyalakshmi and S. Aarthy Thangam, On ternary quadratic Equation $x(x+y)=z+20$, IJIRSET, 6(8) (2017) 15739-15741.
[11] M.A. Gopalan and Sharadha Kumar, "On the Hyperbola $2 x^{2}-3 y^{2}=23$ ", Journal of Mathematics and Informatics, vol-10, Dec (2017), 1-9.
[12] T.R. Usha Rani and K.Ambika, Observation on the Non-Homogeneous Binary Quadratic Diophantine Equation $5 x^{2}-6 y^{2}=5$, Journal of Mathematics and Informatics, vol-10, Dec (2017), 67-74.
[13] T.R. Usha Rani, V. Bahavathi, S. Sridevi, "Observations on the Non-homogeneous binary Quadratic Equation $8 x^{2}-3 y^{2}=20$ ", IRJET, volume: 06, Issue: 03, 2019, 2375-2382.
[14] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, A study on the Non-Homogeneous Ternary Quadratic Diophantine Equation $4\left(x^{2}+y^{2}\right)-$ $7 x y+x+y+1=31 z^{2}$, International journal of Advance in Engineering and Management (IJAEM), vol 2, Issue: 01, June(2020), 55-58.
[15] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan and S. Shanthia, Observations On The Homogeneous Ternary Quadratic Diophantine Equation With Three Unknowns $y^{2}+5 x^{2}=21 z^{2}$, Journal of Information and computational science, vol 10, Issue: 3, March(2020), 822-831
[16]M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, V. Anbuvalli, On Finding the integer Solutionsof Ternary Quadratic Diophantine Equation $3\left(x^{2}+y^{2}\right)-5 x y=36 z^{2}$, International journal of Precious Engineering Research and Applications (IJPERA), vol 7, Issue: 1, May(2022),34-38.
[17] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-5$, Purakala UGC Care Approved Journal, vol 31, Issue: 2, May(2022), 920-926.
[18] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-12$, International Journal of Research Publication and Reviews, vol3,Issue: 8, August(2022), 2146-2155.
[19] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-10$, International Journal of Progressive Research in Engineering Management and Science (IJPREMS), vol 02, Issue: 09, September(2022), 58-60.

