On Finding Integer Solutions to the Homogeneous Ternary Quadratic Diophantine Equation $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{2}$

T. Mahalakshmi ${ }^{1}$, E. Shalini ${ }^{2}$

${ }^{1}$ Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.
Email id: aakashmahalakshmi06@gmail.com
${ }^{2}$ PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India. Email id:shalinishalu0528@gmail.com

ABSTRACT:

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the homogeneous quadratic Diophantine equation with three unknowns given by $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{2}$. Various sets of integer solutions are obtained. A few interesting properties among the solutions are given. Also, knowing a solution of the given equation, formulas for obtaining sequence of integer solutions based on the given solution are presented.

Keywords: Ternary quadratic, Homogeneous quadratic, Integer solutions. 2010 Mathematics Subject Classification: 11D09

INTRODUCTION

The ternary quadratic Diophantine equation offers an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-17] for quadratic equations with two and three unknowns. This communication concerns with yet another interesting ternary quadratic equation $3\left(x^{2}+y^{2}\right)-5 x y=$ $15 z^{2}$ is analysed for its non-zero distinct integer solutions through different methods.

METHODS OF ANALYSIS

Theternary quadratic Diophantine equation to be solved for non-zero distinct integral
Solution

$$
\begin{equation*}
3\left(x^{2}+y^{2}\right)-5 x y=15 z^{2} \tag{1}
\end{equation*}
$$

Introduction of the linear transformations

$$
\begin{equation*}
x=u+v, \quad y=u-v, \quad u \neq v \neq 0 \tag{2}
\end{equation*}
$$

in (1) leads to

$$
\begin{equation*}
u^{2}+11 v^{2}=15 z^{2} \tag{3}
\end{equation*}
$$

The above equation is solved for u, v and z through different methods
and using (2), the values of x and y satisfying (1), are obtained which are
illustrated below

Method I:

Write (3) in the form of ratio as

$$
\begin{equation*}
\frac{(u+2 z)}{z+v}=\frac{11(z-v)}{u-2 z}=\frac{\alpha}{\beta}, \quad \beta \neq 0 \tag{4}
\end{equation*}
$$

which is equivalent to the system of double equations

$$
\begin{aligned}
& \beta u-\alpha v+(2 \beta-\alpha) z=0 \\
& -\alpha u-11 \beta v+(11 \beta+2 \alpha) z=0
\end{aligned}
$$

Solving the above system of double equations and using (2), the corresponding integer solutions to (1) are found to be

$$
x=\alpha^{2}-11 \beta^{2}+26 \alpha \beta \quad \begin{aligned}
& y=3 \alpha^{2}-33 \beta^{2}+18 \alpha \beta \\
& z=\alpha^{2}+11 \beta^{2}
\end{aligned}
$$

Note 1:
It is noted that (3) may also be written in the form of ratio as
(i) $\frac{u+2 z}{11(z-v)}=\frac{(z+v)}{u-2 z}=\frac{\alpha}{\beta}$
(ii) $\frac{u-2 z}{(z+v)}=\frac{11(z-v)}{u+2 v}=\frac{\alpha}{\beta}$

$$
\text { (iii) } \frac{u-2 z}{11(z-v)}=\frac{11(z-v)}{u+2 z}=\frac{\alpha}{\beta}
$$

(iv) $\frac{u-2 z}{z-v}=\frac{11(z+v)}{u+2 z}=\frac{\alpha}{\beta}$

For each of the above ratios, the corresponding integer solutions to (1) are exhibited below

Solutions obtained through (i)

$$
\begin{aligned}
& x=-11 \alpha^{2}+\beta^{2} \\
& y=-33 \alpha^{2}+3 \beta^{2} \\
& z=-11 \alpha^{2}+\beta^{2}
\end{aligned}
$$

Solutions obtained through (ii)

$$
\begin{aligned}
& x=-3 \alpha^{2}-33 \beta^{2}-18 \alpha \beta \\
& y=\alpha^{2}-11 \beta^{2}-26 \alpha \beta \\
& z=\alpha^{2}+11 \beta^{2}
\end{aligned}
$$

Solutions obtained through (iii)

$$
\begin{aligned}
& x=-11 \alpha^{2}+\beta^{2}+26 \alpha \beta \\
& y=-33 \alpha^{2}+3 \beta^{2}+18 \alpha \beta \\
& z=-11 \alpha^{2}-\beta^{2}
\end{aligned}
$$

Solution obtained through (iv)

$$
\begin{aligned}
& x=3 \alpha^{2}+33 \beta^{2} \\
& y=\alpha^{2}+11 \beta^{2} \\
& z=-\alpha^{2}-11 \beta^{2}
\end{aligned}
$$

Method II:

Introducing the linear transformations
$Z=X+11 T, \quad v=X+15 T, \quad u=2 P$
In (3), it given

$$
\begin{equation*}
X^{2}=165 T^{2}+P^{2} \tag{6}
\end{equation*}
$$

which is satisfied by

$$
\left.\begin{array}{c}
T=2 r s \tag{7}\\
P=165 r^{2}-s^{2} \\
X=165 r^{2}+s^{2}
\end{array}\right\}
$$

From (7), (5) \& (2), we obtain the integer solutions to (1) as given below

$$
x=495 r^{2}-s^{2}+30 r s \quad \begin{aligned}
& \\
& \\
& \\
& z=165 r^{2}-3 s^{2}-30 r s \\
& z=165 r^{2}+s^{2}+22 r s
\end{aligned}
$$

It is to be noted that (6) may be represented as the system of double equation
as shown in Table: 1
Table: 1 System of double equations

System	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$X+P$	T^{2}	$11 T^{2}$	$15 T^{2}$	$3 T^{2}$	$55 T^{2}$
$X-P$	165	15	11	55	3

System	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$
$X+P$	$33 \mathrm{~T}^{2}$	$5 T^{2}$	$11 T$	$15 T$	$165 T$
$X-P$	5	33	15 T	11 T	T

System	$\mathbf{1 1}$	$\mathbf{1 2}$	$\mathbf{1 3}$
$X+P$	$3 T$	$55 T$	T
$X-P$	$55 T$	$3 T$	$165 T$

Solving each of the system of double equations in Table:1, the values of $X, P \& T$ are obtained, from (5) \& (2), the corresponding solutions to (1) are found and they are exhibited below.

Solutions from system 1

$$
y=2 k^{2}-28 k-262
$$

$$
z=2 k^{2}+24 k+94
$$

Solutions from system 2

$$
\begin{aligned}
& x=66 k^{2}+96 k+24 \\
& y=22 k^{2}-8 k-32 \\
& z=22 k^{2}+44 k+24
\end{aligned}
$$

Solutions from system 3

$$
\begin{aligned}
& x=90^{2}+120 k+24 \\
& y=30 k^{2}-32 \\
& z=30^{2}+52 k+24
\end{aligned}
$$

Solutions from system 4

$$
\begin{aligned}
& x=18 k^{2}+48 k-8 \\
& y=6 k^{2}-24 k-96 \\
& z=6 k^{2}+28 k+40
\end{aligned}
$$

Solutions from system 8

$$
\begin{aligned}
& x=48 k+24 \\
& y=-64 k-32 \\
& z=+48 k+24
\end{aligned}
$$

Solutions from system 9

$$
\begin{aligned}
& x=64 k \\
& y=-48 k \\
& z=48 k
\end{aligned}
$$

Solutions from system 12

$$
x=192 k+96 \quad \begin{aligned}
& \\
& y=16 k+8 \\
& z=80 k+40
\end{aligned}
$$

Method III:

Assume
$z=a^{2}+11 b^{2}$
Case (i):
Write 15 as
$15=(2+i \sqrt{11})(2-i \sqrt{11})$
Using (8) and (9) in (3) and employing the method of factorization, define

$$
(u+i \sqrt{11} v)=(2+i \sqrt{11})(a+i \sqrt{11} b)^{2}
$$

Equating the real and imaginary parts, we get

$$
u=2 a^{2}-22 b^{2}-22 a b
$$

$$
v=a^{2}-11 b^{2}+4 a b
$$

In view of (2), we obtain

$$
\left.\begin{array}{c}
x=3 a^{2}-33 b^{2}-18 a b \tag{10}\\
y=a^{2}-11 b^{2}-26 a b
\end{array}\right\}
$$

Thus (8) and (10) represent the integer solution to (1).

Case (ii):

One can write 15 as

$$
\begin{equation*}
15=\frac{(7+i \sqrt{11})(7-i \sqrt{11})}{2^{2}} \tag{11}
\end{equation*}
$$

Using (8) and (11) in (3) and applying the method of factorization, define

$$
(u+i \sqrt{7} v)=\frac{(13+i 7 \sqrt{7})}{4}(a+i \sqrt{7} b)^{2}
$$

Equating the real and imaginary parts, we get

$$
u=\frac{14 a^{2}-154 b^{2}-44 a b}{4}
$$

$v=\frac{2 a^{2}-22 b^{2}+28 a b}{4}$
In view of (2), we obtain

$$
\left.\begin{array}{c}
x=\frac{16 a^{2}-176 b^{2}-16 a b}{4} \tag{12}\\
y=\frac{12 a^{2}-132 b^{2}-72 a b}{4}
\end{array}\right\}
$$

To obtain the integer solutions, replacing a by 2 A and b by 2 B in (8) \& (12), the corresponding integer solutions of (1) are given by

$$
\begin{align*}
& x=16 A^{2}-176 B^{2}-16 A B \\
& Y=12 A^{2}-132 B^{2}-72 A B \\
& z=4 A^{2}+44 B^{2} \tag{13}
\end{align*}
$$

Method IV:

Equation (3) can be written as

$$
\begin{equation*}
u^{2}+11 v^{2}=15 z^{2} * 1 \tag{14}
\end{equation*}
$$

Write 1 on the R.H.S. of (14) as

$$
\begin{equation*}
1=\frac{(5+i \sqrt{11})(5-i \sqrt{11})}{6^{2}} \tag{15}
\end{equation*}
$$

Using (8), (9) \& (15) in (14) and utilizing the method of factorization, define

$$
(u+i \sqrt{11} v)=(2+i \sqrt{11})(a+i \sqrt{11} b)^{2}\left[\frac{(5+i \sqrt{11})}{6}\right]
$$

Equating the real and imaginary parts, the values of u and v are obtained as

$$
\begin{aligned}
& u=\frac{-6 a^{2}+6 b^{2}-984 a b}{6} \\
& v=\frac{42 a^{2}-462 b^{2}-12 a b}{6}
\end{aligned}
$$

Proceeding as in case (ii), we get

$$
\begin{align*}
& x=\frac{36 a^{2}-456 b^{2}-996 a b}{6} \\
& y=\frac{-48 a^{2}+468 b^{2}-972 a b}{6} \\
& Z=\frac{36 a^{2}+396 b^{2}}{4} \tag{16}
\end{align*}
$$

Thus (16) represent the non-zero distinct solution of (1)

Note 2:

It is seen that 1 is also represented $\dot{\operatorname{as}} 3 \sqrt{1011})(1-i 3 \sqrt{11})$

Following the above procedure, the solutions of (1) are obtained.

Method V:

Consider (3) as

$$
\begin{equation*}
15 z^{2}-11 v^{2}=u^{2} * 1 \tag{17}
\end{equation*}
$$

Let

$$
\begin{equation*}
u=15 a^{2}-11 b^{2} \tag{18}
\end{equation*}
$$

Consider 1 as

$$
\begin{equation*}
1=\frac{(\sqrt{15}+\sqrt{11})(\sqrt{15}-\sqrt{11})}{4} \tag{19}
\end{equation*}
$$

Using (18) \& (19) in (17) and employing the method of factorization,
consider

$$
\sqrt{15} z+\sqrt{11} v=\frac{1}{2}(\sqrt{15}+\sqrt{11})(\sqrt{15} a+\sqrt{11} b)^{2}
$$

Equating the coefficients of corresponding terms, we have

$$
\begin{aligned}
& z=\frac{1}{2}\left(15 a^{2}+11 b^{2}+22 a b\right) \\
& v=\frac{1}{2}\left(15 a^{2}+11 b^{2}+30 a b\right)
\end{aligned}
$$

Replacing a by 2 A, b by 2 B in (18) \& (20) the corresponding integer
solutions to (17) are given by

$$
\left.\begin{array}{l}
u=60 A^{2}-44 B^{2} \\
v=30 A^{2}+22 b^{2}+60 A B \tag{22}
\end{array}\right\}
$$

Substituting (21) in (2), we have

$$
\begin{align*}
& x=90 A^{2}-22 B^{2}+60 A B \\
& y=30 A^{2}-66 B^{2}-60 A B \tag{23}
\end{align*}
$$

Then (22) \& (23) give the integer solution to (1).

Method VI:

Consider (3) as

$$
\begin{equation*}
15 z^{2}-u^{2}=11 v^{2} \tag{24}
\end{equation*}
$$

Let

$$
\begin{equation*}
v=15 a^{2}-b^{2} \tag{25}
\end{equation*}
$$

Write 11 as

$$
\begin{equation*}
11=(\sqrt{15}+2)(\sqrt{15}-2) \tag{26}
\end{equation*}
$$

Using (25) \& (26) in (24) and employing the method of factorization,
consider

$$
\begin{equation*}
(\sqrt{15} z+u)=(\sqrt{15}+2)(\sqrt{15} a+b)^{2} \tag{27}
\end{equation*}
$$

Equating the coefficients of corresponding terms, we have

$$
\begin{gather*}
z=15 a^{2}+b^{2}+4 a b \tag{28}\\
u=30 a^{2}+2 b^{2}+30 a b \tag{29}
\end{gather*}
$$

From (25) \& (29) in (2), we have

$$
\begin{align*}
& x=45 a^{2}+b^{2}+30 a b \\
& y=15 a^{2}+3 b^{2}+30 a b \tag{30}
\end{align*}
$$

Then, (28) \& (30) gives the integer solution of (1).

Generation of Integer Solutions

Let $\left(u_{0}, v_{0}, z_{0}\right)_{\text {be any given integer solution to (3). We illustrate below the }}$ method of obtaining a general formula for generating sequence of integer
solutions based on the given solution.
Case (i)
Let

$$
\begin{array}{ll}
u_{1}=-u_{0}+4 h \\
v_{1}=v_{0} \\
z_{1}=z_{0}+h & \tag{31}
\end{array}
$$

be the second solution of (3).Substituting (31) in (3) \& performing a few calculations, we have

$$
h=8 u_{0}+30 z_{0}
$$

and then

$$
\begin{aligned}
& u_{1}=31 u_{0}+120 z_{0} \\
& z_{1}=8 u_{0}+31 z_{0}
\end{aligned}
$$

This is written in the form of matrix as

$$
\begin{align*}
\binom{u_{1}}{z_{1}} & =M\binom{u_{0}}{z_{0}} \tag{32}\\
M & =\left(\begin{array}{cc}
31 & 120 \\
8 & 31
\end{array}\right)
\end{align*}
$$

where
Repeating the above process, the general solution $\left(u_{n}, z_{n}\right)$ to (3) is given by

$$
\binom{u_{n}}{z_{n}}=M^{n}=\binom{u_{0}}{v_{o}}
$$

To find M^{n}, the eigen values of M are $\alpha=31+8 \sqrt{15}, \beta=31-8 \sqrt{15}$.

$$
\begin{aligned}
& M^{n}=\left(\begin{array}{l}
\frac{\alpha^{n}+\beta^{n}}{2}=\frac{\sqrt{15}\left(\alpha^{n}-\beta^{n}\right)}{2} \\
\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{85}} \\
\qquad\left(\frac{\alpha^{n} \partial \beta^{n}}{2}-\right) \beta^{n} \\
2 \sqrt{15}
\end{array}\right) u_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0} \\
& \text { he general solution }\left(a_{n}, v_{n}, z_{n}\right) \text { to (3) is given by }
\end{aligned}
$$

From (2) we have,

$$
x_{n}=u_{n}+v_{n}
$$

$$
y_{n}=u_{n}-v_{n}
$$

Thus the general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1) is given by

$$
\begin{aligned}
x_{n}=\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) u_{0}+v_{0}+\left(\frac{\sqrt{15}\left(\alpha^{n}-\beta^{n}\right)}{2}\right) & z_{0} \\
y_{n} & =\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) u_{0}-v_{0}+\left(\sqrt{15}\left(\alpha^{n}-\beta^{n}\right)\right) z_{0} \\
z_{n} & =\left(\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{15}}\right) u_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0}
\end{aligned}
$$

Case (ii)

Let

$$
\begin{aligned}
& u_{1}=4 u_{0} \\
& v_{1}=4 v_{0}+h \\
& z_{1}=-4 z_{0}+h \quad, h \neq 0
\end{aligned}
$$

Repeating the process as in the case (i) the corresponding general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1) is given by

$$
\begin{aligned}
& x_{n}=4 u_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) v_{0}+\left(\frac{\alpha^{n}-\beta^{n}}{2 \sqrt{11}}\right) z_{0} \\
& y_{n}=4 u_{0}-\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) v_{0}-\left(\frac{\left(\alpha^{n}-\beta^{n}\right)}{2 \sqrt{11}}\right) z_{0} \\
& z_{n}=\left(\frac{\sqrt{11}\left(\alpha^{n}-\beta^{n}\right)}{\sqrt{11}}\right) v_{0}+\left(\frac{\alpha^{n}+\beta^{n}}{2}\right) z_{0}
\end{aligned}
$$

Case (iii)
Let

$$
\begin{aligned}
& u_{1}=-12 u_{0}+h \\
& v_{1}=-12 v_{0}+h \\
& z_{1}=12 z_{0} \quad, h \neq 0
\end{aligned}
$$

Repeating the process as in the case (i) the corresponding general solution $\left(x_{n}, y_{n}, z_{n}\right)$ to (1) is given

$$
\begin{aligned}
& x_{n}=\left(\frac{\alpha^{n}}{6}\right) u_{0}+\frac{\left(11\left(\alpha^{n}-\beta^{n}\right)\right)}{6} v_{0} \\
& y_{n}=\frac{\beta^{n}}{6} u_{0}-\frac{11 \beta^{n}}{6} v_{0} \\
& z_{n}=12^{n} z_{0}
\end{aligned}
$$

Case(iv):

Let

$$
\begin{align*}
& u_{1}=3 x_{0}+h \\
& v_{1}=3 y_{0}+h \\
& z_{1}=h-3 z_{0}, \quad h \neq 0 \tag{33}
\end{align*}
$$

Be the second solution to (3).substitute (33) in (3) and simplifying,

$$
\text { We have, } h=2 x_{0}+22 y_{0}+30 z_{0}
$$

From (33),

$$
\begin{aligned}
& u_{1}=5 x_{0}+22 y_{0}+30 z_{0} \\
& v_{1}=2 x_{0}+25 y_{0}+30 z_{0} \\
& z_{1}=2 x_{0}+22 y_{0}+27 z_{0}
\end{aligned}
$$

Which is written in the matrix form as

$$
\left(u_{1}, v_{1}, z_{1}\right)^{t}=M\left(u_{0}, v_{0}, z_{0}\right)^{t}
$$

Where,

$$
M=\left(\begin{array}{lll}
5 & 22 & 30 \\
2 & 25 & 30 \\
2 & 22 & 27
\end{array}\right)
$$

Repeating the above process, one observes that
$\left(u_{2}, v_{2}, z_{2}\right)^{t}=M^{2}\left(u_{0}, v_{0}, z_{0}\right)^{t}$
Where,

$$
M^{2}=\left(\begin{array}{lll}
129 & 1320 & 1620 \\
120 & 1329 & 1620 \\
108 & 1188 & 1449
\end{array}\right)
$$

Also, $\left(u_{3}, v_{3}, z_{3}\right)^{t}=M^{3}\left(u_{0}, v_{0}, z_{0}\right)^{t}$
Where,

$$
M^{3}=\left(\begin{array}{lll}
6525 & 71478 & 87210 \\
6498 & 71505 & 87210 \\
5814 & 63954 & 78003
\end{array}\right)
$$

Following the procedure presented above, the general solution ($u_{n+1}, v_{n+1}, z_{n+1}$) to (3)is given by $\left(u_{n+1}, v_{n+1}, z_{n+1}\right)^{t}=M^{n+1}\left(u_{0}, v_{0}, z_{o}\right)^{t}$

Where,

$$
\begin{aligned}
& M^{n+1}=\left(\begin{array}{ccc}
\frac{Y_{n}-3^{n+1}}{12}+3^{n+1} & \frac{11}{12}\left(Y_{n}-3^{n+1}\right) & 15 X_{n} \\
\frac{Y_{n}-3^{n+1}}{12} & \frac{11}{12}\left(Y_{n}-3^{n+1}\right)+3^{n+1} & 15 X_{n} \\
X_{n} & 11 X_{n} & Y_{n}
\end{array}\right)_{\text {,in which }} \\
& X_{n}=X_{0} Y_{n-1}+Y_{0} X_{n-1} \\
& Y_{n}=Y_{0} Y_{n-1}+180 X_{0} X_{n-1} \\
& Y_{-1}=1, X_{-1}=0
\end{aligned}
$$

In view of (3), the corresponding general solution $\left(x_{n+1}, y_{n+1}, z_{n+1}\right)$ to (1) is given by

$$
\begin{aligned}
& x_{n+1}=\left(\frac{Y_{n}-3^{n+1}}{6}+3^{n+1}\right) u_{0}+\left[\frac{11}{6}\left(Y_{n}-3^{n+1}\right)+3^{n+1}\right] v_{0}+30 X_{n} z_{0} \\
& y_{n+1}=3^{n+1} u_{0}-3^{n+1} v_{0} \\
& z_{n+1}=X_{n} u_{0}+11 X_{n} v_{0}+Y_{n} z_{0}
\end{aligned}
$$

CONCLUSION:

In this paper, we have presented six different methods of obtaining infinitely many non-zero distinct integer solutions of the homogeneous cone given by $3\left(x^{2}+y^{2}\right)-5 x y=15 z^{2}$. To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES:

[1]. L.E. Dickson, History of Theory of Numbers, vol2, Chelsea publishing company, New York, (1952).
[2]. L.J. Mordell, Diophantine Equations, Academic press, London, (1969).
[3]. R.D. Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).
[4]. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha and D. Marymadona, On the Ternary Quadratic Diophantine equation $3\left(x^{2}+y^{2}\right)-2 x y=4 z^{2}$, International Journal of Engineeringscience and Management, 5(2) (2015) 11-18.
[5]. K. Meena, S. Vidhyalakshmi, E. Bhuvaneshwari and R. Presenna, On ternary quadratic Diophantine equation $5\left(X^{2}+Y^{2}\right)-6 X Y=20 Z^{2}$, International Journal of Advanced Scientific Research, 1(2) (2016) 59-61.
[6] S. Devibala and M.A. Gopalan, On the ternary quadratic Diophantine Equation $7 x^{2}+y^{2}=z^{2}$, International Journal of Emerging Technologies in Engineering Research,4(9) (2016).
[7] N. Bharathi, S. Vidhyalakshmi, Observation on the Non-Homogeneous Ternary Quadratic Equation $x^{2}-x y+y^{2}+2(x+y)+4=12 z^{2}$, Journal of mathematics and informatics, vol.10, 2017, 135-140.
[8] A. Priya, S. Vidhyalakshmi, On the Non-Homogeneous Ternary Quadratic Equation $2\left(x^{2}+y^{2}\right)-3 x y+(x+y)+1=z^{2}$, Journal of mathematics and informatics, vol.10, 2017,49-55.
[9] M.A. Gopalan, S. Vidhyalakshmi and U.K. Rajalakshmi, On ternary quadratic Diophantine equation $5\left(x^{2}+y^{2}\right)-6 x y=196 z^{2}$, Journal of mathematics, 3(5) (2017) 1-10.
[10] M.A. Gopalan, S. Vidhyalakshmi and S. Aarthy Thangam, On ternary quadratic Equation $x(x+y)=z+20$, IJIRSET, 6(8) (2017) 15739-15741.
[11] M.A. Gopalan and Sharadha Kumar, "On the Hyperbola $2 x^{2}-3 y^{2}=23$ ", Journal of Mathematics and Informatics, vol-10, Dec (2017), 1-9.
[12] T.R. Usha Rani and K.Ambika, Observation on the Non-Homogeneous Binary Quadratic Diophantine Equation $5 x^{2}-6 y^{2}=5$, Journal of Mathematics and Informatics, vol-10, $\operatorname{Dec}(2017)$, 67-74.
[13] T.R. Usha Rani, V. Bahavathi, S. Sridevi, "Observations on the Non-homoge binary Quadratic Equation $8 x^{2}-3 y^{2}=20$ ", IRJET, volume: 06, Issue: 03, 2019, 2375-2382.
[14] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, A study on the Non-Homogeneous Ternary Quadratic Diophantine Equation $4\left(x^{2}+y^{2}\right)-$ $7 x y+x+y+1=31 z^{2}$, International journal of Advance in Engineering and Management (IJAEM), vol 2, Issue: 01, June(2020),55-58.
[15] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan and S. Shanthia, Observations On The Homogeneous Ternary Quadratic Diophantine Equation With Three Unknowns $y^{2}+5 x^{2}=21 z^{2}$, Journal of Information and computational science, vol 10, Issue: 3, March(2020), 822-831
[16] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, V. Anbuvalli, On Finding the integer Solutions of Ternary Quadratic Diophantine Equation $3\left(x^{2}+y^{2}\right)-5 x y=36 z^{2}$, International journal of Precious Engineering Research and Applications (IJPERA), vol 7, Issue: 1, May(2022), 34-38.
[17] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-5$, Purakala UGC Care Approved Journal, vol 31, Issue: 2, May(2022), 920-926.
[18] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-12$, International Journal of Research Publication and Reviews, vol 3,Issue: 8, August(2022), 2146-2155.
[19] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^{2}+y^{2}=z^{2}-10$, International Journal of Progressive Research in Engineering Management and Science (IJPREMS), vol 02, Issue: 09, September(2022), 58-60.
[20] T. Mahalakshmi, P. Sowmiya : A Search on Integer Solutions to the Homogeneous Quadratic Equation with three Unknowns $x^{2}+14 y^{2}=$ $23 z^{2}$ International Journal of Research Publication and Reviews, Vol 4, no 1, pp 714-720,January 2023.
[21] M. Parkavi, J. Shanthi, M. A. Gopalan, "On Finding Integer Solutions To The Homogeneous Ternary Quadratic Diophantine Equation $2\left(x^{2}+y^{2}\right)-3 x y=32 z^{2}$ " International Journal of Research Publication and Reviews, Vol 4, no 1, pp 700-708,January 2023.

