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ABSTRACT 

The research presents exact buckling analysis of thin rectangular flat plate using strong (Euler) form of plate equilibrium equation. In this work, the total potential 

energy equation of a plate was derived from first principles. The derived equation (functional) was differentiated with respect to deflection to obtain the strong 

form of the equilibrium equation. The strong equilibrium equation was integrated to obtain its exact general solution with unknown coefficients of deflection. The 

boundary conditions (simple support designated with S and clamp support designated with C) of plates of were satisfied in the exact general solution to obtained 

particular solutions that are a product of unknown coefficient and exact shape functions. The plates include SSSS (all edges simply supported) and CCCC (all 

edges clamped).  The exact shape functions were substituted into the strong form of equilibrium to obtain the exact stiffness coefficients of plates of various 

boundary conditions. With the exact shape functions and their corresponding exact stiffness coefficients, exact buckling loads were determined for plates of 

various aspect ratios. After this, stiffness coefficients and buckling loads were computed using the Ritz approach. The exactness of results obtained for both Euler 

approach and Ritz approach were tested by directly substituting the results into the Plate strong equilibrium equation. It is observed herein that results from Ritz 

Approach are not exact and the average percentage differences in computed buckling loads (between Euler and Ritz methods) recorded for SSSS and CCCC are 

0.00%, 3.18%, 2.50%, 4.97%, 10.34% and 6.07% respectively. These percentage differences agree with the safety factors of 1.2 to 1.5 applied to the results 

obtained from approximate methods to augment for their 

Symbols: S -- simple support C -- clamped support  

                  a -- Length of the primary dimension of the plate  

                  b -- Width of the secondary dimension of the plate 

                  t -- Tertiary dimension (thickness) of the plate  

                  D -- the flexural Rigidity 

𝛱= Total Potential energy 

Keywords: Buckling, Euler-Bernolli, Energy, Differential Equations 

Introduction 

The uniformly supported edged plate under consideration are SSSS and CCCC. In both cases, the edge conditions are the same. The edge is either SS or 

CC support, both in the x and y-axis. In each case, the shape functions were derived.  The integral value of their shape functions gave their 

corresponding stiffnesses coefficient. From the first principle , the Total Potential Energy were derived as detailed below 

 From first principle the Total Potential energy was derived as 

𝛱 = 𝑈 + 𝑤𝑘𝑏                                                                                                                                                                                 1 

Considering the U as the Strain and the 𝑤𝑘𝑏  as the work performed. Mathematically expressed as 
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 Bring them together gives  

𝛱 =
D
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But further differentiation of the Total Potential energy with respect to the deflection give the 

 Euer-Bernoulli formular for calculating the critical buckling load. That is  

𝑁𝑥 = 𝑁  
𝐷

a2
                                                                                                                                                 5  

where  
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                                                                                                              6  

1.2 Determination of Exact Deflection Functions for Thin Buckling Analysis of Rectangular Plate 

To achieve this, some assumptions that will enable, eliminate some of the unknowns were made, since it‟s very difficult to solve directly. The plate 

governing equation is a 4th order partial differential equation with 4 unknowns. Also the 4th order Partial differential equation was reduced into simpler 
differential equations for easy derivation of the solution using the exact approach. On decoupling the Governing Equation and expressing them in 

exponential forms gives 

 For x-axis  

𝑤𝑅 = 𝑐0 + 𝑐1𝑅 + 𝑐2𝐶𝑜𝑠𝑘𝑅 + 𝑐3𝑆𝑖𝑛𝑘𝑅                                                                                                                                             7 

and differential to First, Second, Third and Fourth order gives  

𝑐1 − 𝑐2𝑘𝑠𝑖𝑛𝑘𝑅 + 𝑐3𝑘𝑐𝑜𝑠𝑘𝑅, −𝑐2𝑘
2𝑐𝑜𝑠𝑘𝑅 − 𝑐3𝑘

2𝑠𝑖𝑛𝑘𝑅, 𝑐2𝑘
3𝑠𝑖𝑛𝑘𝑅 − 𝑐3𝑘

3𝑐𝑜𝑠𝑘𝑅  𝑎𝑛𝑑 𝑐2𝑘
4𝑐𝑜𝑠𝑘𝑅 + 𝑐3𝑘

4𝑠𝑖𝑛𝑘𝑅 

respectively. Similarly  

For y-axis, 

𝑤𝑄 = 𝑙0 + 𝑙1𝑄 + 𝑙2𝑐𝑜𝑠𝑚𝑄 + 𝑙3𝑠𝑖𝑛𝑚𝑄                                                                                                                                            8 

and differential to First, Second, Third and Fourth order gives  

𝑙1 − 𝑙2𝑚𝑠𝑖𝑛𝑚𝑄 + 𝑙3𝑚𝑐𝑜𝑠𝑚𝑄, −𝑙2𝑚
2𝑐𝑜𝑠𝑚𝑄 − 𝑙3𝑚

2𝑠𝑖𝑛𝑚𝑄, 𝑙2𝑚
3𝑠𝑖𝑛𝑚𝑄 − 𝑙3𝑚

3𝑐𝑜𝑠𝑚𝑄, 𝑎𝑛𝑑 𝑙2𝑚
4𝑐𝑜𝑠𝑚𝑄 + 𝑙3𝑚

4𝑠𝑖𝑛𝑚𝑄 

Multiplying Equation 7 and 8 together gives 

𝑤 =  𝑐0 + 𝑐1𝑅 + 𝑐2𝑐𝑜𝑠𝑘𝑅 + 𝑐3𝑠𝑖𝑛𝑘𝑅  𝑙0 + 𝑙1𝑄 + 𝑙2𝑐𝑜𝑠𝑚𝑄 + 𝑙3𝑠𝑖𝑛𝑚𝑄                                                                            10 

1.1   Application of Deflection equation to plates of Selected Boundary conditions. 

The derived equation for deflection was introduced into the plate conditions under consideration. That is the  The analysis  

were as detailed below 

Particular Deflection equation and shape function for SS (Simple support at opposite ends) 

𝑆𝑖𝑛𝑐𝑒 𝑅 𝑣𝑎𝑟𝑖𝑒𝑠 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1, 𝑓𝑜𝑟 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑥 = 0, 𝑎𝑛𝑑 𝑥 = 𝐿 

The boundary conditions for the SS beam are stated mathematically as: 

𝐴𝑡 𝑅 =  0, 𝑤𝑅  =  𝑤𝑅′′ =  0                                                                                          11 

𝐴𝑡 𝑅 =  1, 𝑤𝑅 =  𝑤𝑅
′′ =  0                                                                                             12 

Where,    

𝑑2𝑤𝑅

𝑑𝑅2
= 𝑤𝑅

′′                                                                                                                             13 

Therefore substituting the boundary conditions into Equation 7, gives: 

𝑤𝑅 0 = 𝑐0 + 𝑐1 0 + 𝑐2𝑐𝑜𝑠𝑘 0 + 𝑐3𝑠𝑖𝑛𝑘 0  = 0                                                     14 

That is: 

𝑤𝑅 0 = 𝑐0 + 𝑐2   = 0                                                                                                           15 
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Hence: 

𝑐0 + 𝑐2 = 0                                                                                                                               16 

From equation 13 

𝑑2𝑤𝑅

𝑑𝑅2
= 𝑤𝑅

′′ =  −𝑐2𝑘
2𝑐𝑜𝑠𝑘𝑅 − 𝑐3𝑘

2𝑠𝑖𝑛𝑘𝑅                                                                     17  

Considering the boundary conditions of Equation 11 gives: 

𝑑2𝑤𝑅

𝑑𝑅2
= 𝑤𝑅

′′ =  −𝑐2𝑘
2𝑐𝑜𝑠𝑘(0) − 𝑐3𝑘

2𝑠𝑖𝑛𝑘 0    = 0                                                  18 

That is: 

𝑤𝑅
′′  0 =  −𝑐2𝑘

2 = 0                                                                                                           19   

Hence: 

−𝑐2𝑘
2 = 0                                                                                                                                 20 

Again, considering the boundary conditions of Equation 3.149 for Equation 3.134gives: 

𝑤𝑅 1 = 𝑐0 + 𝑐1 + 𝑐2𝑐𝑜𝑠𝑘 + 𝑐3𝑠𝑖𝑛𝑘 = 0                                                                          3.156 

Also, considering the boundary conditions of Equation 11 for Equation 17 gives: 

𝑤𝑅
′′  1 =  −𝑐2𝑘

2𝑐𝑜𝑠𝑘 − 𝑐3𝑘
2𝑠𝑖𝑛𝑘 = 0                                                                              21  

Expressing simultaneous equations 14 to 21 in matrix form will give –  

  

𝑤𝑅 0 

𝑤𝑅
′′  0 

𝑤𝑅 1 

𝑤𝑅
′′  1 

  =   

1 0 1 0
0 0 −𝑘2 0
1 1 𝑐𝑜𝑠𝑘 𝑠𝑖𝑛𝑘
0 0 −𝑘2𝑐𝑜𝑠𝑘 −𝑘2𝑠𝑖𝑛𝑘

  

𝑐0

𝑐1

𝑐2

𝑐3

 = 0                                                    22  

For Equation 322 to be true, the determinant of the square matrix must be zero. That is: 

 

1 0 1 0
0 0 −𝑘2 0
1 1 𝑐𝑜𝑠𝑘 𝑠𝑖𝑛𝑘
0 0 −𝑘2𝑐𝑜𝑠𝑘 −𝑘2𝑠𝑖𝑛𝑘

 = 0                                                                                        23  

That is: 

1 ×  
0 −𝑘2 0
1 𝑐𝑜𝑠𝑘 𝑠𝑖𝑛𝑘
0 −𝑘2𝑐𝑜𝑠𝑘 −𝑘2𝑠𝑖𝑛𝑘

 − 0 + 1 ×  
0 0 0
1 1 𝑠𝑖𝑛𝑘
0 0 −𝑘2𝑠𝑖𝑛𝑘

 − 0 = 0                           

 That is: 

 0 + 𝑘2 ×  
1 𝑠𝑖𝑛𝑘
0 −𝑘2𝑠𝑖𝑛𝑘

 + 0 +  0 = 0                                                                                   

That is: 

𝑘2 × −𝑘2𝑠𝑖𝑛𝑘 = 0.                                                                                                                                    

That is: 

𝑘4𝑠𝑖𝑛𝑘 = 0                                                                                                                                                                                                    24   

For Equation 24 to be zero, then sin k must be zero. The only condition for this to happen is when k is equal to the product of a positive integer and pi. 

That is: 

𝑠𝑖𝑛𝑘 = 0  𝑤ℎ𝑒𝑛𝑘 = 𝑛𝜋𝑎𝑛𝑑𝑛 = 0, 1, 2, 3 𝑒𝑡𝑐                                                                 25  

but 

𝑑𝑤𝑅

𝑑𝑅
=  𝑐1 − 𝑐2𝑘𝑠𝑖𝑛𝑘𝑅 + 𝑐3𝑘𝑐𝑜𝑠𝑘𝑅                                                                                 26  

𝑑2𝑤𝑅

𝑑𝑅2
=  −𝑐2𝑘

2𝑐𝑜𝑠𝑘𝑅 − 𝑐3𝑘
2𝑠𝑖𝑛𝑘𝑅                                                                                     27  

𝑑3𝑤𝑅

𝑑𝑅3
=  𝑐2𝑘

3𝑠𝑖𝑛𝑘𝑅 − 𝑐3𝑘
3𝑐𝑜𝑠𝑘𝑅                                                                                      28 

𝑑4𝑤𝑅

𝑑𝑅4
=  𝑐2𝑘

4𝑐𝑜𝑠𝑘𝑅 + 𝑐3𝑘
4𝑠𝑖𝑛𝑘𝑅                                                                                               28a 

Substituting equation 25 into all equations (from Ist to 4th order) and satisfying the boundary conditions from equation 12 gives: 

𝑐0 =  𝑐1 =  𝑐2 = 0                                                                                                                 29  
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Substituting the 𝑐0 + 𝑐1𝑅 + 𝑐2𝑐𝑜𝑠𝑘𝑅 + 𝑐3𝑠𝑖𝑛𝑘𝑅  for deflection 𝑤𝑅, gives; 

𝑤𝑅 =  𝑐3 sin 𝑛𝜋𝑅                                                                                                             30 

When a similar procedure is done on the y-direction. The outcome will; 

𝑤𝑄 =  𝑙3 sin 𝑛𝜋𝑄                                                                                                                  31 

 

Particular Deflection equation and shape function for CC (Clamp support at opposite ends) 

 

 

 

 

𝑆𝑖𝑛𝑐𝑒𝑅𝑣𝑎𝑟𝑖𝑒𝑠𝑏𝑒𝑡𝑤𝑒𝑒𝑛 0 𝑎𝑛𝑑 1, 𝑓𝑜𝑟𝑏𝑒𝑡𝑤𝑒𝑒𝑛𝑥 = 0, 𝑎𝑛𝑑𝑥 = 𝐿 

The boundary conditions for the CC beam are stated mathematically as: 

𝐴𝑡𝑅 =  0, 𝑤𝑅 =  𝑤𝑅 ’ =  0                                                                                            32 

𝐴𝑡𝑅 =  1, 𝑤𝑅  =  𝑤𝑅 ’ =  0                                                                                          33  

Where: 

𝑑𝑤𝑅

𝑑𝑅
= 𝑤𝑅′                                                                                                                               34 

Substituting Equation 32  boundary conditions into this 

𝑤𝑅 = 𝑐0 + 𝑐1𝑅 + 𝑐2𝑐𝑜𝑠𝑘𝑅 + 𝑐3𝑠𝑖𝑛𝑘𝑅                                                                                                                                           34a 

gives: 

𝑤𝑅 0 = 𝑐0 + 𝑐1(0) + 𝑐2𝑐𝑜𝑠𝑘(0) + 𝑐3𝑠𝑖𝑛𝑘(0) = 0                                                    35 

That is: 

𝑤𝑅 0 = 𝑐0 + 𝑐2 = 0                                                                                                           36  

Therefore:  

𝑐0 + 𝑐2 = 0                                                                                                                                37    

Substituting the boundary conditions of Equation 32  into  

𝑑𝑤𝑅

 𝑑𝑅
=  𝑐1 − 𝑐2𝑘𝑠𝑖𝑛𝑘𝑅 + 𝑐3𝑘𝑐𝑜𝑠𝑘𝑅                                                                                                                                        37𝑎  

gives: 

𝑤𝑅
′  0 =  𝑐1 − 𝑐2𝑘𝑆𝑖𝑛𝑘𝑅 + 𝑐3𝑘𝐶𝑜𝑠𝑘𝑅 = 0                                                                    38 

That is: 

𝑤𝑅
′  0 =  𝑐1 + 𝑐3𝑘 = 0                                                                                                       39 

Again considering the boundary conditions of Equation 33 as done above give: 

𝑤𝑅 1 = 𝑐0 + 𝑐1 + 𝑐2𝐶𝑜𝑠𝑘 + 𝑐3𝑆𝑖𝑛𝑘 = 0                                                                   40 

Also: 

𝑤𝑅
′  1 =  𝑐1 − 𝑐2𝑘𝑆𝑖𝑛𝑘 + 𝑐3𝑘𝐶𝑜𝑠𝑘 = 0                                                                    41 

Expressing simultaneous equations 38 to 41 in matrix form will give –  

  

𝑤𝑅 0 

𝑤𝑅
′  0 

𝑤𝑅 1 

𝑤𝑅
′  1 

  =   

1 0 1 0
0 1 0 𝑘
1 1 𝐶𝑜𝑠𝑘 𝑆𝑖𝑛𝑘
0 1 −𝑘𝑆𝑖𝑛𝑘 𝑘𝐶𝑜𝑠𝑘

  

𝑐0

𝑐1

𝑐2

𝑐3

 = 0                                                          42 

For equation 42 to be equal to zero, then : 

N N 

Figure 2: Cross-section of plate Under Buckling Load (N) along x-direction  for CC 
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1 0 1 0
0 1 0 𝑘
1 1 𝐶𝑜𝑠𝑘 𝑆𝑖𝑛𝑘
0 1 −𝑘𝑆𝑖𝑛𝑘 𝑘𝐶𝑜𝑠𝑘

 = 0                                                                                       43 

That is: 

1 ×  
1 0 𝑘
1 𝐶𝑜𝑠𝑘 𝑆𝑖𝑛𝑘
1 −𝑘𝑆𝑖𝑛𝑘 𝑘𝐶𝑜𝑠𝑘

 − 0 + 1 ×  
0 1 𝑘
1 1 𝑆𝑖𝑛𝑘
0 1 𝑘𝐶𝑜𝑠𝑘

 − 0 = 0                             44 

That is: 

1 ×  
𝐶𝑜𝑠𝑘 𝑆𝑖𝑛𝑘

−𝑘𝑆𝑖𝑛𝑘 𝑘𝐶𝑜𝑠𝑘
 − 0 + 𝑘 ×  

1 𝐶𝑜𝑠𝑘
1 −𝑘𝑆𝑖𝑛𝑘

 + 0 − 1 ×  
1 𝑘
1 𝑘𝐶𝑜𝑠𝑘

 + 0 = 0     45 

That is: 

𝑘𝐶𝑜𝑠2𝑘 +  𝑘𝑆𝑖𝑛2𝑘 + 𝑘 −𝑘𝑆𝑖𝑛𝑘 − 𝐶𝑜𝑠𝑘 − 𝑘𝐶𝑜𝑠𝑘 + 𝑘 = 0                                 46 

Rearranging gives: 

𝐶𝑜𝑠2𝑘 + 𝑆𝑖𝑛2𝑘 − 𝑘𝑆𝑖𝑛𝑘 − 2𝐶𝑜𝑠𝑘 + 1 = 0                                                                   47 

Equation 47 above represents the characteristics equation for the matrix. Solving for k: 

 𝐶𝑜𝑠2𝑘 + 𝑆𝑖𝑛2𝑘 − 𝑘𝑆𝑖𝑛𝑘 − 2𝐶𝑜𝑠𝑘 + 1 = 0                                                              48 

From Trigonometry: 

 𝐶𝑜𝑠2𝑘 + 𝑆𝑖𝑛2𝑘 = 0                                                                                                          49 

Therefore; 

1 − 𝑘𝑆𝑖𝑛𝑘 − 2𝐶𝑜𝑠𝑘 + 1 = 0                                                                                              50 

𝑘𝑆𝑖𝑛𝑘 + 2𝐶𝑜𝑠𝑘 − 2 = 0                                                                                                   51 

The value of k that satisfies equation 51 above  is: 

𝑘 =  2𝑛𝜋 𝑤ℎ𝑒𝑟𝑒𝑛 = 1,2,3, …                                                                                       52 

Substituting the values of k into equations 32 to 41 and satisfying the boundary conditions gives: 

𝑐1 = 𝑐3 = 0; 𝑐0 = −𝑐2                                                                                                            52a 

Substituting equation 52 and 52a above into the equation of deflection yields; 

𝑤𝑅 = 𝑐0 1 − 𝐶𝑜𝑠2𝑛𝜋𝑅                                                                                                        53 

When a similar procedure is done on the y-direction. We obtain; 

𝑤𝑄 =  𝑙0 (1 − Cos2 𝑛𝜋𝑄)                                                                                                    54 

          Table 1   Summary of Deflection Equations of the Shape Orientations 

Combined Support Condition Equation of Deflection (w) Shape Function (h) 

SS (Pinned at Both ends) 𝑐3 (sin 𝑛𝜋𝑅 )[𝑛 = 1,2,3, … ] sin 𝑛𝜋𝑅  [𝑛 = 1,2,3, … ] 

CC (Clamped at Both ends) 𝑐0(1 − 𝐶𝑜𝑠2𝑛𝜋𝑅)[𝑛 = 1,2,3, … ] 1 − 𝐶𝑜𝑠2𝑛𝜋𝑅[𝑛 = 1,2,3, … ] 

 

Deflection Equation of plates of Selected Boundary Equation 

SSSS Rectangular Plate 

 

 

 

 

 

 

 

 

Considering the x direction, the appropriate deflection equation is that for SS. See Figure 
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𝑤𝑅 = 𝑐3 (sin 𝑛𝜋𝑅 )                                                                                                                      55 

by virtue of similar support conditions at both sides, the shape function in y direction is the same as that of the x direction. 

Hence: 

𝑤𝑄 = 𝑙3 (sin 𝑛𝜋𝑄 )                                                                                                                     56 

𝑇ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒, 𝑤 = 𝐴 (sin 𝑛𝜋𝑅 ) (sin 𝑛𝜋𝑄 )                                                                          57 

𝑤ℎ𝑒𝑟𝑒, 𝐴 = 𝑐3 ∗ 𝑙3                                                                                                                      58  

CCCC Rectangular Plate 

 

 

 

 

 

 

 

 

 

 

 

Similarly: 

 

𝑤𝑅 = 𝑐0(1 − 𝐶𝑜𝑠2𝑛𝜋𝑅)                                                                                                           59 

And: 

𝑤𝑄 = 𝑙0(1 − 𝐶𝑜𝑠2𝑛𝜋𝑄)                                                                                                         60 

Therefore: 

𝑤 = 𝐴 1 − 𝐶𝑜𝑠2𝑛𝜋𝑅  1 − 𝐶𝑜𝑠2𝑛𝜋𝑄                                                                                 61 

Where: 

𝐴 = 𝑐0 ∗ 𝑙0                                                                                                                                    62 

Table 2: Deflection Equation for Various Plates of Different Edge Conditions 

S/No. 
Edge 

Condition 
Deflection Equation Constants 

 SSSS 𝐴 (sin 𝜋𝑅 ) (sin 𝜋𝑄 )  [Single Mode, n=1] 𝐴 = 𝑐3 ∗ 𝑙3 

 CCCC 𝐴 1 − 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄 [Single Mode, n=1] 𝐴 = 𝑐0 ∗ 𝑙0 

1.4  Determination of the Euler-Bernoulli stiffness coefficients of thin rectangular plates 

The stiffness coefficients (kxxxx, kxxyy, kyyyy and kxx) needed to calculate the critical buckling loads of thin rectangular plates considered in this work are 

determined here. In doing so, the derivatives of the shape functions were obtained and subsequently substituted into the various formulars for the 

stiffness coefficients. The integrations were done within the domain of effective lengths (spans) in both orthogonal axes. 

 

The Derivatives of the Deflection Equations and Shape Functions 

The Derivatives of the SSSS Shape function 

w = 𝐴 (Sin 𝜋𝑅 ) (Sin 𝜋𝑄 )                                                                                                         63 

ℎ = (Sin 𝜋𝑅 ) (Sin 𝜋𝑄 )                                                                                                            64 

The first derivative of the SSSS deflection equation with respect to R is: 

∂h

∂R
= 𝜋 Cos𝜋𝑅 (Sin 𝜋𝑄)                                                                                                         65 

While the second derivative with respect to R is: 

∂2h

∂R2
= −𝜋2 Sin𝜋𝑅 (Sin 𝜋𝑄)                                                                                                 66 

And the third derivative with respect to R is: 

∂3h

∂R3
= −𝜋3 Cos𝜋𝑅 (Sin 𝜋𝑄)                                                                                                67 

It follows that the fourth derivative with respect to R is: 

∂4h

∂R4
= 𝜋4 Sin𝜋𝑅 (Sin 𝜋𝑄)                                                                                                     68 

Similarly, the fourth derivative with respect to Q is: 

x(R) 

y(Q) 

Figure 4: CCCC Rectangular Plate 
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∂4h

∂Q4
= 𝜋4 Sin𝜋𝑅 (Sin 𝜋𝑄)                                                                                                    69  

While the Second Partial derivate with respects to R and Q is: 

∂4h

∂R2 ∂Q2
= 𝜋4 Sin𝜋𝑅 (Sin 𝜋𝑄)                                                                                           70 

 

The Derivatives of the CCCC Shape function 

𝑤 = 𝐴 1 − 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                                   71 

ℎ =  1 − 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                                       72 

The first derivative of the CCCC deflection equation with respect to R is: 

𝜕ℎ

𝜕𝑅
= 2𝜋 𝑆𝑖𝑛2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                                     73 

While the second derivative with respect to R is: 

𝜕2ℎ

𝜕𝑅2
= 4𝜋2 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                               74  

And the third derivative with respect to R is: 

𝜕3ℎ

𝜕𝑅3
= −8𝜋3 𝑆𝑖𝑛2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                              75  

It follows that the fourth derivative with respect to R is: 

𝜕4ℎ

𝜕𝑅4
= −16𝜋4 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄                                                                          76  

Similarly, the fourth derivative with respect to Q is: 

𝜕4ℎ

𝜕𝑄4
= −16𝜋4 1 − 𝐶𝑜𝑠2𝜋𝑅  𝐶𝑜𝑠2𝜋𝑄                                                                        77   

While the Second Partial derivate with respects to R and Q is: 

𝜕4ℎ

𝜕𝑅2𝜕𝑄2
= 16𝜋4 𝐶𝑜𝑠2𝜋𝑅  𝐶𝑜𝑠2𝜋𝑄                                                                                 78   

Effective Span and Bent Domain of Single Buckled mode of Line Continuum 

When line continuum buckles in first deformation mode, a region within the span takes 

bent configuration. The span of this bent region is largely dependent on the support conditions 

 of the line continuum. The point the continuum starts to bend is designated as d1 and the last 

point when the continuum is bent is designated d2 

Let the Effective Span be Le 

For SS Continuum, Le = L 

For CC Continuum, Le = 0.5L 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 Effective Lengths for various Support conditions 
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Calculation of the stiffness coefficients for plates of various boundary conditions 

 

The stiffness coefficients were represented as  

 

𝑘𝑥𝑥𝑥𝑥 =   
∂4w

∂R4

𝑑2

𝑑1

𝑑2

𝑑1

𝜕𝑅𝜕𝑄                                                                                                        79  

𝑘𝑥𝑥𝑦𝑦 =   
∂4w

𝜕𝑅2𝜕𝑄2

𝑑2

𝑑1

𝑑2

𝑑1

𝜕𝑅𝜕𝑄                                                                                                 80   

𝑘𝑦𝑦𝑦𝑦 =   
∂4w

∂Q4

𝑑2

𝑑1

𝑑2

𝑑1

𝜕𝑅𝜕𝑄                                                                                                       81  

𝑘𝑥𝑥 =   
𝜕2𝑤

𝜕𝑅2

𝑑2

𝑑1

𝑑2

𝑑1

𝜕𝑅𝜕𝑄                                                                                                       82   

𝑘𝑇 = 𝑘𝑥𝑥𝑥𝑥𝑥 +
2

𝛽2
𝑘𝑥𝑥𝑦𝑦 +

1

𝛽4
𝑘𝑦𝑦𝑦𝑦                                                                                      83  

We will use these equations to compute stiffness coefficients for the various boundary conditions. The boundary conditions are SSSS, CCCC, CCSS, 

CSSS, CSCS and CCCS. The stiffness coefficients to be computed include: 

𝐾𝑥𝑥 ,𝐾𝑥𝑥𝑥𝑥 , 𝐾𝑥𝑥𝑦𝑦 , 𝐾𝑦𝑦𝑦𝑦 , 𝐾𝑇 

We will also compute the Ratio of stiffness coefficients: 

𝑁 =
𝐾𝑇

−𝐾𝑥𝑥

                                                                                                                                84 

As stated in equation 84 

The Integrals of the SSSS Deflection Equation 

𝐹𝑜𝑟𝑆𝑆, 𝑑1 = 0 , 𝑑2 = 1                                                                                              85   

𝑘𝑥𝑥 = −𝜋2    Sin𝜋𝑅 (Sin 𝜋𝑄)    𝑑𝑅𝑑𝑄

1

0

1

0

= −𝜋2  −  1

𝜋
𝐶𝑜𝑠𝜋𝑅 

0

1

   −
1

𝜋
𝐶𝑜𝑠𝜋𝑄 

0

1

  =  −𝜋2  −
1

𝜋
𝐶𝑜𝑠𝜋 +

1

𝜋
𝐶𝑜𝑠0  −

1

𝜋
𝐶𝑜𝑠𝜋 +

1

𝜋
𝐶𝑜𝑠0 

=   −𝜋2  
1

𝜋
+

1

𝜋
  

1

𝜋
+

1

𝜋
 = −𝜋2  

2

𝜋
  

2

𝜋
 = −4                                                                                               85b  3.284 

𝑘𝑥𝑥𝑥𝑥 = 𝜋4    Sin𝜋𝑅 (Sin 𝜋𝑄)    𝑑𝑅𝑑𝑄

1

0

1

0

=  𝜋4  
2

𝜋
  

2

𝜋
 =   4𝜋2                          86  

𝑘𝑦𝑦𝑦𝑦 = 𝜋4    Sin𝜋𝑅 (Sin 𝜋𝑄)    𝑑𝑅𝑑𝑄

1

0

1

0

=  𝜋4  
2

𝜋
  

2

𝜋
 =   4𝜋2                              87   

𝑘𝑥𝑥𝑦𝑦 = 𝜋4    𝑆𝑖𝑛𝜋𝑅 (𝑆𝑖𝑛 𝜋𝑄) 𝑑𝑅𝑑𝑄

1

0

1

0

   = 𝜋4  
2

𝜋
  

2

𝜋
 =   4𝜋2                          88  

Further resolution gives 

𝑘𝑇 = 4𝜋2  +
8

𝛽2
𝜋2 +

4

𝛽4
𝜋2                                                                                                     88a         

Substituting back gives: 

N𝑥𝑎
2

𝐷
=

4𝜋2  +
8

𝛽2
𝜋2 +

4

𝛽4
𝜋2

4
= 𝜋2  +

2

𝛽2
𝜋2 +

1

𝛽4
𝜋2 =    𝜋2  1 +

2

𝛽2
+

1

𝛽4
         89 

 

The Integrals of the CCCC Deflection Equation 

 

𝐹𝑜𝑟𝐶𝐶, 𝑑1 = 0.25 , 𝑑2 = 0.75                                                                                      90    
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𝑘𝑥𝑥 = 4𝜋2    𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄 𝑑𝑅𝑑𝑄

0.75

0.25

0.75

0.25

= 4𝜋2   1

2𝜋
𝑆𝑖𝑛2𝜋𝑅 

0.25

0.75

   𝑄 −
1

2𝜋
𝑆𝑖𝑛2𝜋𝑄 

0.25

0.75

 90

= 4𝜋2  
1

2𝜋
𝑆𝑖𝑛2𝜋 0.75 −  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.25   0.75 −

1

2𝜋
𝑆𝑖𝑛2𝜋0.75 − 0.25 +

1

2𝜋
𝑆𝑖𝑛2𝜋0.25 

= 4𝜋2  
−1

2𝜋
−  

1

2𝜋
  0.75 +

1

2𝜋
− 0.25 +

1

2𝜋
 = 4𝜋2  

−1

𝜋
  0.5 +

1

𝜋
 = 4𝜋2  

−1

2𝜋
−

1

𝜋2
 

= −2𝜋 − 4                                     90a 3.291 

𝑘𝑥𝑥𝑥𝑥 = −16𝜋4    𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄 𝑑𝑅𝑑𝑄

0.75

0.25

0.75

0.25

 == −16𝜋4   1

2𝜋
𝑆𝑖𝑛2𝜋𝑅 

0.25

0.75

   𝑄 −
1

2𝜋
𝑆𝑖𝑛2𝜋𝑄 

0.25

0.75

 

= −16𝜋4  
1

2𝜋
𝑆𝑖𝑛2𝜋 0.75 −  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.25   0.75 −

1

2𝜋
𝑆𝑖𝑛2𝜋0.75 − 0.25 +

1

2𝜋
𝑆𝑖𝑛2𝜋0.25 

= −16𝜋4  
−1

2𝜋
−  

1

2𝜋
  0.75 +

1

2𝜋
− 0.25 +

1

2𝜋
 = −16𝜋4  

−1

𝜋
  0.5 +

1

𝜋
 = −16𝜋4  

−1

2𝜋
−

1

𝜋2
 

= 8𝜋3 + 16𝜋2                                                                                                               91  

𝑘𝑥𝑥𝑦𝑦 = 16𝜋4    𝐶𝑜𝑠2𝜋𝑅  𝐶𝑜𝑠2𝜋𝑄 𝑑𝑅𝑑𝑄

1

0

1

0

 = 16𝜋4   1

2𝜋
𝑆𝑖𝑛2𝜋𝑅 

0.25

0.75

   1

2𝜋
𝑆𝑖𝑛2𝜋𝑄 

0.25

0.75

 

= 16𝜋4  
1

2𝜋
𝑆𝑖𝑛2𝜋 0.75 −  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.25   

1

2𝜋
𝑆𝑖𝑛2𝜋 0.75 −  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.25  = 16𝜋4  

−1

2𝜋
−  

1

2𝜋
  

−1

2𝜋
−  

1

2𝜋
 

= 16𝜋4  
−1

𝜋
  

−1

𝜋
 =   16𝜋2                                                                                                                        91a  

 

𝑘𝑦𝑦𝑦𝑦 = −16𝜋4    1 − 𝐶𝑜𝑠2𝜋𝑅  𝐶𝑜𝑠2𝜋𝑄 𝑑𝑅𝑑𝑄

1

0

1

0

= −16𝜋4   𝑅 −
1

2𝜋
𝑆𝑖𝑛2𝜋𝑅 

0.25

0.75

   1

2𝜋
𝑆𝑖𝑛2𝜋𝑄 

0.25

0.75

 =

= −16𝜋4  0.75 −
1

2𝜋
𝑆𝑖𝑛2𝜋0.75 − 0.25 +

1

2𝜋
𝑆𝑖𝑛2𝜋0.25  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.75 −  

1

2𝜋
𝑆𝑖𝑛2𝜋 0.25  

= −16𝜋4  0.75 +
1

2𝜋
− 0.25 +

1

2𝜋
  

−1

2𝜋
−  

1

2𝜋
 = −16𝜋4  0.5 +

1

𝜋
  

−1

𝜋
 = −16𝜋4  −

1

𝜋2
−

1

2𝜋
 

= 8𝜋3 + 16𝜋2                                                                                                                                                                   91b   

 

Substituting Equations 91 to 91b into 

   𝑘𝑇 = 𝑘𝑥𝑥𝑥𝑥𝑥 +
2

𝛽2
𝑘𝑥𝑥𝑦𝑦 +

1

𝛽4
𝑘𝑦𝑦𝑦𝑦               91c 

            gives: 

 

𝑘𝑇 = 8𝜋3 + 16𝜋2   +
2

𝛽2
16𝜋2   +

1

𝛽4
(8𝜋3 + 16𝜋2)                                                             92  

Substituting Equations 90a and 92 into Equation 91c gives: 

N𝑥𝑎
2

𝐷
=

8𝜋3 + 16𝜋2   +
2

𝛽2
16𝜋2   +

1

𝛽4
(8𝜋3 + 16𝜋2)

2𝜋 + 4  
                                                      93 

 

Table 1: Summary of Stiffness coefficients in terms of π 

 

INTEGRAL SSSS CCCC 

𝑘𝑥𝑥  −4 −2𝜋 − 4 

𝑘𝑥𝑥𝑥𝑥  4𝜋2 8𝜋3 + 16𝜋2 

𝑘𝑥𝑥𝑦𝑦  4𝜋2 16𝜋2 

𝑘𝑦𝑦𝑦𝑦  4𝜋2 8𝜋3 + 16𝜋2 
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Table 2: Summary of Stiffness Coefficients for all plate types 

 

 

 

 

 

 

 

 

 

Table 3: Stiffness Coefficients for different Aspect ratios for SSSS Plates 

 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 39.47842 39.47842 39.47842 -4.00000 157.91367 39.47842 

1.1 39.47842 39.47842 39.47842 -4.00000 131.69629 32.92407 

1.2 39.47842 39.47842 39.47842 -4.00000 113.34814 28.33704 

1.3 39.47842 39.47842 39.47842 -4.00000 100.02093 25.00523 

1.4 39.47842 39.47842 39.47842 -4.00000 90.03907 22.50977 

1.5 39.47842 39.47842 39.47842 -4.00000 82.36855 20.59214 

1.6 39.47842 39.47842 39.47842 -4.00000 76.34486 19.08621 

1.7 39.47842 39.47842 39.47842 -4.00000 71.52589 17.88147 

1.8 39.47842 39.47842 39.47842 -4.00000 67.60852 16.90213 

1.9 39.47842 39.47842 39.47842 -4.00000 64.37944 16.09486 

2 39.47842 39.47842 39.47842 -4.00000 61.68503 15.42126 

 

Table 4: Stiffness Coefficients for different Aspect ratios for CCCC Plates 

 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 405.96388 157.91367 405.96388 -10.28319 1127.75511 109.66982 

1.1 405.96388 157.91367 405.96388 -10.28319 944.25701 91.82534 

1.2 405.96388 157.91367 405.96388 -10.28319 821.06576 79.84547 

1.3 405.96388 157.91367 405.96388 -10.28319 734.98321 71.47427 

1.4 405.96388 157.91367 405.96388 -10.28319 672.77601 65.42487 

1.5 405.96388 157.91367 405.96388 -10.28319 626.52199 60.92684 

1.6 405.96388 157.91367 405.96388 -10.28319 591.27911 57.49961 

1.7 405.96388 157.91367 405.96388 -10.28319 563.85291 54.83251 

1.8 405.96388 157.91367 405.96388 -10.28319 542.11352 52.71844 

1.9 405.96388 157.91367 405.96388 -10.28319 524.60175 51.01549 

2 405.96388 157.91367 405.96388 -10.28319 510.29346 49.62407 

 

INTEGRAL SSSS CCCC 

𝑘𝑥𝑥  -4.00000 -10.28319 

𝑘𝑥𝑥𝑥𝑥  39.478418 405.96388 

   

𝑘𝑥𝑥𝑦𝑦  39.478418 157.91367 

𝑘𝑦𝑦𝑦𝑦  39.478418 405.96388 
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1.6 Determination of Ritz Stiffness Co-efficients and Buckling loads 

In this section, we determine critical buckling loads and stiffness co-efficients as used in the Ritz approach. Recall Ritz formulation for calculating the 

Critical Buckling load of a thin Rectangular Plate from Equation 2.7: 

 

𝑁𝑥 =
D     

∂2H

∂R2
 

2
𝑏

0

𝑎

0
∂R ∂Q + 2

1

𝛽2    
∂2H

∂R ∂Q
 

2
𝑏

0

𝑎

0
∂R ∂Q  +

1

𝛽4    
∂2H

∂Q2
 

2
𝑏

0

𝑎

0
∂R ∂Q 

a2    
𝜕𝐻

𝜕𝑅
 

2𝑏

0

𝑎

0
𝜕𝑅𝜕𝑄

                                             94 

For Simplicity, Let; 

𝑘𝑥𝑥 =     
∂2H

∂R2
 

2𝑏

0

𝑎

0

∂R ∂Q                                                                                       95   

𝑘𝑥𝑦 =    
∂2H

∂R∂Q
 

2𝑏

0

𝑎

0

∂R ∂Q                                                                                     97   

𝑘𝑦𝑦 =    
∂2H

∂Q2
 

2𝑏

0

𝑎

0

∂R ∂Q                                                                                        98   

𝑘𝑁 =    
𝜕𝐻

𝜕𝑅
 

2𝑏

0

𝑎

0

𝜕𝑅𝜕𝑄                                                                                           99 

 

Hence, the critical buckling load becomes: 

 

𝑁𝑥 =
D  𝑘𝑥𝑥 + 2

1

𝛽2
𝑘𝑥𝑦   +

1

𝛽4
𝑘𝑦𝑦  

a2 .𝑘𝑁

                                                                      100             

We will then proceed to compute these stiffness coefficients (kxx, kxy, kyy and kN) needed to calculate the Ritz critical buckling loads of thin rectangular 

plates. In doing so, the derivatives of the shape functions obtained will be determined as required by Ritz Formulation.  

The integrations were done within the domain of 0 to 1 in both orthogonal axes, as required by Ritz Formulation. 

 

The Ritz Derivatives of the Deflection Equations 

The  derivatives of the shape functions were determined. These derivatives will be Computed as required by Ritz Formulation 

 

The Ritz Derivative for the SSSS Shape Functions 

ℎ = (Sin 𝜋𝑅 ) (Sin 𝜋𝑄 )                                                                                                          101              

The first derivative of the SSSS deflection equation with respect to R is: 

∂h

∂R
= 𝜋 Cos𝜋𝑅 (Sin 𝜋𝑄)                                                                                                 102             

The Square of the first derivative with respect to R is 

 
𝜕ℎ

𝜕𝑅
 

2

= 𝜋2 𝑐𝑜𝑠2𝜋𝑅  𝑠𝑖𝑛2𝜋𝑄                                                                                                                                          103        

While the second derivative with respect to R is: 

∂2h

∂R2
= −𝜋2 Sin𝜋𝑅 (Sin 𝜋𝑄)                                                                                         104              

And the The Square of the Second derivative with respect to R is: 

 
𝜕2ℎ

𝜕𝑅2
 

2

= 𝜋4(𝑠𝑖𝑛2𝜋𝑅)(𝑠𝑖𝑛2𝜋𝑄)                                                                                        105            

It follows that the Second derivative with respect to Q is: 

𝜕2ℎ

𝜕𝑄2
= −𝜋2(𝑠𝑖𝑛𝜋𝑅)(𝑠𝑖𝑛𝜋𝑄)                                                                                                106          

Similarly, the square of the Second derivative with respect to Q is: 

 
𝜕2𝐻

𝜕𝑄2
 

2

= 𝜋4(𝑠𝑖𝑛2𝜋𝑅)(𝑐𝑜𝑠2𝜋𝑄)                                                                              107          
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While the First Partial derivate with respects to R and Q is: 

𝜕2𝐻

𝜕𝑅𝜕𝑄
= 𝜋2(𝑐𝑜𝑠𝜋𝑅)(𝑐𝑜𝑠𝜋𝑄)                                                                            108            

While the Square of the First Partial derivate with respects to R and Q is: 

 
𝜕2ℎ

𝜕𝑅𝜕𝑄
 

2

= 16𝜋4(𝑠𝑖𝑛22𝜋𝑅)(𝑠𝑖𝑛22𝜋𝑄)                                                             109          

 

The Ritz Derivative for the CCCC Shape Functions 

ℎ = (1 − 𝑐𝑜𝑠2𝜋𝑅)(1 − 𝑐𝑜𝑠2𝜋𝑄)                                                                         110           

The first derivative of the CCCC deflection equation with respect to R is: 

∂h

∂R
= 2𝜋 𝑠𝑖𝑛2𝜋𝑅  1 − 𝑐𝑜𝑠2𝜋𝑄                                                                         111          

The Square of the first derivative with respect to R is 

 
𝜕ℎ

𝜕𝑅
 

2

= 4𝜋2 𝑠𝑖𝑛22𝜋𝑅 (1 − 𝑐𝑜𝑠2𝜋𝑄)2                                                                112         

While the second derivative with respect to R is: 

𝜕2ℎ

𝜕𝑅2
= 4𝜋2 𝑐𝑜𝑠2𝜋𝑅  1 − 𝑐𝑜𝑠2𝜋𝑄                                                  113         

And the Square of the Second derivative with respect to R is: 

 
𝜕2ℎ

𝜕𝑅2
 

2

= 16𝜋4(𝑐𝑜𝑠22𝜋𝑅)(1 − 𝑐𝑜𝑠2𝜋𝑄)2                                                  114                              

It follows that the Second derivative with respect to Q is: 

𝜕2ℎ

𝜕𝑄2
= 4𝜋2(1 − 𝑐𝑜𝑠2𝜋𝑅)(𝑐𝑜𝑠𝜋𝑄)                                                              115                             

Similarly, the square of the Second derivative with respect to Q is: 

 
𝜕2ℎ

𝜕𝑄2
 

2

= 16𝜋4(1 − 𝑐𝑜𝑠2𝜋𝑅)2 𝑐𝑜𝑠22𝜋𝑄                                            116                           

While the First Partial derivate with respects to R and Q is: 

𝜕2ℎ

𝜕𝑅𝜕𝑄
= 4𝜋2(𝑠𝑖𝑛2𝜋𝑅)(𝑠𝑖𝑛2𝜋𝑄)                                                             117                            

While the Square of the First Partial derivate with respects to R and Q is: 

 
𝜕2ℎ

𝜕𝑅𝜕𝑄
 

2

= 16𝜋4(𝑠𝑖𝑛22𝜋𝑅)(𝑠𝑖𝑛22𝜋𝑄)                                                118                          

1.7  RESULTS AND DISCUSSIONS 

Presentation of Results 

In this section, the formulations obtained in this work are presented. Among these are the general expression of Total Potential Energy for plate under 

buckling load, the Euler-Bernoulli functional for Buckling analysis of thin rectangular plates, exact deflection functions for thin rectangular plates and 

the Euler-Bernoulli Stiffness coefficients for thin rectangular plates. Furthermore, the comparative results of tests for exact buckling loads and 

approximate buckling loads in the strong form of the governing equation for plates of selected boundary conditions are presented. 

The results are presented for the two types of support conditions of thin rectangular plates: SSSS and CCCC The results for the non-dimensional 

buckling load are evaluated for different aspect ratios, β (b/a: where, 1 ≤ β ≤ 2).  

The Total Potential Energy Functional for Thin Rectangular Plate under Buckling Load 

The general expression for the total potential energy for thin rectangular plate under buckling load (biaxial and in-plane shear load) as obtained in this 
work is presented in Equation 4.1  

𝛱 =
D

2
    

∂2w

∂x2
 

2

+ 2  
∂2w

𝜕𝑥𝜕𝑦
 

2

+  
∂2w

∂y2
 

2

 
b

0

a

0

∂x ∂y +
1

2
   𝑁𝑥  

𝜕𝑤

𝜕𝑥
 

2

+ 2𝑁𝑥𝑦
𝜕𝑤
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.
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2

 
𝑎

0

𝑎

0

𝜕𝑥𝜕𝑦                        4.1 
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The Euler-Bernoulli Formula for Buckling Analysis of Thin Rectangular Plate 

The Euler-Bernoulli Formula for Buckling analysis of thin Rectangular plate as obtained in this work is presented in Equation 4.2  

𝑁𝑥 =
𝑘𝑇

−𝑘𝑥𝑥

 
𝐷

a2
                                                                                                                                                         4.2 

Where: 

𝑘𝑇 =  𝑘𝑥𝑥𝑥𝑥 +
2

𝛽2
𝑘𝑥𝑥𝑦𝑦 +

1

𝛽4
𝑘𝑦𝑦𝑦𝑦  

𝑘𝑥𝑥 =    
𝜕2𝑤

𝜕𝑅2
 

1

𝑑1

1

𝑑1

𝜕𝑅𝜕𝑄, 𝑘𝑥𝑥𝑥𝑥 =    
∂4w

∂R4
 

𝑑2

𝑑1

𝑑2

𝑑1

∂R ∂Q, 𝑘𝑥𝑥𝑦𝑦 =    
∂4w

𝜕𝑅2𝜕𝑄2
 ∂R ∂Q

𝑑2

𝑑1

𝑑2

𝑑1

 𝑎𝑛𝑑 𝑘𝑦𝑦𝑦𝑦 =    
∂4w

∂Q4
 ∂R ∂Q

𝑑2

𝑑1

𝑑2
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Results for the exact deflection functions for buckling analysis of thin rectangular plate 

Equations presented in For SSSS, 𝑤 =  𝐴 (sin 𝜋𝑅 ) (sin 𝜋𝑄 )  [Single Mode, n=1], with Constant as  𝐴 = 𝑐3 ∗ 𝑙3 

 Also for CCCC, 𝑤 =  𝐴 1 − 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄 [Single Mode, n=1] with Constant as  𝐴 = 𝑐0 ∗ 𝑙0 are the exact deflection equations of 

Kirchhoff‟s Plates for the two selected boundary conditions. The Equations are in trigonometric form. 

For SSSS, 𝑤 =  𝐴 (sin 𝜋𝑅 ) (sin 𝜋𝑄 )  [Single Mode, n=1], with Constant as  𝐴 = 𝑐3 ∗ 𝑙3 

 Also for CCCC, 𝑤 =  𝐴 1 − 𝐶𝑜𝑠2𝜋𝑅  1 − 𝐶𝑜𝑠2𝜋𝑄 [Single Mode, n=1] with Constant as  𝐴 = 𝑐0 ∗ 𝑙0 

1.8  Results for the Euler-Bernoulli Stiffness coefficients for Buckling Analysis of Thin Rectangular Plates 

Results for Euler-Bernoulli Stiffness coefficients as computed are presented here, from Table  to Error! Reference source not found.. First of all, the 

summary of primary stiffness coefficients are presented. Then followed by stiffness coefficients generated by considering different aspect ratios. 

Table 7: Summary of Euler Stiffness Coefficients for Plates with different Support Conditions 

INTEGRAL SSSS CCCC 

𝑘𝑥𝑥  -4.00000 -10.28319 

𝑘𝑥𝑥𝑥𝑥  39.478418 405.96388 

𝑘𝑥𝑥𝑦𝑦  39.478418 157.91367 

𝑘𝑦𝑦𝑦𝑦  39.478418 405.96388 

Table 8: Euler Stiffness Coefficients for different Aspect ratios for SSSS Plates 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 39.47842 39.47842 39.47842 -4.00000 157.91367 39.47842 

1.1 39.47842 39.47842 39.47842 -4.00000 131.69629 32.92407 

1.2 39.47842 39.47842 39.47842 -4.00000 113.34814 28.33704 

1.3 39.47842 39.47842 39.47842 -4.00000 100.02093 25.00523 

1.4 39.47842 39.47842 39.47842 -4.00000 90.03907 22.50977 

1.5 39.47842 39.47842 39.47842 -4.00000 82.36855 20.59214 

1.6 39.47842 39.47842 39.47842 -4.00000 76.34486 19.08621 

1.7 39.47842 39.47842 39.47842 -4.00000 71.52589 17.88147 

1.8 39.47842 39.47842 39.47842 -4.00000 67.60852 16.90213 

1.9 39.47842 39.47842 39.47842 -4.00000 64.37944 16.09486 

2 39.47842 39.47842 39.47842 -4.00000 61.68503 15.42126 

Table 9: Euler Stiffness Coefficients for different Aspect ratios for CCCC Plates 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 405.96388 157.91367 405.96388 -10.28319 1127.75511 109.66982 

1.1 405.96388 157.91367 405.96388 -10.28319 944.25701 91.82534 
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1.2 405.96388 157.91367 405.96388 -10.28319 821.06576 79.84547 

1.3 405.96388 157.91367 405.96388 -10.28319 734.98321 71.47427 

1.4 405.96388 157.91367 405.96388 -10.28319 672.77601 65.42487 

1.5 405.96388 157.91367 405.96388 -10.28319 626.52199 60.92684 

1.6 405.96388 157.91367 405.96388 -10.28319 591.27911 57.49961 

1.7 405.96388 157.91367 405.96388 -10.28319 563.85291 54.83251 

1.8 405.96388 157.91367 405.96388 -10.28319 542.11352 52.71844 

1.9 405.96388 157.91367 405.96388 -10.28319 524.60175 51.01549 

2 405.96388 157.91367 405.96388 -10.28319 510.29346 49.62407 

Results for the Ritz Stiffness coefficients for Buckling Analysis of Thin Rectangular Plates 

Results for Ritz Stiffness coefficients as computed, are presented here, from Table 10 and Error! Reference source not found.. First of all, the 

summary of primary stiffness coefficients are presented, then followed by stiffness coefficients generated by considering different aspect ratios. 

Table 10: Summary of Ritz Stiffness Coefficients for Plates with different Support Conditions 

INTEGRAL        SSSS              CCCC 

𝑘𝑥𝑥         2.46740              29.60881 

𝑘𝑥𝑥𝑥𝑥         24.35227              1168.90909 

𝑘𝑥𝑥𝑦𝑦         24.35227              389.63636 

𝑘𝑦𝑦𝑦𝑦          24.35227              1168.90909 

Table 11: Ritz Stiffness Coefficients for different Aspect ratios for SSSS Plates 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 24.35227 24.35227 24.35227 2.46740 97.40909 39.47842 

1.1 24.35227 24.35227 24.35227 2.46740 81.23689 32.92407 

1.2 24.35227 24.35227 24.35227 2.46740 69.91883 28.33704 

1.3 24.35227 24.35227 24.35227 2.46740 61.69794 25.00523 

1.4 24.35227 24.35227 24.35227 2.46740 55.54063 22.50977 

1.5 24.35227 24.35227 24.35227 2.46740 50.80906 20.59214 

1.6 24.35227 24.35227 24.35227 2.46740 47.09335 19.08621 

1.7 24.35227 24.35227 24.35227 2.46740 44.12076 17.88147 

1.8 24.35227 24.35227 24.35227 2.46740 41.70433 16.90213 

1.9 24.35227 24.35227 24.35227 2.46740 39.71247 16.09486 

2 24.35227 24.35227 24.35227 2.46740 38.05043 15.42126 

Table 12: Ritz Stiffness Coefficients for different Aspect ratios for CCCC Plates 

b/a kxxxx kxxyy kyyyy kxx kT 𝑁  

1 1168.90909 389.63636 1168.90909 29.60881 3117.09091 105.27578 

1.1 1168.90909 389.63636 1168.90909 29.60881 2611.31678 88.19390 

1.2 1168.90909 389.63636 1168.90909 29.60881 2273.78073 76.79405 

1.3 1168.90909 389.63636 1168.90909 29.60881 2039.28478 68.87425 

1.4 1168.90909 389.63636 1168.90909 29.60881 1870.77385 63.18301 

1.5 1168.90909 389.63636 1168.90909 29.60881 1746.14815 58.97393 

1.6 1168.90909 389.63636 1168.90909 29.60881 1651.67387 55.78318 

1.7 1168.90909 389.63636 1168.90909 29.60881 1578.50755 53.31208 
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1.8 1168.90909 389.63636 1168.90909 29.60881 1520.77549 51.36226 

1.9 1168.90909 389.63636 1168.90909 29.60881 1474.46872 49.79831 

2 1168.90909 389.63636 1168.90909 29.60881 1436.78409 48.52555 

Table 13: Summary of Approximate Critical Buckling Loads from Ritz Method 

Aspect Ratio SSSS CCCC 

1 39.48 105.28 

1.1 32.92 88.19 

1.2 28.34 76.79 

1.3 25.01 68.87 

1.4 22.51 63.18 

1.5 20.59 58.97 

1.6 19.09 55.78 

1.7 17.88 53.31 

1.8 16.90 51.36 

1.9 16.09 49.80 

2 15.42 48.53 

1.9  COMPARISM OF THE PRESENT WITH THAT OF PREVIOUS 

Results from Testing the Exact Critical Buckling Loads and Values from Ritz Method in The Strong Form of The Governing Equation for 

Plates of Selected Boundary Conditions. 

In this section results obtained by substituting the exact and approximate non-dimensional buckling loads into the Strong Form of the equilibrium 

equation are presented in Table 1Error! No text of specified style in document. 

Table 1Error! No text of specified style in document.: Results of resultant force from Exact Critical Buckling Loads from this Study 

Aspect 

Ratio 

SSSS CCCC 

1 0.00 0.00 

1.1 0.00 0.00 

1.2 0.00 0.00 

1.3 0.00 0.00 

1.4 0.00 0.00 

1.5 0.00 0.00 

1.6 0.00 0.00 

1.7 0.00 0.00 

1.8 0.00 0.00 

1.9 0.00 0.00 

2 0.00 0.00 

Table 15: Test Results for Approximate Critical Buckling Loads from Ritz Method 

Aspect 

Ratio 
SSSS CCCC 

1 194.82 6234.18 

1.1 162.47 5222.63 

1.2 139.84 4547.56 

1.3 123.40 4078.57 

1.4 111.08 3741.55 

1.5 101.62 3492.30 

1.6 94.19 3303.35 

1.7 88.24 3157.02 

1.8 83.41 3041.55 
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1.9 79.42 2948.94 

2 76.10 2873.57 

Table 16: Comparison of Critical Buckling Loads for SSSS Plate 

SSSS Plate 

ASPECT RATIO 𝑁  from present study 𝑁  from Ritz Percentage Difference (%) 

1 39.48 39.48 0.00 

1.1 32.92 32.92 0.00 

1.2 28.34 28.34 0.00 

1.3 25.01 25.01 0.00 

1.4 22.51 22.51 0.00 

1.5 20.59 20.59 0.00 

1.6 19.09 19.09 0.00 

1.7 17.88 17.88 0.00 

1.8 16.90 16.90 0.00 

1.9 16.09 16.09 0.00 

2 15.42 15.42 0.00 

Table 17: Comparison of Critical Buckling Loads for CCCC Plate 

CCCC Plate 

ASPECT RATIO Nx from present study Nx from Ritz Percentage Difference (%) 

1.00 
109.67 105.28 4.01 

1.10 
91.83 88.19 3.95 

1.20 
79.85 76.79 3.82 

1.30 
71.47 68.87 3.64 

1.40 
65.42 63.18 3.43 

1.50 
60.93 58.97 3.21 

1.60 
57.50 55.78 2.99 

1.70 
54.83 53.31 2.77 

1.80 
52.72 51.36 2.57 

1.90 
51.02 49.80 2.39 

2.00 
49.62 48.53 2.21 

1.10 CONCLUSIONS 

Based on the results of this research, it can be said that: 

Since only the basic governing equations of the plates are used and there are no predetermined functions, the present method overcomes the deficiency 

of the conventional semi-inverse methods thus serves as a completely rational model in solving plate buckling problems.  

The strong form of equilibrium of forces expression for plate derived in this study is satisfactory in determining the deformed shape of thin rectangular 

plates of various boundary conditions. 
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