
International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023 
 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

Face Mask Detection and Alert System Using Deep Learning 

Riya Phulewar1, Vansh Nagardhankar2, Aniket Hatewar3, Pratik Bobate4 

Professor, Department of Computer Science Engineering, Govindrao Wanjari College of Engineering and Technology, Nagpur, Maharashtra, India 

ABSTRACT 

Pandemic on a global scale COVID-In a worldwide outbreak of hazardous sickness, 19 situations developed. Wearing a face mask can assist to prevent the 

transmission of infection and will protect the individual from any airborne infectious bacteria. Face Mask Detection Systems can detect whether or not people are 

wearing masks. For image detection, the HAAR-CASACADE algorithm is utilized. This classifier, when combined with other current algorithms, achieves a high 

recognition rate even with fluctuating expressions, efficient feature selection, and a low assortment of false positive features. The HAAR feature-based cascade 

classifier system uses just 200 features out of 6000 features to achieve an 85-95% identification rate. We require mask detection as a distinct public health service 

system during the worldwide pandemic COVID-19 outbreak. Face mask and non-face mask images are used to train the model. When the program recognizes the 

mask on the user's face, it will emit a beep alarm sound. 

Keywords - COVID-19 epidemic, HAAR-CASACADE algorithm, mask detection, face mask image, non-face mask image  

INTRODUCTION 

The vaccine that can effectively treat Covid-19 has not yet been developed, and the globe has not yet fully recovered from this epidemic. However, 

numerous governments have permitted a small number of economic activities to be resumed once the number of new cases of Covid19 has decreased 

below a specific level to lessen the pandemic's impact on the nation's economy. Concerns about worker safety in the new post-Covid-19 climate have 

surfaced as these nations carefully resume their economic operations. It is recommended that individuals wear masks and keep a distance of at least one 

meter between each other to limit the risk of infection. Deep learning has received greater attention in the field of object detection and was utilized to 

produce a face mask-detecting device that can determine whether or not someone is wearing a mask. Real-time streaming from the Camera may be 

examined to evaluate the categorization results. We require training data collection for deep learning applications. It is the real dataset that was used to 

train the model to carry out different tasks. 

LITERATURE SURVEY 

A Smart City Network Facial Mask Detection Automated System to Reduce COVID-19 The new coronavirus that triggered the COVID-19 pandemic is 

still spreading around the world today. COVID-19's effects have been felt in practically all development-related fields. There is a problem in the healthcare 

system. Wearing a mask is one of several precautions that have been done to stop the spread of this disease. In this research, we provide a method that 

limits the spread of COVID-19 by identifying individuals in a network of smart cities where all public spaces are watched over by Closed-Circuit 

Television (CCTV) cameras. If a person without a mask is found, the appropriate authority is notified using the city's network. A collection of photos of 

people wearing and not wearing masks that were gathered from multiple sources was used to train a deep learning architecture. For never-before-seen 

test data, the trained architecture distinguished between persons wearing facial masks and those wearing none with 98.7% accuracy. Our research might 

potentially help many nations across the world by limiting the spread of this contagious disease.  

Using a Convolutional Neural Network, Masked Face Recognition [2]: A common and important technology in recent years is facial recognition. It's too 

difficult because of the masks' variety and altered faces. Masking is another typical circumstance in the real world where a person is uncooperative with 

technology, such as in video surveillance. Current facial recognition technology performs worse with these masks. For recognizing faces in various 

situations, such as shifting attitude or illumination, damaged photos, etc., several studies have been conducted. However, challenges brought on by masks 

are typically ignored. The main goal of this research is to improve the recognition accuracy of various masked faces, with a focus on facial masks. A 

workable strategy has been suggested, consisting of first recognizing the face areas. Multi-Task Cascaded Convolutional Neural Network has been used 

to tackle the obstructed face identification challenge. (MTCNN). The Google Face Net embedding model is then used to extract face characteristics. 

http://www.ijrpr.com/


International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4875 

 

 

EXISTING SYSTEM  

With the help of a Multi-Task Cascaded Convolutional Neural Network, the challenge of face identification has been addressed. (MTCNN). The Google 

Face Net embedding model is then used to extract face characteristics. 1. Both datasets of people wearing masks and those who aren't can be used to train 

this system. Following model training, the system can determine if a person is donning a mask or not. 

METHODOLOGY 

PROPOSED SYSTEM  

1.This system is capable to train the dataset of both persons wearing masks and without wearing masks.  

2.After training the model the system can predicting whether the person is wearing the mask or not .  

3.It also can access the webcam and predict the result.  

4.It will produce a beep sound once face without mask detect to produce an alert 

TENSORFLOW FRAMEWORK:  

An open-source software library called TensorFlow exists. Researchers and engineers were the ones who first created tensor flow. To perform machine 

learning and deep neural network research, it is working on the Google Brain Team under Google's Machine Intelligence research group. Deep learning 

workloads as well as other statistical and predictive analytics workloads may be executed on this open-source platform. It is a Python package that 

supports a variety of deep learning and regression methods in general. A free and open-source software library called TensorFlow is used for differentiable 

programming and dataflow across a variety of activities. It is a symbolic math library that is also utilized by neural network applications in machine 

learning. Google uses it for both research and manufacturing. TensorFlow is the second generation of the Google Brain system. On February 11th, version 

1.0.0 was made available. TensorFlow can run on several CPUs and GPUs, unlike the reference implementation, which only utilizes a single device. 

(with optional CUDA and SYCL extensions for general-purpose computing on graphics processing units). On 64-bit Linux, macOS, Windows, and 

mobile operating systems like Android and iOS, TensorFlow is accessible. Because of its adaptable design, computing may be easily deployed across a 

range of platforms (CPUs, GPUs, and TPUs), from desktop computers to server clusters to mobile and edge devices. The operations that these neural 

networks carry out on multidimensional data arrays, known as tensors, are where the name Tensorflow originates. 

OPENCV:  

1. We can create cross-platform, real-time computer vision applications utilizing this framework.  

2. It primarily focuses on image processing, video recording, and analysis, including tools for object and face identification.  

3. Open CV is currently accessible on several platforms, including Windows, Linux, OS X, Android, and iOS, and supports a broad range of programming 

languages, including C++, Python, and Java.  

4. For high-speed GPU tasks, interfaces based on CUDA and OpenCL are also being actively developed. The Python API for Open CV is called Open 

CV-Python.  

5. It combines the greatest features of Python and the Open CV C++ API.  

6. The open-source computer vision and machine learning software library OpenCV is available for free. OpenCV was created to offer a standard 

infrastructure to facilitate the use of machine perception in commercial goods and computer vision applications. OpenCV makes it simple for companies 

to utilize and alter the code because it is a BSD-licensed product.  

7. There are more than 2500 optimized algorithms in the library, including a wide range of both traditional and cutting-edge computer vision and machine 

learning techniques. 8. Algorithms can be used to find related images from an image database, remove red eyes from flash-taken photos, follow eye 

movements, classify human actions in videos, detect and recognize faces, identify objects, track camera movements, track moving objects, extract 3D 

models of objects, produce 3D point clouds from stereo cameras, stitch images together to produce high-resolution images of entire scenes, and identify 

scenery and set up markers to add augmented reality on top of it, etc. 

NUMPY:  

Large, multi-dimensional arrays and matrices are supported by NumPy, a library for the Python programming language, along with a substantial number 

of high-level mathematical operations that may be performed on these arrays. Jim Hugunin originally developed Numeric, the predecessor of NumPy, 

with assistance from a number of other programmers. Travis Oliphant developed NumPy in 2005 by heavily altering Numeric to incorporate the 

capabilities of the rival Num array. Numerous people have contributed to the open-source program NumPy. Although the Python programming language 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4876 

 

 

wasn't initially intended for numerical computing, the scientific and engineering community quickly became interested in it, leading to the establishment 

of the matrix-sig special interest group in 1995 with the goal of developing an array computing framework. Its members included Guido van Rossum, the 

author, and maintainer of Python, who added enhancements to the language's grammar (namely the indexing syntax) to facilitate array computation. Jim 

Fulton finished a matrix package implementation, then Jim Hugunin generalized it to become Numeric, often known as Numerical Python extensions or 

NumPy. Hugunin, a Ph.D. student at MIT, joined the Corporation for National Research Initiatives (CNRI) to work on J Python in 1997, handing the 

maintainer role to Paul Dubois of Lawrence Livermore National Laboratory (LLNL). Travis Oliphant, a developer of NumPy, translated the functionality 

of num-array to Numeric in early 2005 in order to unify the community behind a single array package. NumPy 1.0 was then released in 2006. The new 

endeavor was a component of SciPy. This new package, named NumPy, was created in order to avoid having to install the substantial SciPy package 

merely to obtain an array object. 

MATPLOT:  

For the Python computer language and its NumPy numerical mathematics extension, Mat plot is a charting library. Plots may be embedded into programs 

utilizing general-purpose GUI toolkits such as Tkinter, WX Python, Qt, or GTK+ using this object-oriented API. It is not recommended to utilize the 

procedural "Pylab" interface, which is built on a state machine (like OpenGL) and is intended to closely mimic the MATLAB interface. Matplotlib is 

used by SciPy. John D. Hunter initially created Matplotlib, which is available under a BSD-style license and has a thriving development community. Just 

before John Hunter passed away in August 2012, Thomas Caswell and Michael Droettboom were named matplotlib's primary developers. 

IPYTHON What exactly is Python?  

You might be curious about it. If you want to study editing but are unfamiliar with editing languages, you could be referring to this book. Alternatively, 

you could be familiar with "big word" programming languages like C, C++, C#, or Java and want to learn more about Python and how it differs from 

these. 

PYTHON CONCEPTS  

If you are not interested in the how and why of Python, you can go to the next chapter. I'll try to explain why Python is, in my opinion, one of the greatest 

programming languages out there and why it makes for such an excellent starting point in this chapter. Programming language Python has evolved into 

one that is simple to use. It has less syntax than other languages and utilizes English words rather than punctuation. A very advanced, translated, 

interactive, and object-oriented language is Python. Python translation: Python is being processed by the interpreter at startup. You don't have to install 

your program before utilizing it. Editing languages like PERL and PHP are comparable to this. Python interactive - You may use the Python Prompt to 

interact with the interpreter and create your apps. Python supports the object-oriented programming style or approach, which encapsulates the code in 

objects. Python is a wonderful language for novices because it enables the building of a wide range of programs, from basic text apps to web browsers 

and games. 

1Python Features  

Features of Python include:  

1. Python is simple to learn since it has a limited set of keywords, a clear structure, and well-defined syntax. This enables the pupil to pick up the language 

more quickly.  

Python code is easily readable and can be seen with the unaided eye.  

3. Python source code is simple to keep up-to-date.  

4. Standard General Library – The bulk library in Python is extremely portable and fast-compatible with UNIX, Windows, and Macintosh.  

5. Interaction mode - Python has an interaction mode, which enables interaction testing and caption mistake correction.  

6. Portable - Python has the same user interface on all computer platforms and operates on a wide range of them.  

7. Extensible - The Python interpreter may be expanded using low-level modules. Installing or customizing these modules enables system developers to 

increase the functionality of their tools. 

 8. Details - Python approaches to meeting provides all significant commercial facts. 9. GUI Programming - Python supports the development and setup 

of a user interface for pictures of various program phones, libraries, and programs, including Windows MFC, Macintosh, and Unix's X Window.  

10. Scalable - Python development and support are beneficial for large applications, whereas Shell programming is not. In addition to the qualities 

mentioned above, Python has a wealth of helpful features, some of which are detailed below. – 

It supports functional and structured programming techniques in addition to OOP.  



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4877 

 

 

It supports automatic garbage collection, and dynamic type verification, and provides very high-level dynamic data types. It may be used as a scripting 

language or converted into Byte-code for large-scale application development. 

ADVANTAGES/BENEFITS OF PYTHON:  

programming are:  

1. The existence of third-party modules: The Python Package Index (PyPI) is home to a large number of third-party modules that enable Python to 

communicate with the majority of other systems and languages. 9  

2. Comprehensive Support Libraries: Python comes with a sizable standard library that covers topics including operating system interfaces, string 

operations, web services tools, and internet protocols. The standard library has already scripted many high-use programming operations, which 

considerably minimizes the amount of code that has to be created.  

3. Open Source and Community Development: The Python language is created under an open-source license that has received OSI approval, making it 

available for free use and distribution—including for commercial endeavors. Additionally, the community works on its code by organizing conferences 

and mailing groups and providing for its many modules, which in turn drives its development.  

4. Python's outstanding readability and uncomplicated, simple-to-learn syntax make it easy for newcomers to learn how to use this programming language. 

PEP 8's code style standards offer a set of recommendations to help with code formatting. The large user base and active developer community have also 

produced a wealth of online resources to support further development and language adoption.  

5. User-friendly Data Structures: List and dictionary data structures that are built into Python may be utilized to create quick runtime data structures. 

Additionally, Python offers the choice of dynamic high-level data type, which minimizes the amount of support code required.  

6. Productivity and Speed: Python's excellent integration and text processing capabilities, together with its own unit testing framework, as well as its 

clean object-oriented architecture, all help to raise its speed and productivity. Python is regarded as a practical choice for creating intricate multi-protocol 

network systems. 10 Python has several benefits for software development, as can be observed from the aforementioned statements. Its support base 

might expand as the language continues to be improved as well. 

Python has five standard data types –  

●Numbers  

●String  

●List  

●Tuple  

●Dictionary 

Python Numbers  

Numeric values are stored in number data types. When you give a number a value, it becomes a number object.  

Python Strings  

A string is defined in this Python use as a collection of characters that are encased in quotation marks. Python lets you use as many quotations as you like 

in pairs. To extract subsets of strings, use the slice operator ([] and [:]), where the indices start at 0 at the beginning of the text and go all the way to -1 at 

the conclusion. 

Python Lists  

Lists are the most varied kind of Python data. The list's items are enclosed in square brackets and separated by commas. ([]). In some aspects, lists and 

C-order are comparable. One distinction between them is that listings can contain a variety of data kinds. To obtain values from a list, use the slide 

operator ([] and [:]). The indicators start at 0 at the beginning of the list and go to the end of the list. A plus sign (+) serves as the list's concatenation 

operator, while an asterisk (*) serves as the repeater. 

Python Tuples  

A data type called a cone resembles a list of elements in a series. Comma-separated values are grouped as a cone. In contrast to the list, the pods are 

included in brackets. The items and sizes of lists are changeable and are included in brackets ([]), but lumps are enclosed in brackets (()) and cannot be 

sorted. Powders are just like reading lists. 

Python Dictionary  

Python dictionaries function like a hash table in some ways. They consist of two key numbers and resemble Perl's combination schemes or hashes. Any 

Python type can be used as the dictionary key, however, strings and integers are by far the most popular. Python, on the other hand, lets you set its own 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4878 

 

 

prices. Dictionary entries are enclosed in curly braces (), while values are assigned and accessed using square brackets ([). The many modes in Python 

The two most fundamental Python modes are normal and interactive. The scripted and completed.py files are run in the standard way by the Python 

interpreter. A command line shell in interactive mode runs previously given statements in active memory while also responding instantly to each 

statement. As new lines are fed into the interpreter, the feed program is evaluated in part and in its entirety. 

PANDAS  

Built on top of the NumPy library is the open-source Pandas library. It is a Python module that provides a number of data structures and actions for 

working with time series and numerical data. It is mostly used for how much simpler it makes importing and analyze data. Pandas is quick and offers 

users exceptional performance & productivity. Working with "relational" or "labeled" data is made simple and straightforward with the help of the Python 

module Pandas, which offers quick, adaptable, and expressive data structures. It seeks to serve as the essential, high-level building block for using Python 

for actual, practical data analysis. Its overarching objective is to develop into the most potent and adaptable open-source data analysis/manipulation tool 

attainable in any language. It is already making great progress in this direction. Use Python to learn about data analysis. Pandas Data Frames make it 

simple to manipulate your data, including choosing or changing columns and indexes as well as reshaping it. Pandas are appropriate for a wide range of 

data types, including 12 Tabular data having columns of many types, such as those found in a SQL database or an Excel spreadsheet Time series data 

that are organized and unordered (though not always with a set frequency). arbitrary matrix data with row and column labels, whether it is homogeneously 

or heterogeneously coded by any other kind of statistical or observational data sets. To be put into a Pandas data structure, the data doesn't need to be 

labeled in any way. 

KERAS is an API made with people in mind, not machines. Best practices for lowering cognitive load are followed by Keras, which provides consistent 

& simple APIs, reduces the number of user activities necessary for typical use cases, and gives clear & actionable error signals. Additionally, it contains 

a wealth of development instructions and documentation. As well as a variety of tools to make dealing with picture and text data easier, Keras includes 

multiple implementations of widely used neural network building blocks including layers, objectives, activation functions, and optimizers. This helps to 

reduce the coding required to create deep neural networks. The GitHub problems page and a Slack channel serve as community support forums, and the 

source is available on GitHub. Keras is a lightweight Python deep-learning package that may be used with Theano or TensorFlow. It was created to make 

deep learning model implementation as quick and simple as feasible for research and development. 

FOUR PRINCIPLES:  

• Modularity: A model may be thought of as a sequence or a graph on its own. A deep learning model's concerns are all separate components that may be 

merged in any way. • Minimalism: The library delivers only what is necessary to achieve a goal, with minimal frills and a focus on readability.  

• Extensibility: New components are designed to be simple to install and use inside the framework, allowing researchers to test and explore new ideas.  

• Python: There are no different model files with unique file formats. Everything is written in Python. Keras is built with minimalism and modularity in 

mind, allowing you to easily construct deep learning models and execute them on top of a Theano or TensorFlow backend. 

Machine Learning approaches:  

1. Object identification framework based on HAAR features developed by Viola-Jones  

2. Feature transform with scale invariance (SIFT)  

3. Features of the histogram of oriented gradients (HOG) Machine learning (ML) is the study of computer algorithms that improve themselves 

automatically over time. It is thought to be a subset of artificial intelligence. Machine learning algorithms construct a mathematical model using sample 

data, referred to as "training data," in order to make predictions or judgments without being expressly programmed to do so. Machine learning algorithms 

are utilized in a broad range of applications, including email filtering and computer vision, when developing traditional algorithms to do the required 

tasks would be difficult or impossible. Machine learning is closely connected to computational statistics, which focuses on utilizing computers to make 

predictions. Mathematical optimization research provides methodology, theory, and application fields to the subject of machine learning. A similar topic 

of research is data mining, which focuses on exploratory data analysis via unsupervised learning. Machine learning is sometimes known as predictive 

analytics when used for commercial concerns. 

Approaches for Machine Learning:  

Viola-Jones Object detection framework based in HAAR features:  

The Viola-Jones method is one of the most widely used for object recognition in images. This study looks at the potential for parametric optimization of 

the Viola-Jones algorithm in order to attain maximum efficiency under various environmental situations. It is demonstrated that by using further changes, 

it is feasible to raise the speed of the algorithm in a specific image by 2-5 times while sacrificing just 3-5% of the correctness and completeness of the 

task. 

Scale-invariant feature transform (SIFT):  



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4879 

 

 

The scale-invariant feature transform (SIFT) is a computer vision feature identification technique used to find and characterize local features in pictures. 

Object SIFT key points are first retrieved from a collection of reference pictures and saved in a database. An item in a new picture is recognized by 

comparing each feature in the new image to this database and discovering possible matching features based on the Euclidean distance of their feature 

vectors. Subsets of important points that agree on the item and its location, size, and orientation in the new picture are identified from the whole set of 

matches to filter out excellent matches. Using an efficient hash table implementation of the generalized Hough transform, consistent clusters are 

determined quickly. Each cluster of three or more features that agree on an object and its 14 poses is then subjected to additional detailed model 

verification, and outliers are discarded. Finally, the probability that a specific set of features indicates the presence of an object is computed, given the 

accuracy of fit and the number of probable false matches. Object matches that pass all of these checks are very likely to be accurate. 

Histogram of oriented gradients (HOG):  

The histogram of oriented gradients (HOG) is a feature descriptor that is used in computer vision and image processing to recognize objects. The approach 

counts the number of times a gradient orientation appears in a localized section of a picture. This approach is comparable to edge orientation histograms, 

scale-invariant feature transform descriptors, and shape contexts, but it is generated on a smaller scale. This suggested system includes an algorithm. 

Cascade Classifiers Based on HAAR Features 3.11 Cascade Classifiers Based on HAAR Features It is an Object Detection Algorithm that is used to 

recognize faces in images or real-time video. For enhanced precision, a dense grid of equally spaced cells is used, as well as overlapping local contrast 

normalization. It is an efficient method of detecting objects. A large number of positive and negative pictures are utilized to train the classifier in this 

technique. In this experiment, a pre-trained model using frontal traits is constructed and utilized to recognize faces in real time. HAAR Cascade is a 

machine learning-based strategy that uses a large number of positive and negative pictures to train the classifier. Positive photos: These are the photos 

that we want our classifier to recognize. Negative Images: Images of everything else that does not include the object we are looking for. WHY IS IT 

PREFERRED TO USE HAAR FEATURE-BASED CASCADE CLASSIFIERS? A HAAR-like feature has a significant edge over most other features 

in terms of computation speed. In constant time, a HAAR-like feature of any size may be computed. (approximately 60 microprocessor instructions).  

DEEP LEARNING  

1. Deep learning is an AI function that replicates the workings of the human brain in processing data for use in object detection, speech recognition, 

language translation, and decision-making.  

2. Deep learning AI can learn without human supervision, using both unstructured and unlabeled data.  

3. In this case, face mask identification is accomplished through the use of a Deep Learning technology known as Convolution Neural Networks. (CNN). 

Deep learning techniques try to learn feature hierarchies composed of lower-level features with features from higher levels of the hierarchy. Automatically 

learning features at several layers of abstraction enables a system to learn complicated functions mapping input to output directly from data, rather than 

relying only on human-crafted features. Deep learning methods strive to leverage the unknown structure in the input distribution to identify suitable 

representations, frequently at many levels, with higher-level learned features described in terms of lower-level features. 

NEURAL NETWORKS VERSUS CONVENTIONAL COMPUTERS:  

Neural networks learn by doing. They cannot be planned to be squandered, and the network may even be malfunctioning. The downside is that because 

the network solves the problem on its own, its behavior is unpredictable. Conventional computers, on the other hand, employ a cognitive approach to 

problem-solving; the method the problem is addressed must be known and specified in concise clear commands. These instructions are then translated 

into a high-level language program, which is ultimately translated into machine code that the computer understands. These machines are completely 

predictable; everything that goes wrong is the result of a software or hardware flaw. Neural networks and traditional algorithmic computers do not 

compete, but rather complement one another. There are some activities that are better suited to an algorithmic approach, such as arithmetic operations, 

and others that are better suited to neural networks. Furthermore, in order to execute at optimum efficiency, a huge number of jobs necessitate systems 

that employ a mix of the two methodologies (often, a conventional computer is used to oversee the neural network). 

ARCHITECTURE OF NEURAL NETWORKS: 

FEED-FORWARD NETWORKS:  

Feed-forward ANNs enable signals to move in just one direction: from input to output. There is no feedback (loops), hence the output of one layer does 

not impact the output of another. Feed-forward ANNs are typically simple networks that connect inputs to outputs. They are often employed in pattern 

recognition. This organization is also known as bottom-up or top-down. to be simple networks that connect inputs and outputs. They are often employed 

in pattern recognition. This organization is also known as bottom-up or top-down.  

FEEDBACK NETWORKS:  

Feedback networks can have signals traveling in both directions by introducing loops in the network. Feedback networks are very powerful and can get 

extremely complicated. Feedback networks are dynamic; is changing continuously until they reach an equilibrium point. They remain at the equilibrium 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4880 

 

 

point until the input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as interactive or recurrent, although the 

latter term is often used to denote feedback connections in a single-layer organization. 

 

 

 

 

 

 

 

 

NETWORK LAYERS:  

The most popular sort of artificial neural network is composed of three groups, or layers, of units: an input layer is connected to a hidden layer, which is 

connected to an output layer. The raw information that is supplied into the network is represented by the activity of the input units. The activities of the 

input units and the weights on the links between the input and the hidden units determine the activity of each hidden unit. The activity of the hidden units, 

as well as the weights between the hidden and output units, influence the behavior of the output units. The hidden units in this basic network are allowed 

to generate their own representations of the input, which makes it intriguing. Because the weights between the input and hidden units govern when each 

hidden unit is active, a hidden unit may pick what it represents by adjusting these weights. Separate single-layer and multi-layer systems as well. The 

most general instance is the single-layer organization, in which all units are linked to one another, and it has higher potential computational capacity than 

hierarchically organized multi-layer organizations. Units in multi-layer networks are frequently numbered per layer rather than globally. 

Convolution Neural Network  

A convolution neural network is a type of artificial neural network design introduced by Yann Lecun in 1988. Image categorization is one of the 

architecture's most prominent applications. CNNs have a wide range of applications, including image and video identification, recommender systems, 

and natural language processing. The example that will be used in this article is connected to computer vision. The essential notion, however, stays the 

same and may be extended to any other use case! CNNs, like neural networks, are made up of neurons that may be trained to learn weights and biases. 

Each neuron gets numerous inputs, computes a weighted total, passes it through an activation function, and produces an output. The entire network has a 

loss function, and all of the neural network tips and tricks still apply to CNNs. More specifically, the picture is processed through a sequence of 

convolution, nonlinear, pooling, and fully linked layers before being output. 19 A convolutional neural network (CNN, or ConvNet) is a type of deep, 

feed-forward artificial neural network that is often used to analyze visual images in deep learning. Convolutional networks were motivated by biological 

processes because the pattern of connection between neurons matches the organization of the visual cortex. When compared to other image classification 

methods, CNNs require very minimal pre-processing. CNN is a subset of multi-layer NNs that is applied to 2-dimensional arrays (often pictures) and is 

based on spatially localized neural network input. CNN Make 'patterns of patterns' to aid with pattern identification. Patches from previous levels are 

combined in each layer. Convolutional Networks are multistage designs that can be trained. Each stage's input and output are sets of arrays known as 

feature maps. Each feature map at output reflects a specific feature retrieved at all points on input. Each stage is made up of the following layers: a filter 

bank layer, a non-linearity layer, and a feature pooling layer. A ConvNet is made up of one, two, or three of these three-layer stages, each followed by a 

classification module. 

 

 

 

 

 

 

 

CONVOLUTIONAL LAYER  

It always comes first. It is fed the picture (a matrix with pixel values). Imagine that the input matrix's reaction starts at the top left of the picture. The 

program then chooses the smaller matrix there as a filter. The filter then generates convolution that advances along the input picture. The objective of the 

filter is to multiply its value by the original pixel values. All of these multiplications are added together to provide a single number. Because the filter 

only read the picture in the upper left corner, it travels one unit right and does a similar action. A matrix is created after passing the filter over all locations, 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4881 

 

 

however, it is smaller than the input matrix. From a human standpoint, this procedure is akin to distinguishing visual borders and basic colors. However, 

to recognize the fish, the entire network must be used. The network will have numerous convolution layers as well as nonlinear and pooling layers. The 

first layer to extract features from an input picture is convolution. Convolution features are created by combining tiny squares of input data. It is a 

mathematical process with two inputs: an image matrix and a filter or kernel.  

● An image matrix of dimension (h x w x d)  

● A filter (fh x fw x d)  

● Outputs a volume dimension (h-fh+1) x (w-fw+1) x1. Consider a 5 x 5 whose image pixel values are 0, 1 and filter matrix 3 x 3 as shown in below  

 

 

 

 

 

 

 

 

 

 

 

 

DESIGN AND IMPLEMENTATION 

UML Diagrams: It is always first. It is fed the image (a matrix with pixel values). Assume that the reaction of the input matrix begins at the top left of 

the image. The smaller matrix is subsequently selected as a filter by the program. The filter then produces convolution that moves along the input image. 

The filter's goal is to multiply its value by the original pixel values. These multiplications are combined together to get a single number. Because the filter 

only reads the upper left corner of the image, it moves one unit right and performs a similar function. After running the filter over all places, a matrix is 

formed, but it is less than the input matrix. This method is analogous to recognizing visual boundaries and primary colors in humans. To recognize the 

fish, however, the full network must be used. There will be several convolution layers, as well as nonlinear and pooling layers, in the network. Convolution 

is the initial layer used to extract features from an input image. Convolution features are formed by fusing together small squares of input data. It is a 

mathematical procedure that requires two inputs: an image matrix and a filter or kernel. 

Use Case Diagram  

In the Unified Modeling Language (UML), a use case diagram can summarise the specifics of your system's users (also known as actors) and their 

interactions with the system. To construct one, you'll need a collection of specialized symbols and connections. A successful use case diagram may help 

your team discuss and represent: Scenarios in which your system or application interacts with individuals, organizations, or external systems; and Goals 

that your system or application assists those entities (known as actors) in achieving.  

The system's scope 

 

 

 

 

 

 

 

Sequence Diagram  



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4882 

 

 

Because it illustrates how and in what order a set of items interacts, a sequence diagram is a sort of interaction diagram. Software engineers and business 

experts use these diagrams to understand the requirements for a new system or to describe an existing process. Event diagrams and event scenarios are 

other names for sequence diagrams. Businesses and other organizations can benefit from sequence diagrams. Create a sequence diagram to:  

● Represent the details of a UML use case.  

● Model the logic of a sophisticated procedure, function, or operation.  

● See how objects and components interact with each other to complete a process.  

● Plan and understand the detailed functionality of an existing or future scenario. 

 

 

 

 

 

 

Activity Diagram  

An activity diagram is a behavioral diagram, which displays a system's behavior. An activity diagram depicts the control flow from a starting point to a 

finishing point, highlighting the many decision routes that exist while the activity is being performed. 

 

 

 

 

 

 

 

 

 

 

 

BLOCK DIAGRAM  

A block diagram is a graphical depiction of a system that shows how the system works. Block diagrams assist us to comprehend the functioning of a 

system and aid in the creation of links within it. They are used to depict processes as well as to explain hardware and software systems. 

 

 

 

 

 

 

 

CLASS DIAGRAM  

A static diagram is a class diagram. It depicts an application's static view. Class diagrams are the only diagrams that can be directly transferred to object-

oriented languages and are thus commonly utilized throughout creation. 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4883 

 

 

 

 

 

 

 

 

 

 

 

 

DATA FLOW DIAGRAM  

A Data Flow Diagram (DFD) is a classic visual depiction of a system's information flows. A tidy and clear DFD may graphically display the appropriate 

quantity of system needs. It can be manual, automatic, or a hybrid of the two. It demonstrates how data enters and exits the system, what alters the data, 

and where it is kept. A graphical tool used to define and analyze minute data with an active or automated system, such as processes, data storage, and 

system delays. The flow of Data Data is a critical and fundamental instrument for the construction of all other items. DFD is also known as a bubble-

bubble graph or a data flow graph. DFDs are a representation of the proposed system. They should clearly and directly state the requirements upon which 

the new system should be constructed. During the design phase, this is utilized as a foundation for creating chart structure plans over time. The Basic 

Notation for Creating DFDs is as follows. 

 

 

 

 

 

 

FLOWCHART DIAGRAM 

 

 

 

 

 

 

 

 

EXPERIMENT ANALYSIS 

MODULES  

1. Using the experiments folder split, create image datasets and data loaders for train and testing. 

● A training dataset is a set of data that we input into our algorithm to train our model. 

● Testing Dataset: A dataset that we use to assess our model's correctness but not to train the model. It might be referred to as the validation dataset. 

2.Training the model  



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4884 

 

 

3. Visualizing images  

CODE IMPLEMENTATION 

# import the necessary packages 

from tensorflow.keras.applications.mobilenet_v2 import preprocess_input 

from tensorflow.keras.preprocessing.image import img_to_array 

from tensorflow.keras.models import load_model 

from imutils.video import VideoStream 

import numpy as np 

import argparse 

import imutils 

import time 

import cv2 

import os 

# ### Upload Alarm Sound 

# In[2]: 

from pygame import mixer 

mixer.init() 

sound = mixer.Sound('mixkit-security-facility-breach-alarm-994.wav') 

# ### Image Pre-Processing 

# In[5]: 

def mask_detection_prediction(frame, faceNet, maskNet): 

    # find the dimension of frame and construct a blob 

    (h, w) = frame.shape[:2] 

    blob = cv2.dnn.blobFromImage(frame, 1.0, (224, 224),(104.0, 177.0, 123.0)) 

    # pass the blob through the network and obtain the face detections 

    faceNet.setInput(blob) 

    detections = faceNet.forward() 

    # create a empty list which'll store list of faces,face location and prediction 

    faces = [] 

    locs = [] 

    preds = [] 

    # loop over the detections 

    for i in range(0, detections.shape[2]): 

         

# find the confidence or probability associated with the detection 

confidence = detections[0, 0, i, 2] 

        # filter the strong detection [confidence > min confidence(let 0.5)] 

        if confidence > 0.5: 

 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4885 

 

 

            # find starting and ending coordinates of boundry box 

            box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) 

            (startX, startY, endX, endY) = box.astype("int") 

            # make sure bounding boxes fall within the dimensions of the frame 

            (startX, startY) = (max(0, startX), max(0, startY)) 

            (endX, endY) = (min(w - 1, endX), min(h - 1, endY)) 

            # extract the face ROI, convert it from BGR to RGB channel 

            # ordering, resize it to 224x224, and preprocess it 

            face = frame[startY:endY, startX:endX] 

            face = cv2.cvtColor(face, cv2.COLOR_BGR2RGB) 

            face = cv2.resize(face, (224, 224)) 

            face = img_to_array(face) 

            face = preprocess_input(face) 

            # append the face and bounding boxes to their respective lists 

            faces.append(face) 

            locs.append((startX, startY, endX, endY)) 

    # only make a predictions if at least one face was detected 

    if len(faces) > 0: 

        # for faster inference we'll make batch predictions on *all* 

        # faces at the same time rather than one-by-one predictions 

        # in the above `for` loop 

        faces = np.array(faces, dtype="float32") 

        preds = maskNet.predict(faces, batch_size=32) 

    # return a 2-tuple of the face locations and their corresponding prediction 

    return (locs, preds) 

# ### Load Caffe Model 

# Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework that allows users to create image classification and image 

segmentation models. It is a Caffe model which is based on the Single Shot-Multibox Detector (SSD) and uses ResNet-10 architecture as its backbone. 

It was introduced post OpenCV 3.3 in its deep neural network module. 

# In[6]: 

# load our serialized face detector model from disk 

from os.path import dirname, join 

prototxtPath = join("face_detector", "deploy.prototxt") 

weightsPath = join("face_detector", "res10_300x300_ssd_iter_140000.caffemodel") 

faceNet = cv2.dnn.readNet(prototxtPath, weightsPath) 

# load the face mask detector model from disk 

maskNet = load_model("fmd_model.h5") 

# ### Face Detection on Live Camera 

 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4886 

 

 

# In[10]: 

# initialize the video stream 

print("[INFO] starting video stream...") 

vs = VideoStream(src=0).start() 

# loop over the frames from the video stream 

while True: 

    # grab the frame from the threaded video stream and resize it 

    # to have a maximum width of 400 pixels 

    frame = vs.read() 

    frame = imutils.resize(frame, width=400) 

    # detect faces in the frame and determine if they are wearing a 

    # face mask or not 

    (locs, preds) = mask_detection_prediction(frame, faceNet, maskNet) 

    # loop over the detected face locations and their corresponding 

    # locations 

    for (box, pred) in zip(locs, preds): 

        # unpack the bounding box and predictions 

        (startX, startY, endX, endY) = box 

        (mask, withoutMask) = pred 

        if mask>withoutMask: 

            label = "Mask" 

            color = (0, 255, 0) 

            print("Normal") 

        else: 

            label = "No Mask" 

            color = (0, 0, 255) 

            sound.play() 

            print("Alert!!!") 

        # include the probability in the label 

        label = "{}: {:.2f}%".format(label, max(mask, withoutMask) * 100) 

        # display the label and bounding box rectangle on the output frame 

        cv2.putText(frame, label, (startX, startY - 10),cv2.FONT_HERSHEY_SIMPLEX, 0.45, color, 2) 

        cv2.rectangle(frame, (startX, startY), (endX, endY), color, 2) 

    # show the output frame 

    cv2.imshow("Frame", frame) 

    key = cv2.waitKey(1) & 0xFF 

    # if the `q` key was pressed, break from the loop 

    if key == ord("q"): 

        break 



International Journal of Research Publication and Reviews, Vol 4, no 4, pp 4874-4887 April 2023                                     4887 

 

 

 

# do a bit of cleanup 

cv2.destroyAllWindows() 

vs.stop() 

CONCLUSION 

As technology advances and new trends emerge, we now have a revolutionary face mask detector that may contribute to public healthcare. The architecture 

is built around Mobile Net, which may be utilized for both high and low computation scenarios. To extract more robust features, we use transfer learning 

to adopt weights from a comparable task face recognition that has been trained on a very large dataset. To determine whether or not people were wearing 

face masks, we employed OpenCV, Tensor Flow, and NN. Images and real-time video feeds were used to evaluate the models. The model's precision has 

been attained, and model optimization is a continual process in which we are constructing a very accurate solution by modifying the hyperparameters. 

This model might be used as an example of edge analytics. Furthermore, the suggested technique produces cutting-edge results on a publicly available 

face mask dataset. The invention of face mask detection, which can identify whether a person is wearing a face mask and allow them admission, would 

be extremely beneficial to society. 

REFERENCES 

1. M. S. Ejaz and M. R. Islam, "Masked Face     Recognition Using Convolutional Neural Network," 2019 International Conference on Sustainable 

Technologies for Industry 4.0 (STI), 2019, pp. 1-6, doi: 10.1109/STI47673.2019.9068044. 

2. M. R. Bhuiyan, S. A. Khushbu and M. S. Islam, "A Deep Learning Based Assistive System to Classify COVID-19 Face Mask for Human Safety 

with YOLOv3," 2020 11th International Conference on Computing, Communication and Networking Technologies (ICCCNT)  

3. M. M. Rahman, M. M. H. Manik, M. M. Islam, S. Mahmud and J. -H. Kim, "An Automated System to Limit COVID-19 Using Facial Mask 

Detection in Smart City Network," 2020 IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS), 2020 

4. Y. Sun, Y. Chen, X. Wang, and X. Tang, “Deep learning face representation by joint identification-verification,” in Advances in neural 

information processing systems, 2014, pp. 198hy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large Scale Visual 

Recognition Challenge,” 2014. 

5. F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic model for human face identification,” in Applications of Computer Vision, 

1994., Proceedings of the Second IEEE Workshop on, pp. 138–142, IEEE, 1994.  

6. D. Yi, Z. Lei, S. Liao, and S. Z. Li, “Learning face representation from scratch,” CoRR abs/1411.7923, 2014. 

7. X. Cao, D. Wipf, F. Wen, G. Duan, and J. Sun, “A practical transfer learning algorithm for face verification,” in Computer Vision (ICCV), 2013 

IEEE International Conference on, pp. 3208–3215, IE8–1996. [2] W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: A 

literature survey,” ACM computing surveys (CSUR), vol. 35, no. 4, pp. 399–458, 2003. [3] O. Russakovsky, J. Deng, H. Su, J. Krause, S. 

Satheesh, S. Ma, Z. Huang, A. KarpatEE, 2013.  

8. P. N. Belhumeur, J. P. Hespanha, and D. Kriegman, “Eigenfaces vs. fisherfaces: Recognition using class specific linear projection,” Pattern 

Analysis and Machine Intelligence, IEEE Transactions on 19(7), pp. 711– 720, 1997.  

9. ] X. Cao, D. Wipf, F. Wen, G. Duan, and J. Sun, “A practical transfer learning algorithm for face verification,” in Computer Vision (ICCV), 

2013 IEEE International Conference on, pp. 3208–3215, IEEE, 2013.  

10. Y. Sun, X. Wang, and X. Tang. Deep learning face representation by joint identification-verification. CoRR, abs/1406.4773, 2014. 1, 2, 3  

11. D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-propagating errors. Nature, 1986. 2, 4 

 

 

 


