

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Comparative Analysis on the Rate of Sexually Transmitted Diseases in Ekiti State

Faweya Olanrewaju^a, Akinyemi Oluwadare^a, Ayeni Taiwo Michael^a, Tanimowo Mary Olayinka^a

^aDepartment of Statistics, Ekiti State University, Ado-Ekiti, Ekiti State, Nigeria DOI: <u>https://doi.org/10.55248/gengpi.2023.4.4.34559</u>

ABSTRACT

This work focused on the rate of sexually transmitted diseases in Ekiti State using Ekiti State University Teaching Hospital Ado - Ekiti, Ekiti State as a case study. The methodology employed in the analysis of the data collection was chi- square test and descriptive statistics. Important issues raised are that the age range 20-29 has the highest reported cases and based on gender the females have the higher rate of STDs than male as reported in the data collected. live has the highest frequency of 1463 and death with 135 of the reported cases. The year with the highest reported cases is 2018 under study. There is no significant difference between life status and year, life status and type of diseases, life status and gender, Life status and age since their p-values are less than 0.05 and accept null hypothesis, while there's a significant difference between age group and gender since the p-value is greater than 0.05 and reject the null hypothesis.

Keywords: Sexually Transmitted Diseases, Descriptive statistics, Chi-square

1. Introduction

Here Sexually transmitted diseases, known as STDs or venereal diseases, are of global concern. STD is a severe disease that is caused by pathogens. The pathogens, bacteria, viruses or parasites enter the body through many means, such as person-to-person in blood, semen, or vaginal and other bodily fluids. It is a global menace with an alarming rate of incidence (World Health Organization, 2013). Sexually transmitted diseases are also known as sexually transmitted infections (STIs). Sexually transmitted disease first begins as a sexually transmitted infection, an infection which occurs with the sexually transmitted bacteria or virus that enters the body and begins to multiply. Once the sexually transmitted bacteria or viruses have entered the body, the infection may become a disease. The disease occurs when this foreign presence officially disrupts the body's normal functions and processes. Sexually transmitted diseases can be categorized into three groups: Bacterial STDs such as chlamydia, gonorrhoea, and syphilis. Viral STDs such as human immunodeficiency virus (HIV), genital herpes, genital wart (HPV) and hepatitis B. Parasitic STDs such as trichomoniasis. STI diagnostic tests are usually readily available in the developed world but are often unavailable in the developing world (STI fact sheet, 2014). Sexually transmitted diseases (STDs) are severe illnesses requiring treatment; some STDs, such as HIV, cannot be cured or are deadly.

The 2013 Nigeria Demographic and Health Survey (NDHS, 2013) report indicated that 4 percent of women and 2 percent of men in Nigeria experienced a sexually transmitted infection, abnormal genital discharge or soreness before the survey. Sexually transmitted diseases are common among young people. The following is a brief kind of literature review on the studies on sexually transmitted diseases by different scholars such as [1], [2], [3], [4], [5], [6], and [7], Therefore this study seeks to investigate the rate of sexually transmitted diseases in Ekiti State.

2. Methodology

The methods used to analyze this research work are Descriptive statistics, Chi-square, logistics regression and The Friedman test. The data used for this research work was obtained from Ekiti State University Teaching Hospital, Ado Ekiti, Ekiti State, on the rate of sexually transmitted diseases for ten years (2012–2021).

CHI SQUARE TESTS

Pearson's chi-square χ^2 tests, often referred to simply as chi-square tests, are among the most common **nonparametric tests**. A Pearson's **chi-square test** is a statistical test for categorical data. It is used to determine whether your data are significantly different from what you expected. There are two types of Pearson's chi-square tests:

- The chi-square goodness of fit test
- The chi-square test of independence

THE CHI SQUARE TEST OF INDEPENDENCE: is used to test whether two categorical variables are related to each other. If two variables are independent (unrelated), the probability of belonging to a certain group of one variable isn't affected by the other variable.

Chi-square is often written as χ^2 . Both of Pearson's chi-square tests use the same formula to calculate the test statistic, chi-square χ^2 .

$$\chi^2 = \sum \left(\frac{(O_i - E_i)^2}{E_i} \right) \tag{1}$$

here

 χ^2 = chi squared O_i = observed value E_i = expected value LOGISTIC REGRESSION

Logistic regression is used to obtain odds ratio in the presence of more than one explanatory variable. The procedure is quite similar to multiple linear regressions, with the exception that the response variable is binomial. The result is the impact of each variable on the odds ratio of the observed event of interest. The main advantage is to avoid confounding effects by analyzing the association of all variables together. Logistic regression works very similar to linear regression, but with a binomial response variable.

Logistic regression sometimes called the logistic model or longitudes, analyzes the relationship between multiple independent variables and a categorical dependent variable, and estimates the probability of occurrence of an event by fitting data to a logistic curve. There are two models of logistic regression, binary logistic regression and multinomial logistic regression. The logistic model is popular because the logistic function, on which the logistic model is based, provides estimates in the range 0 to 1.

The following equation represents logistic regression: $y = \frac{1}{1 + e^{(b_0 + b_1 X)}}$

Where,

- x = input value
- 1) y = predicted output
- i. $b_o =$ bias or intercept term
- **O** b_1 = coefficient for input (x)

THE FRIEDMAN TEST

The Friedman test is a non – parametric alternative to the one-way ANOVA with repeated measures. It is used to test for differences between groups when the dependent variable being measured is ordinal. It can also be used for continuous data that has violated the assumptions necessary to run the one-way ANOVA with repeated measures (e.g., data that has marked deviation from normality). The null hypothesis for the test is that the treatments all have identical effects while the alternative hypothesis for the test is that the treatments do have different effects. The test statistic is given by:

$$F = \frac{12n}{k(k+1)} \sum_{j=1}^{k} \left(\bar{r}_{j} - \frac{k+1}{k} \right)^{2}$$
(2)
Where $\bar{r}_{j} = \frac{1}{n} \sum_{i=1}^{n} r_{ij}$

3. Data Analysis and Interpretation of Results

YEAR	Frequency	Percent
2012	95	5.9
2013	156	9.8
2014	133	8.3
2015	96	6.0
2016	183	11.5
2017	199	12.5
2018	231	14.5
2019	210	13.1
2020	127	7.9
2021	168	10.5
Total	1598	100.0

INTERPRETATION: Table 4.1 above reveal that 2018 has the highest frequency of sexually transmitted diseases with 231 followed by 2019 with 210, 2017 with 199, 2016 with 183, 2021 with 168, 2013 with 156, 2014 with 133, 2020 with 127, 2015 with 96 and 2012 has the Lowest frequency of sexually transmitted diseases with 95 reported cases.

MONTH	Frequency	Percent
January	114	7.1
February	121	7.6
March	141	8.8
April	129	8.1
May	120	7.5
June	125	7.8
July	153	9.6
August	147	9.2
September	132	8.3
October	160	10.0
November	149	9.3
December	107	6.7
Total	1598	100.0

TABLE 4.2 MONTHLY REPORTED CASES OF SEXUALLY TRANSMITTED DISEASES

INTERPRETATION: Table 4.2 above shows that October has the highest frequency of 160 followed by July 153, November 149, August 147, March 141, September 132, April 129, June 125, February 121, May 120, January 114 and December has the Lowest frequency of 107.

 TABLE 4.3
 REPORTED CASES OF SEXUALLY TRANSMITTED DISEASES BASED ON LIFE STATUS

LIFE STATUS	Frequency	Percent
Live	1463	91.6
Death	135	8.4
Total	1598	100.0

INTERPRETATION: Table 4.3 above reveals that live has the highest frequency of 1463 while death has 135 reported cases from the period **TABLE 4.4REPORTED CASES OF SEXUALLY TRANSMITTED DISEASES BASED ON TYPE OF DISEASE**

TYPES OF DISEASES	Frequency	percent
HIV	130	8.1
AIDS	55	3.4
Hepatitis	270	16.9
Gonorrhea	2	0.1
RVD	384	24.0
STI	175	11.0
UTI	582	36.4
Total	1598	100.0

KEY: HIV= human immune virus, AIDs= acquired immunodeficiency syndrome, RVD= retrovirus diseases, STI= sexually transmitted infection, UTI= urinary tract infection

INTERPRETATION: Table 4.4 above shows that UTI has the highest frequency of 582 followed by RVD 384, hepatitis 270, STI 175, HIV 130, AIDS 55 and Gonorrhea has the lowest frequency of 2 reported cases.

TABLE 4.5 REPORTED CASES OF SEXUALLY TRANSMITTED DISEASES BASED ON GENDER

GENDER	Frequency	Percent
Male	702	43.9

Female	896	56.1
Total	1598	100.0

INTERPRETATION: Table 4.5 above shows that female has the highest number of 896 while male has 702 reported cases from the period.

TABLE 4.6 REPORTED CASES OF SEXUALLY TRANSMITTED DISEASES BASED ON AGE GROUP

AGE GROUP	Frequency	Percent	
0 - 9	138	8.6	
10 - 19	113	7.1	
20 - 29	432	27.0	
30 - 39	373	23.4	
40 - 49	249	15.6	
50 - 59	114	7.1	
60 +	179	11.2	
TOTAL	1598	100.0	

INTERPRETATION: Table 4.6 above shows 20 - 29 as the highest frequency of sexually transmitted diseases with the total of 432, followed by 30 - 39 with 373, 40 - 49 with 249, 60 + with 179, 0 - 9 with 138, 50 - 59 with 114 and 10 - 19 has the lowest frequency of sexually transmitted diseases with the total of 113 reported cases.

TABLE 4.7 LIFE STATUS * YEAR

 \mathbf{H}_0 : There is no significant difference between the life status across the year

H1: There is a significant difference between the life status across the year

Friedman Test

Ranks

	Mean Rank	
Year	1.99	
Life Status	1.01	
Test Statistics ^a		
Ν	1598	
Chi-Square	1579.000	
Df	1	
Asymp. Sig.	.000	

a. Friedman Test

INTERPRETATION: Since the p - value is less than 0.05; we fall to reject the null hypothesis and conclude that there is no significant difference between Life status across the Year.

LIFE STATUS * TYPE OF DISEASE

 \mathbf{H}_0 : There is no significant dependency between life status and type of disease

 H_1 : There is a significant dependency between life status and type of disease

TABLE 4.8 LIFE STATUS * TYPE OF DISEASE CROSSTABULATION

				Type of Disease						Total
			HIV	AIDS	Hepatitis	Gonorrhea	RVD	STI	UTI	
		Count	98	41	256	2	313	171	582	1463
Life	Live	Expected Count	119.0	50.4	247.2	1.8	351.6	160.2	532.8	1463.0
Status		Count	32	14	14	0	71	4	0	135
	Death	Expected Count	11.0	4.6	22.8	0.2	32.4	14.8	49.2	135.0

	Count	130	55	270	2	384	175	582	1598
Total	Expected Count	130.0	55.0	270.0	2.0	384.0	175.0	582.0	1598.0

INTERPRETATION: Table 4.8 above shows that live has the highest frequency of sexually transmitted diseases with 1463 reported cases than death with 135 reported cases. While UTI has the highest frequency of 582 followed by RVD 384, hepatitis 270, STI 175, HIV 130, AIDS 55 and Gonorrhea has the lowest frequency of 2 reported cases.

Chi-Square Tests

	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	180.760 ^a	6	.000
Likelihood Ratio	202.065	6	.000
Linear-by-Linear Association	86.945	1	.000
N of Valid Cases	1598		

INTERPRETATION: Since the p - value is less than 0.05; we fail to reject the null hypothesis and conclude that there is no significant dependency between Life status and type of disease.

LIFE STATUS * GENDER

Ho: Life status does not depend on gender

H1: Life status depends on gender

TABLE 4.9 LIFE STATUS * GENDER CROSSTABULATION

			Gender		
			Male	Female	Total
	-	Count	654	809	1463
	Live	Expected Count	642.7	820.3	1463.0
		Count	48	87	135
Life Status	Death	Expected Count	59.3	75.7	135.0
		Count	702	896	1598
Total		Expected Count	702.0	896.0	1598.0

INTERPRETATION: Table 4.9 above shows that live has the highest frequency of sexually transmitted diseases with 1463 reported cases than death with 135 reported cases. While female has the highest frequency of sexually transmitted diseases with the total of 896 more than male 702.

Chi-Square Tests

	Value	Df	Asymp. Sig. (2-sided)	Exact Sig. (2- sided)	Exact Sig. (1- sided)
Pearson Chi-Square Continuity Correction ^b Likelihood Ratio Fisher's Exact Test Linear-by-Linear Association N of Valid Cases	4.198 ^a 3.835 4.271 4.196 1598	1 1 1	.040 .050 .039 .041	.046	.024

INTERPRETATION: Since the p -value is less than 0.05, we fail to reject the null hypothesis and conclude that Life status does not depend on gender.

LIVE STATUS * AGE GROUP

 H_0 : Live status does not depend on age group

 \mathbf{H}_{1} : Live status depends on age group

TABLE 4. 10 LIVE STATUS * AGE GROUP CROSSTABULATION

				AGE GROUP						T. ()
			0-9	10-19	20-29	30-39	40-49	40-49 50-59		Total
		Count	130	100	400	350	230	110	143	1463
	Live	Expected	126.3	103.5	395.5	341.5	227.9	104.4	163.9	1463.0
LIFE		Count								
STATUS	Death	Count	8	13	32	23	19	4	36	135
		Expected	11.7	9.5	36.5	31.5	21.1	9.6	15.1	135.0
		Count								
		Count	138	113	432	373	249	114	179	1598
Total		Expected	138.0	113.0	432.0	373.0	249.0	114.0	179.0	1598.0
		Count								

INTERPRETATION: Table 4.10 above shows that live has the highest frequency of sexually transmitted diseases with 1463 reported cases than death with 135 reported cases While 20 - 29 has the highest frequency of sexually transmitted diseases with the total of 432, followed by 30 - 39 with 373, 40 - 49 with 249, 60 + with 179, 0 - 9 with 138, 50 - 59 with 114 and 10 - 19 has the lowest frequency of sexually transmitted diseases with the total of 113 reported cases.

Chi-Square Tests

	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	41.030 ^a	6	.000
Likelihood Ratio	28.349	6	.000
Linear-by-Linear Association	31.260	1	.004
N of Valid Cases	1598		

INTERPRETATION: Since the p value is less than 0.05, we fail to reject the null hypothesis and conclude that there is no significant relationship between life status and age group.

AGE GROUP * GENDER

H₀: There is no significant difference between age group and gender

 \mathbf{H}_1 : There is a significant difference between age group and gender

TABLE 4.11 AGE GROUP * GENDER CROSSTABULATION

	GENDER		GENDER					
	MALE	FEMALE	TOTAL					
0-9 Count	78	60	138					
Expected count	77.4	60.6	138.0					
10-19 Count	65	48	113					
Expected count	63.4	49.6	113.0					
20-29 Count	255	177	432					
Expected count	242.2	189.8	432.0					
30-39 Count	191	182	373					
Expected count	209.1	163.9	373.0					
40-49 Count	140	109	249					
AGE GROUP Expected count	139.6	109.4	249.0					
50 – 59 Count	66	48	114					
Expected count	63.9	50.1	114.0					
60 + Count	101	78	179					
Expected count	100.4	78.6	179.0					
Total Count	896	702	1598					
Expected count	896.0	702.0	1598.0					

INTERPRETATION: Table 4.11 above shows that 20 - 29 as the highest frequency of sexually transmitted diseases with the total of 432, followed by 30 - 39 with 373, 40 - 49 with 249, 60+ with 179, 0 - 9 with 138, 50 - 59 with 114 and 10 - 19 has the lowest frequency of sexually transmitted

disease with the total of 113 reported cases While female has the highest frequency of sexually transmitted diseases with the total of 896 more than male 702.

Chi-square test

	Value	Df	Asymp. Sig. (2-sided)
Pearson Chi-Square	5.390 ^a	6	.495
Likelihood Ratio	3.221	6	.000
Linear-by-Linear Association	4.447	1	.000
N of Valid Cases	1598		

INTERPRETATION: Since the p -value is greater than 0.05, we reject the null hypothesis and conclude that there is a significant difference between age group and gender.

LOGISTIC REGRESSION

Table 4.12 Classification Table^a

			Predicted	Predicted				
Observed			Life Status	Life Status				
		Death	Live	Correct				
		Death	0	135	.0			
	Life Status	Live	1	1462	99.9			
Overall Percentage					91.5			

a. The cut value is .500

Table 4.13 Variables in the Equation

D	D	SE	Wald	Df	Sig.	Exp(B)	95% C.I. for EXP(B)		
Parameter	B S.I	S.E.					Lower	Upper	
Disease-type Gender Age Constant	.614	.1043	2.148	1	.035	.671	.557	.692	
	538	.0591	7.596	1	.016	.726	0.743	1.245	
	.682	.1156	3.564	1	.018	.737	.614	.895	
	1.421	.1428	78.475	1	.000	1.584			

INTERPRETATION: Regression analysis carried out was used to determine the comparative rate of sexually transmitted diseases according to age, gender, and disease type category. It includes B, standard error, wald chi-square, DF, significant value, Exp(B) which is the odd ratio, lower and upper boundaries at 95% confident interval. Comparing rate of sexually transmitted diseases according to gender categories, the equation Y =1.421 + 0. 682 age + 0.614 disease type - 0.538 gender + ε tells that there was 16.4% gap rate of sexually transmitted diseases among gender categories and 32.2% gap rate of sexually transmitted diseases among disease type and 25.1% gap rate of sexually transmitted diseases among age. With significant values, 0.035 which is less than 0.05, we accept null hypothesis and conclude that sexually transmitted diseases does not depends significantly on disease type, with 0.016 which is less than 0.05, we accept null hypothesis and conclude that sexually transmitted diseases does not depend significantly on gender and also with 0.018 which is less than 0.05, we accept null hypothesis and conclude that sexually transmitted diseases does not depend significantly on age. The odd ratio for life status as the dependent variable is 1.

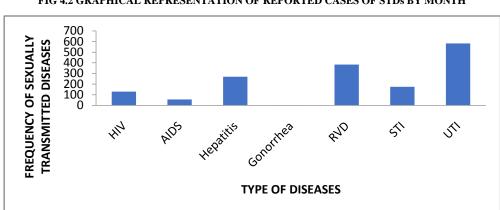


FIG 4.2 GRAPHICAL REPRESENTATION OF REPORTED CASES OF STDs BY MONTH

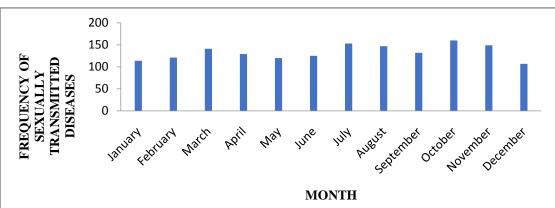
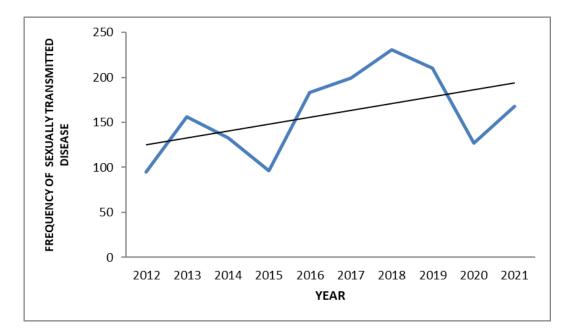



FIG 4.1 GRAPHICAL REPRESENTATION OF REPORTED CASES OF STDs BY YEAR

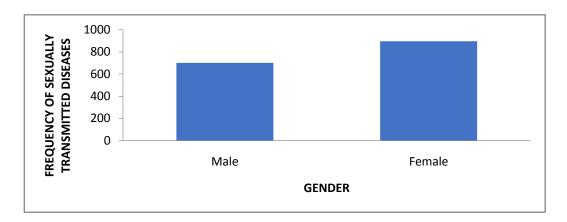


FIG 4.4 GRAPHICAL REPRESENTATION OF REPORTED CASES OF STDs BY GENDER

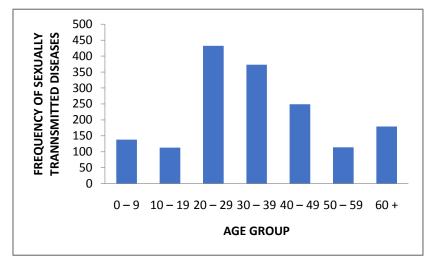


FIG 4.5 GRAPHICAL REPRESENTATION OF REPORTED CASES OF STDs BY LIVE STATUS

FIG 4.6 GRAPHICAL REPRESENTATION OF REPORTED CASES OF STDs BY AGE GROUP

All authors are required to complete the Procedia exclusive license transfer agreement before the article can be published, which they can do online. This transfer agreement enables Elsevier to protect the copyrighted material for the authors, but does not relinquish the authors' proprietary rights. The copyright transfer covers the exclusive rights to reproduce and distribute the article, including reprints, photographic reproductions, microfilm or any other reproductions of similar nature and translations. Authors are responsible for obtaining from the copyright holder, the permission to reproduce any figures for which copyright exists.

4. Conclusion

The study results for this study are specific for EKSUTH. However, the views from the data collected cut across the year, month, gender, type of disease, age and life statuses of patients understudied. RVD, which is the new AIDS, was discovered as sexually transmitted disease among the

patients. Their rate or level of transmission after the UTI (Urinary Tract Infection) is RVD (Retro virus disease), Hepatitis, STI (Sexually Transmitted Infection), HIV (Human Immune Deficiency Virus), AIDS (Acquired Immune Deficiency Syndrome) and Gonorrhea.

Important issues raised are that the age range 20-29 has the highest reported cases and based on gender the females have the higher rate of STDs than male as reported in the data collected. live has the highest frequency of 1463 and death with 135 of the reported cases. The year with the highest reported cases is 2018 under study. There is no significant difference between life status and year, life status and type of diseases, life status and gender, Life status and age since their p-values are less than 0.05 and accept null hypothesis, while there's a significant difference between age group and gender since the p-value is greater than 0.05 and reject the null hypothesis.

The results of this study can be used to propagate the awareness of the major sexually transmitted diseases and the prevention. This when pursue can help the populace to become healthier and also help the government to channel its results properly to where they are needed.

References

Amu, E.O. and Adegun, P.T. (2015). Awareness and Knowledge of Sexually Transmitted Infections among Secondary School Adolescents in Ado-Ekiti, South Western Nigeria. *Hindawi Publishing Corporation Journal of Sexually Transmitted Diseases Volume 2015, Article Id 260126, 7 Pages Http://Dx.Doi.Org/10.1155/2015/2601: Hindawi Publishing Corporation.*

Bernal W. and Wendon J. (2013)."Acute Liver Failure". New England. *Journal of Medicine*. 369 (26): 2525–2534. <u>Doi:</u> 10.1056/Nejmra1208937. Pmid 24369077.

Byrne, G.I. (2003). <u>"Uncloaked"</u>. Proceedings of the National Academy of Sciences. 100 (14): 8040– 8042. <u>Doi:10.1073/Pnas.1533181100</u>. <u>Pmc 166176</u>.

Coffin, L. S., Newberry, A., Hagan, H., Cleland, C. M., Des Jarlais, D. C., Perlman, D. C. (2010). "Syphilis in Drug Users in Low and Middle Income Countries". The International Journal on Drug policy. 21(1): 20 – 27. Doi:10.1016/J.Drugpo.2009.02.008. Pmc 2790553. Pmid 19361976.

Davidson, K.W., Barry, M.J., Mangione, C.M., Cabana, M., Caughey, A.B., Davis, E.M., Donahue, K.E., Doubeni, C.A., Krist, A.H., Kubik, M., Li, L., Ogedegbe, G., Pbert, L., Silverstein, M., Simon, M.A., Stevermer, J., Tseng, C.-W. and Wong, J.B. (2021). Screening for Chlamydia and Gonorrhea. JAMA, 326(10), p.949. doi:https://doi.org/10.1001/jama.2021.14081.

Desai M, Woodhall Sc, Nardone A, Burns F, Mercey D, Gilson R (2015). "Active recall to increase HIV and STI testing: A sysytematic review". Sexually transmitted infections. 91 (5): 314 – 23. Doi: 10.1136/Sextrans-2014-015930. Pmid 25759476.

E. C. Tilson, V. Sanchez, C. L. Ford Et Al., "Barriers to Asymptomatic Screening and Other Std Services For Adolescents And Young Adults: Focus Group Discussions," Bmc Public Health, Vol. 4, Article 21, 2004.

Sexually Transmitted Infections (Stis) Fact Sheet N°110" Who.Int. November 2013 Archived From the Original on 25 November 2014. Retrieved 30 November 2014.

World health organization media centre, sexually transmitted infections, 2013, <u>Http://www.who.int/mediacentre/factsheets/Fs110/en/.</u>