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A B S T R A C T 

Controlling the flight of a quadrotor is a challenging task due to the complexity of the flight trajectory program and the uncertain changes in aerodynamic 

parameters. These factors contribute to the system's nonlinear and complicated nature. Flight path angle tracking control involves various channels, such as a 

pitch controller, a roll controller, and a yaw controller. Traditionally, these channels are designed using linear control methods, which may not always be 

satisfactory. A more effective approach to controller design is the use of backstepping. Backstepping control laws not only provide certain gain margins for the 

controllers but also handle model errors in the description of aerodynamics. 

This paper proposes a backstepping nonlinear controller design method for quadrotor control systems. Simulation results demonstrate that the control strategy 

presented in this paper is effective and has strong robustness in the presence of disturbances and parameter uncertainty. The proposed approach addresses the 

challenges associated with traditional linear control methods and offers a more efficient and robust solution to quadrotor flight control. 

Keywords:Quadrotor, Backstepping, nonlinear controller 

1. Introduction  

A quadrotor is an unmanned aerial vehicle that utilizes vertical take-off and landing. It consists of two pairs of propellers arranged symmetrically, with 

each pair rotating in opposite directions as illustrated in Figure 1. The quadrotor's structural components include mechanical, transmission, automatic 

control, sensing, receiving, and transmitting information systems. 

The quadrotor is a control object with a dynamic model represented by nonlinear equations containing uncertain parameter components. The motion of 

the quadrotor can be divided into various channels such as tilt, flip, rotation, angular velocity, and angular acceleration in the three XYZ axes. 

The backstepping control method is a recently developed nonlinear design method that can selectively handle nonlinear factors [1]. Adaptive 

backstepping control can provide convergence assessment for unknown parameters [4]. In this article, the authors conduct research on designing 

adaptive backstepping and backstepping controllers for quadrotors to enhance control quality, expand the working range, and increase adaptability in 

the presence of uncertain factors. The proposed approach offers a promising solution for improving the performance of quadrotor systems. 

 

 

 

 

 

 

 

 

 

Fig.1. Basic structure of a quadrotor 

https://doi.org/10.55248/gengpi.2023.32716


International Journal of Research Publication and Reviews, Vol 4, no 3, pp 1478-1488 March 2023                              1479 

 

2. Building a mathematical model for my  quadrotor 

The control object can be viewed as being split into two systems that work in conjunction with each other. The first system is the engine model of the 

propeller described by the system of equations (1), and the second system is the propeller dynamics system described by the system of equations (2.a). 

These two systems are related to each other through the relationship between the rotational speed Ω  of the four motors, the lifting 

force Fz, and the torque (Tx , Ty , Tz). 

2.1. A mathematical model of the propeller engine 

 The most common type of motor currently applied to quadrotors is the BLDC motor. According to [4], the system of equations describing the 

mathematical model of a DC motor has the following form: 

 
𝑗𝜔 = 𝐾𝑡 . 𝐼𝑎 − 𝑏.𝜔 − 𝑇𝑙𝑜𝑎𝑑

𝑉𝑎 = 𝑅𝑎 . 𝐼𝑎 + 𝐿𝑎 .
𝑑𝐼𝑎

𝑑𝑡
+𝐾𝑏 . 𝜔

 (1) 

The first equation describes the relationship between the force moment and the electromagnetic moment. The second equation describes the 

relationship between the voltage applied to the motor and the current; j is the moment of inertia of the propeller motor; 𝜔  is the angular acceleration of 

the motor; Ia is the supply current; b is the drag torque coefficient; Kt is the motor torque coefficient; Tload is the load torque; Va is the supply voltage; 

Ra is the impedance of the motor; La is the motor inductance; and Kb is the reactance coefficient. 

2.2. The dynamic model of the Quadrotor 

To establish a mathematical model for the quadrotor, we need to consider some related coordinate systems, as shown in Figure 2. In which, Oxyz is the 

inertial coordinate system and Bxyz is the associative coordinate system, which is closely tied to the fixed frame of the quadrotor. Call the quadrotor's 

three Euler rotations around the three axes, respectively, as shown in Figure 2, the tilt angle Φ, the pitch angle θ and the direction angle Ψ. And F1, F2, 

F3, F4 are the thrust caused by the four propellers, respectively. 

To analyze the dynamics of the quadrotor, we consider it an absolutely rigid body moving freely through space. From there, we divide the motion of the 

quadrotor into two components: the translational motion of the center of mass and the rotation motion of the quadrotor about its three axes. The 

translational motion is caused by the drag and lift force components, while the rotational motion is caused by the force moments. 

For convenience and simplicity when considering the dynamic properties of the quadrotor, we do not consider the part of the DC motor that rotates the 

propeller, and the control signal of the system is converted to the force as well as the torque to be generated. Therefore, the principle of controlling the 

quadrotor is as follows: The motion of the quadrotor is controlled through four components: the total force F along the axis Bz; the torque Tx on the 

axis Bx; the torque Ty on the By axis; and the torque Tz on the axis Bz; and -FL=U1. It is the F component that makes the quadrotor changeable in 

height, the Tx and Ty components that cause edge motion along the Bx and By axes, and the Tz component that helps to change the direction around 

the Bz axis. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2.  Coordinate systems of the quadrotor 

It is assumed that the Euler rotations are small and have little effect on the rotation of the quadrotor, while ignoring the effect of the gyro effect on the 

quadrotor caused by the four propeller motors. We get the complete system of nonlinear kinematic equations for the quadrotor:  
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   (2a) 

2.3. A quadrotor dynamics model, taking into account uncertainties 

 The system of equations (2.a) is the result of calculation after applying a few assumptions to simplify, such as: consider the tilt angle Φ and the slope 

angle θ as two small motion angles, eliminating the influence of gyro torque on channel Φ. In fact, the mathematical model is much more complex with 

the cross-relationship between the channels Φ, θ and Ψ. There is also an additional gyro-torque component. Therefore, the actual mathematical model 

of the object will contain uncertain components: 
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3. Designing a controller for my quadrotor 

Below, the author synthesizes adaptive backstepping and backstepping controllers as follows: 

The main content of the synthesis of the backstepping controller is to give the control law for each control channel, provided that the parameters in the 

kinematic model of the quadrotor are clear. Below are the steps to synthesize the backstepping controller according to the z-height channel. The 

synthesis of the backstepping controller for x and y channels and according to tilt angle Φ, direction angle Ψ, pitch angle θ is completely similar.  

For the z channel, we have a system of kinematic equations:  

𝑧
⋅⋅
= 𝑔 + 𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃.

1

𝑚
.  −𝐹𝐿  

Set X1 = z; X2 = 𝑧 ; and FL = U1, so 𝑋1 = 𝑧  and 𝑋2= 𝑧 . From this, the model of tight backpropagation along the z-channel is: 

 
𝑋 1 = 𝑋2

𝑋 2 =  𝑔 + 𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃.
1

𝑚
.  −𝑈1 

 (3) 

Call the desired altitude signal zd, and X1 = z. 

Step 1: Set 𝑍1 = 𝑋1 − 𝑧𝑑 . 

So 𝑍1 = 𝑋1 − 𝑧𝑑 = 𝑋2 − 𝑧𝑑 .  

Select the control function Lyapunov 𝑉1 𝑍1 =
1

2
𝑍1
2; the condition for signal 𝑋1 → 𝑧𝑑  is: 

  1 211 1 1 1.Z .( ) 0. 0dV Z Z X ZzZ   


 

Considering x2 is a virtual control signal, deducing the virtual control law to ensure the stability criterion of Lyapunov is: 𝑋2𝑑 = −𝐶1 . 𝑍1 + 𝑧𝑑  with C1 

> 0. 
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Step 2: Set 𝑍2 = 𝑋2 − 𝑧2𝑑 . So 

𝑍2 = 𝑋2 − 𝑋2𝑑 = 𝑔 + 𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃.
1

𝑚
.  −𝑈1 + 𝐶1 . 𝑍1 − 𝑧𝑑  

Inferred 𝑉1 𝑍1 = 𝑍1.  −𝐶1. 𝑍1 + 𝑍2  

Select the control function Lyapunov 𝑉2 𝑍1, 𝑍2 = 𝑉1 +
1

2
𝑍2
2; the condition for signal 𝑋2 → 𝑋2𝑑  is:  

2 1 2 2 1 2 Z , . Z   00V V Z Z    
 

 

𝑉2 = −𝐶1. 𝑍1
2 + 𝑍1 . 𝑍2 + 𝑍2.  𝑔 + 𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃.

1

𝑚
.  −𝑈1 + 𝐶1 . 𝑍1 − 𝑧𝑑  

From the Lyapunov stability criterion, to ensure the system is globally asymptotically stable, the control law U1 has the following form: 

𝑈1 = 𝑚
1

𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃
 𝑍1 + 𝑔 + 𝐶1 . 𝑍1 − 𝑧𝑑 + 𝐶2 . 𝑍2  

Ignoring the higher-order derivatives, we get that the control law for the z channel is: 

  𝑈𝑧 = 𝑚
1

𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃
𝑍1 + 𝑔 + 𝐶2 . 𝑍 2 + 𝐶1 . 𝑍2 − 𝐶1

2 . 𝑍1 

Similarly, we have the control law for the channels x, y, and Φ, θ, Ψ as: 

𝑈𝑥 = 𝑚
1

𝑈𝑧
 𝑍3 + 𝐶4 . 𝑍4 + 𝐶3 . 𝑍4 − 𝐶3

2 . 𝑍3  

𝑈𝑦 = 𝑚
1

𝑈𝑧
 𝑍5 + 𝐶6 . 𝑍6 + 𝐶5 . 𝑍6 − 𝐶5

2 . 𝑍5  

𝑈𝛷 = 𝐽𝑥𝑥 .  −𝑍7 −𝛹. 𝜃.
𝐽𝑦𝑦 − 𝐽𝑧𝑧
𝐽𝑥𝑥

− 𝐶8 . 𝑍8 − 𝐶7 . 𝑍8 + 𝐶7
2 . 𝑍7  

𝑈𝜃 = 𝐽𝑦𝑦 .  −𝑍9 −𝛹.𝛷.
𝐽𝑧𝑧 − 𝐽𝑥𝑥
𝐽𝑦𝑦

− 𝐶10 . 𝑍10 − 𝐶9. 𝑍10 + 𝐶9
2 . 𝑍9  

𝑈𝛹 = 𝐽𝑧𝑧 .  −𝑍11 − 𝐶12 . 𝑍12 − 𝐶11 . 𝑍12 + 𝐶11
2 . 𝑍11  

where Ci are positive design constants. 

4. Backstepping controller design for propeller motor 

As analyzed, the control of the quadrotor must be through the actuators, which are DC motors with propellers. The control quality of the quadrotor is 

directly affected by the control quality of these four motors. As with these motors, the faster the response, the better the maneuverability of the 

quadrotor, and vice versa. 

The dynamic model of the motor used in this study is an independently excited DC motor. The author also applies the backstepping control algorithm to 

stabilize the motor's rotation speed in accordance with the required load torque. 

The system of dynamic equations for a DC motor, according to (1), is: 

 
𝑗𝜔 = 𝐾𝑡 . 𝐼𝑎 − 𝑏.𝜔 − 𝑇𝑙𝑜𝑎𝑑

𝑉𝑎 = 𝑅𝑎 . 𝐼𝑎 + 𝐿𝑎 .
𝑑𝐼𝑎
𝑑𝑡

+ 𝐾𝑏 . 𝜔

  

Putting X1=ω, X2=Ia, U=Va, converting the above system to tight backpropagation, we get: 

 
 

 𝑋1 = −
𝑏

𝑗
. 𝑋1 −

𝐾𝑀
𝑗
. 𝑋1

2 +
𝐾𝑡
𝑗
. 𝑋2

𝑋2 = −
𝐾𝑏
𝐿𝑎
. 𝑋1 −

𝑅𝑎
𝐿𝑎
. 𝑋2 +

1

𝐿𝑎
𝑈

  

Let the desired rotational speed of the motor be ωd. Set Z1=X1-ωd, when the rotation speed signal ω→ωd, then Z1→0. On the other hand, with 

, substituting into the first equation of the system, we have: 

𝑍1 = −
𝑏

𝑗
. 𝑋1 −

𝐾𝑀
𝑗
. 𝑋1

2 +
𝐾𝑡
𝑗
. 𝑋2 −𝜔𝑑  

Similar to applying the backstepping algorithm to the state channels discussed above, we need a virtual control signal, X2→X2d. Finally, according to 

the Lyapunov asymptotic stability criterion, for the system to be globally stable, the necessary control signal U has the following form: 

𝑈 = 𝐿𝑎 .  −
𝐾𝑡
𝑗
. 𝑍1 − 𝑓2 𝑍1, 𝑍2 − 𝐶2 . 𝑍2  

In which: 𝐶1 , 𝐶2 > 0 
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𝑓2 𝑍1 , 𝑍2 = −  
𝑏

𝐾𝑡
+
𝐾𝑀
𝐾𝑡
. 2. 𝑋1 −

𝑗

𝐾𝑡
𝐶1 .  −𝐶1. 𝑍1 +

𝐾𝑡
𝑗
. 𝑍2 −

𝐾𝑏
𝐿𝑎

𝑋1 −
𝑅𝑎
𝐿𝑎
. 𝑋2 

Each motor should have a rotary speed stabilizer, as shown above. 

5. Adaptive Backstepping Controller Design for Quadrotor 

5.1. Consider the Φ-angle channel 

The mathematical model of the channel Φ when considering the uncertainty components in the tight backpropagation form is as follows: 

 
𝑋7 = 𝑋8

𝑋8 = 𝛹. 𝜃.
𝐽𝑦𝑦 − 𝐽𝑧𝑧
𝐽𝑥𝑥

+ 𝑓1 . 𝜃 + 𝑓2 . 𝜃 + 𝑓 +
𝑈2
𝐽𝑥𝑥

  

Let the desired tilt angle signal Φ be Φd. 

Set Z7=X7-Φd, if X7→Φd then Z7→0. 

Set Z8=X4-X8d, if X8→ X8d then Z8→0. 

Transforming the above system in terms of Z7 and Z8, we get: 

 
𝑍7 = 𝑋8 −𝛷𝑑

𝑍8 =  𝛹. 𝜃.
𝐽𝑦𝑦 − 𝐽𝑧𝑧
𝐽𝑥𝑥

+ 𝑓1 . 𝜃 + 𝑓2 . 𝜃 + 𝑓 +
𝑈2
𝐽𝑥𝑥

−𝑋8𝑑

  

From the results of the synthesis of the backstepping control law for channel Φ, done in the previous section, the adaptive control law has the form: 

𝑈𝛷 = 𝐽𝑥𝑥 .  −𝑍7 −𝛹. 𝜃.
𝐽𝑦𝑦 − 𝐽𝑧𝑧
𝐽𝑥𝑥

− 𝐶7 . 𝑍8 + 𝐶7
2 . 𝑍7 − 𝐶8 . 𝑍8 − 𝑓1

^

. 𝜃 − 𝑓
^

2. 𝜃 − 𝑓
^

  

where 𝑓
^

1 and 𝑓
^

2 are estimates of the uncertainty component. 

Let the estimated errors of f1, f2, and f3 be: 𝑓
~

1 = 𝑓1 − 𝑓1
^

; 𝑓
~

2 = 𝑓2 − 𝑓2
^

; 𝑓
~

= 𝑓 − 𝑓
^

 

Putting the estimated error components into the Lyapunov control function component: 

𝑉8  𝑍7 , 𝑍8 , 𝑓
~

1, 𝑓2
~

. 𝑓
~

 = 𝑉8 𝑍7, 𝑍8 +
1

2. 𝛾1
. 𝑓 1

2 +
1

2. 𝛾2
. 𝑓 2

2 +
1

2. 𝛾
. 𝑓 2 

where 𝛾1,  𝛾2 , 𝛾 are the adaptation coefficients. If we differentiate with respect to time, we get: 

𝑉8 = −𝐶7𝑍7
2 + 𝑍8 .

 
 
 
 𝑍7 +𝛹. 𝜃.

𝐽𝑦𝑦 − 𝐽𝑧𝑧
𝐽𝑥𝑥

+ 𝑓1. 𝜃 + 𝑓2 . 𝜃 + 𝑓 +

𝑈2
𝐽𝑥𝑥

+ 𝐶7 . 𝑍7  
 
 
 

+
1

𝛾1
. 𝑓
~

1. 𝑓
~

1 +
1

𝛾2
. 𝑓
~

2 . 𝑓
~

2 +
1

𝛾
. 𝑓
~

. 𝑓
~

 

Substituting UΦ, get: 

𝑉8 = −𝐶7𝑍7
2 + 𝑍8 .  −𝐶8 . 𝑍8 + 𝑓

~

1. 𝜃 + 𝑓
~

2 . 𝜃 + 𝑓
~

 +
1

𝛾1
. 𝑓
~

1. 𝑓
~

1 +
1

𝛾2
. 𝑓
~

2 . 𝑓
~

2 +
1

𝛾
. 𝑓
~

. 𝑓
~

 

Using the same reasoning as in the non-adaptive case, in order to ensure that the system is globally asymptotically stable according to the Lyapunov 

criterion, deduce the correction rule for the estimation of the uncertain parameters: 

 
 
 
 

 
 
 1

𝛾1
. 𝑓
~

1 + 𝑍8 . 𝜃 = 0

1

𝛾2
. 𝑓
~

2 + 𝑍8. 𝜃 = 0

1

𝛾
. 𝑓
~

+ 𝑍8 = 0

  => 

 
  
 

  
 
𝑓
~

1 = −𝑍8 . 𝜃. 𝛾1

𝑓
~

2 = −𝑍8. 𝜃. 𝛾2

𝑓
~

= −𝑍8 . 𝛾

            =>

 
  
 

  
 
𝑓
^

1 = 𝑍8 . 𝜃. 𝛾1

𝑓
^

2 = 𝑍8. 𝜃. 𝛾2

𝑓
^

= 𝑍8 . 𝛾

  

5.2. Considering the θ-angle channel 

The same reasoning as above, we have the adaptive backstepping control law for channel θ as follows: 

𝑈𝜽 = 𝐽𝑦𝑦 . (−𝑍9 −𝛹.𝛷.
𝐽𝑧𝑧 − 𝐽𝑥𝑥
𝐽𝑦𝑦

− 𝐶10 . 𝑍10 − 𝐶9. 𝑍10 + 𝐶9
2 . 𝑍9 − 𝑓

^

3. 𝛷 − 𝑓
^

4 . 𝛷 − 𝑓
^

) 
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The correction law is defined as follows: 

 
  
 

  
 
𝑓
^

3 = 𝑍10 . 𝛷. 𝛾3

𝑓
^

4 = 𝑍10 . 𝛷. 𝛾4

𝑓
^

= 𝑍10 . 𝛾

  

Where 𝛾3 ,  𝛾4 , 𝛾are the adaptation coefficients. 

5.3. Consider the channels x, y, and z 

The same reasoning as above, we have adaptive backstepping control laws for x, y, and z channels as follows: 

𝑈𝑥 = 𝑚
1

𝑈1
 𝑍3 + 𝐶4 . 𝑍4 + 𝐶3 . 𝑍4 − 𝐶3

2 . 𝑍3 − 𝑓
^

𝑥 .  −𝐶3. 𝑍3 + 𝑍4   

𝑈𝑦 = 𝑚
1

𝑈1
 𝑍5 + 𝐶6 . 𝑍6 + 𝐶5 . 𝑍6 − 𝐶5

2 . 𝑍5 − 𝑓
^

𝑦 .  −𝐶5. 𝑍5 + 𝑍6   

𝑈𝑧 = 𝑚
1

𝑐𝑜𝑠𝛷. 𝑐𝑜𝑠𝜃
 𝑍1 + 𝑔 + 𝐶2 . 𝑍2 + 𝐶1. 𝑍2 − 𝐶1

2 . 𝑍1 + 𝑓
^

𝑧  

The correction law is defined as follows: 

𝑓
^

𝑥 = (−𝑍4
2 + 𝐶3 . 𝑍3 . 𝑍4). 𝛾𝑥 ; 

𝑓
^

𝑦 = (−𝑍6
2 + 𝐶5 . 𝑍5 . 𝑍6). 𝛾𝑦 ; 

𝑓
^

𝑧 = 𝑍2 . 𝛾𝑧  

Where 𝛾𝑥 ;𝛾𝑦 ;𝛾𝑧  are the adaptation coefficients. 

6. Simulation results 

The parameters of the motor and the initial parameters are selected as follows: 

j=6.10^(-5) kg.m2; b=3,36.10^(-5)kg.m2/s; Kt=0,0052; Ra=0,9Ω; La=2mH; b=0,0057; Km=7,5.10^(-7); Kf=3,13.10^(-5); m=0,65kg; g=9,81m/s2; 

ixx=7,5.10^(-3) kg.m2; iyy=7,5.10^(-3)kg.m2; izz=1,3.10^(-2) kg.m2; L=0,23m; u10=m.g N; 

6.1. Backstepping controller review 

The backstepping control diagram is as follows: 

 

 

 

 

 

 

 

 

 

 

 

Fig.3.  Backstepping control diagram for quadrotor 
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Consider the stable mode of all 3 parameters x, y, and z of the quadrotor at the same time to evaluate the control quality of backstepping when there is a 

phenomenon of crossover channels. 

The wanted input signals (xd, yd, and zd) all have the form of a step function, which is fed into the system at the same time. Through simulation and 

comparison, it can be concluded that the control quality of the backstepping orbital stabilizer is superior to that of the PID orbital stabilizer, which is 

shown by: 

- First, the control quality in the backstepping transition is better than that of the PID, as demonstrated by the shorter transient time, less oscillation, and 

smaller overshoot. 

- Second, the working band on the backstepping channels is wider than that of the PID, which increases the quadrotor's mobility in trajectory control 

and tracking, and at the same time helps the quadrotor not to be unstable when encountering large disturbances causing changes. sudden change in the 

kinematic parameters of the quadrotor. 

- Third, backstepping still ensures control quality in cases of crossover channels. 

 

 

 

 

 

 

 

 

Fig.4.  Control results on channel Z 

 

 

 

 

 

 

 

 

 

Fig.5.  Control results on channel X 

 

 

 

 

 

 

 

 

 

Fig.6.  Control results on channel Y 
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6.2. Adaptive backstepping controller evaluation 

In the above, a mathematical model of a quadrotor has been given with possible uncertain components due to the existence of an uncertain dynamic 

component, changes in the weight of the quadrotor, noise, or drag... Below, the author analyzes the effect of an adaptive backstepping orbital stabilizer 

on control quality on channels  θ and X when there is noise on channel θ. The angle channel Φ, y channel, and z channel can be done similarly. 

The mathematical model of channel θ taking into account the uncertainty component has the following form: 

𝜃 = 𝛹.𝛷.
𝐽𝑧𝑧 − 𝐽𝑥𝑥
𝐽𝑦𝑦

+
𝑇𝑦
𝐽𝑦𝑦

+ 𝑓3. 𝛷 + 𝑓4 . 𝛷 + 𝑓 

The adaptive backstepping control scheme for the Picht channel θ is depicted in Figure 7 below. 

 

 

 

 

 

 

 

 

 

Fig.7. Adaptive backstepping control diagram for the θ-channel 

To evaluate the control quality of the system when applying adaptive backstepping, the author conducts a survey in the following cases: 

- Case 1: Consider the impact noise as an uncertain component f on channel θ with pulse shape as shown in Figure 8. The input signal of channel θ is 

θd in the form of a step function. 

 

 

 

 

 

 

 

Fig.8.  Noise in the form of pulses 

Figure 9 depicts the control results on θ-channel when available uncertainty noise in the form of pulses. 

 

 

 

 

 

 

 

Fig.9.  The control results on θ-channel when available uncertainty noise in the form of pulses 

- Case 2: Consider the impact noise as an uncertain component f on channel θ with the form of a sine function, with the value shown in Figure 10. The 

input signal of channel θ is θd in the form of a step function. 
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Fig.10.  Sinusoidal noise 

Figure 11 depicts the control results on θ-channel when available uncertainty noise in the form of Sinusoidal. 

 

 

 

 

 

 

 

 

 

Fig.11.  The control results on θ-channel when available uncertainty noise in the form of Sinusoidal 

- Case 3: Consider the impact noise as the uncertainty component caused by the gyro torque −𝐽𝑟 . 𝛷. 𝛺𝑟/𝐽𝑦𝑦 acting on channel θ. The author investigates 

the adaptive backstepping controller in the following modes: On the 0y axis, the control quadrotor oscillates around the equilibrium point y0=0. The 

input signal yd is pulsed. On the 0x axis, the quadrotor control stabilizes at x0=0. 

Theoretically, when there is movement on the 0y axis, there will be a change in rotation angle Φ and rotation angle speed . On the other hand, the 

angular momentum of the propeller system occurs due to the difference in rotational speeds of the two pairs of propellers that are always rotating in 

opposite directions. The angular momentum of the propeller system is calculated as follows: 𝐻   = 𝐽𝑟 . 𝛺𝑟      

The angular momentum combined with the variation of the tilt angle Φ gives rise to a gyro moment affecting the channel θ. The gyro moment is 

calculated as follows: 

𝑀   𝑔𝑖 = 𝐻   . 𝛷    

Notice that the  vector has a similar form to the considered uncertainty component . This uncertainty component acts on the channel θ, 

leading to a change in θ and a variation of x around the equilibrium position x0. 

Figure 12 depicts the variation of the gyro torque acting on the channel θ. 

 

 

 

 

 

 

 

 

Fig.12.  The gyro torque acting on the channel θ 
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Figure 13 depicts the variation of the angle θ due to the influence of the gyroscope torque. 

 

 

 

 

 

 

 

 

 

Fig.13.  The variation of the angle θ due to the influence of the gyroscope torque 

Due to the variation of the pitch angle θ, the quadrotor oscillates around the equilibrium position x0 on the 0x axis, as depicted in Figure 14. 

 

 

 

 

 

 

 

 

 

 

Fig.14. Variation of x due to influence of gyro torque 

From the results in Figures 13 and 14, it is shown that in the orbital stabilization mode at x0=0, when affected by the gyro torque, the adaptive 

backstepping controller gives better results than the backstepping controller. This is shown by the fact that the amplitude of oscillation on the x channel 

is significantly reduced. 

4. Conclusion 

In this study, the authors have made a new contribution by dividing the mathematical modeling of the quadrotor system into two systems that are bound 

together, resulting in a closer representation of reality. The first system is characterized by a nonlinear mathematical model describing quadrotor 

kinematics, while the second system is characterized by a mathematical model of a DC motor and the relationship between propeller thrust and 

rotational speed. This is an important mathematical basis that ensures the synthesis of quality adaptive backstepping and backstepping controllers. 

The simulation results have shown the outstanding advantages of the backstepping controller compared to the PID controller, namely the fast setting 

time and maneuverability of the quadrotor at a larger working range. Additionally, the application of an adaptive backstepping controller to stabilize the 

trajectory produces better results than a conventional backstepping controller. It helps to suppress the influence of uncertain components and reduce the 

impact of noise during quadrotor operation. 

When dealing with strong nonlinear systems such as quadrotors, the control law is usually designed using the adaptive backstepping method, which is 

capable of compensating for uncertainties in the model and improving the stability of the control system. However, one limitation of the adaptive 

backstepping method is that the calculation of the virtual control law can be very complex, and control law synthesis is only possible under suitable 

conditions. On the other hand, the sliding controller is invariant and stable to internal uncertainties and external disturbances. Therefore, combining the 

sliding control mode with the backstepping technique can provide an effective solution for developing a robust controller for strict-feedback nonlinear 

systems with a simple design procedure that takes advantage of the benefits of both methods. This is an area of focus for the authors' future research. 
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