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ABSTRACT 

 Demand forecasting involves predicting the future demand for a product. With increasing competition among retailers, companies are increasingly turning to 

predictive analytics techniques to lower costs and boost productivity and profit. Overstock and stock shortages pose significant challenges for companies, leading 

them to address these issues through demand forecasting. By utilizing historical data, demand forecasting estimates sales increases and decreases for specific 

products, aiding in demand planning and reducing confusion around production quantities. Exploring various types of demand forecasting, understanding factors 

influencing it, and overcoming challenges associated with forecasting are essential. To predict product demand accurately, a machine learning model is constructed 

using methods like random forest and gradient boosting. Training this model with previous year data enables businesses to optimize stocks, cut costs, increase 

product sales, boost profits, and gauge customer loyalty. The benefits of demand forecasting extend beyond manufacturers to retail shop owners and customers, 

making it applicable to any product manufacturing business aiming for substantial profits. 

Keywords: Machine Learning, historical data, demand forecasting, demand planning, machine learning model, random forest, gradient boosting, optimize 

stocks. 

INTRODUCTION 

In the world of supply chains, knowing what customers will want in the future is like having a crystal ball for success. Demand forecasting helps us in 

pursuing it. Demand forecasting is a systematic process of estimating the future demand for a product or service. 

Here we'll break down the basics of demand forecasting and show how it can help companies keep just the right amount of products on hand, make 

customers happy, and stay competitive in the market. Accurate demand predictions also assist in efficient resource use, risk management, and smart 

decision-making across different business areas. 

This paper explores the integration of two robust ensemble learning techniques Gradient Boosting and Random Forest revealing their crucial role in 

navigating the intricacies of consumer behaviour, global markets, and economic fluctuations. 

Accurately predicting product demand yields significant benefits, enabling businesses to optimize inventory, enhance production efficiency, and 

streamline supply chain operations. This precision minimizes the risks of overstocking or stockouts, resulting in cost savings and improved customer 

satisfaction. Overall, accurate demand forecasting empowers businesses to make informed decisions, reduce operational inefficiencies, and navigate 

market dynamics with greater adaptability. 

RESEARCH APPROACH  

 Accurate sales forecasting for new products holds great significance for fashion retailers as it enhances overall management efficiency and customer 

satisfaction. In this study, the paper introduces a two-layer (TLs) model designed to forecast the total sales of new products. The initial layer involves 

estimating demand through linear regression (LR). In the second layer of the model, sales are not only influenced by demand but also by inventory levels. 

To address this two-layered (TLs) model, feature selection is tackled using a gradient-boosting decision tree method (GBDT). Considering product 

heterogeneity, a mixed k-means algorithm is employed for product clustering, and a genetic algorithm is utilized for parameter estimation within each 

cluster. The model is validated using real-world data from a Singaporean company. Experimental results demonstrate the superiority of our model over 

LR, GBDT, support vector regression (SVR), and artificial neural network (ANN) in most instances. Additionally, two key indicators—the average 

conversion rate and the marginal conversion rate—are introduced to assess product competitiveness and determine the optimal inventory level. These 

indicators offer valuable insights for decision-making among fashion industry managers. 
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METHODOLOGY: 

 

 

 

 

 

 

 

 

 

Fig-1: The schematic workflow proposed methodology. 

It is suggested to use the two-layer (TLs) model to forecast the overall sales of new fashion items. To determine the products' demand, linear regression 

(LR) is employed in the first layer. Sales are modelled in the second layer as a function of inventory level and demand. The gradient-boosting decision 

tree method (GBDT) is used for feature selection in order to solve the TLs model. To take into account the variability in products, a mixed k-mean 

technique is used for product clustering. 

A genetic method is used in each cluster for parameter estimation. In most cases, the model outperforms LR, GBDT, support vector regression (SVR), 

and artificial neural networks (ANNs) when tested on real-world data from a Singaporean corporation. 

Two indicators, the average conversion rate and the marginal conversion rate, are developed to measure product competitiveness and explore the optimal 

inventory level, respectively. The methodology involves using a two-layer model with LR and GBDT for demand estimation and feature selection, 

respectively. It also includes product clustering, parameter estimation, and the development of indicators for decision-making in the fashion industry. 

RESULTS 

                    

 

 

 

 

 

 

 

 

 

 

Table-1: Forecasting performance of the five forecasters and one benchmark over two categories in the test data   
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Fig-2: Sales forecast related to inventory of the dataset on shoes and compared with the ideal conversion rate of sales. 

                                

 

 

 

 

 

 

 

 

 

 

 

Fig-3: Sales forecast related to inventory of the dataset on belts and compared with the ideal conversion rate of sales 

CONCLUSION 

In conclusion, demand forecasting plays a pivotal role in modern business strategies, providing organizations with valuable insights into future market 

trends and customer preferences. By leveraging advanced analytical tools, historical data, and market intelligence, businesses can make informed 

decisions regarding production, inventory management, and resource allocation. Accurate demand forecasting not only enhances operational efficiency 

but also contributes to customer satisfaction by ensuring products are readily available when needed. As industries continue to evolve and become 

increasingly dynamic, the ability to anticipate and adapt to changing demand patterns becomes a competitive advantage. Therefore, investing in robust 

demand forecasting systems and methodologies is essential for businesses seeking to thrive in the ever-changing landscape of global markets. 
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