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A B S T R A C T 

In the dynamic realm of agriculture, combating fungal diseases like Anthracnose, which threaten crops such as olives, mangoes, and cashews, is a pressing challenge. 

The adoption of machine learning, particularly Convolutional Neural Networks (CNNs), has emerged as a promising solution for early detection and effective 

management. Machine learning, with its roots in computer vision, has revolutionized Anthracnose detection across diverse agricultural landscapes. By classifying 

infected leaves with unprecedented accuracy, these studies underscore the transformative role of machine learning in agriculture. This technological synergy holds 

the potential to enable early disease detection, minimize crop losses, and promote sustainable farming practices. As we embrace these cutting-edge technologies, 

agriculture moves closer to enhanced crop resilience and productivity. This partnership between technology and agriculture offers a hopeful vision where the threat 

of Anthracnose diminishes, allowing crops to thrive and ensuring confidence among farmers and consumers alike. 
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Introduction 

In the dynamic tapestry of agriculture, the looming specter of fungal diseases, vividly embodied by the likes of Anthracnose, casts a looming shadow 

over indispensable crops like olives, mangoes, and cashews. This unrelenting challenge has ignited a collective effort to counter the agricultural menace, 

and at its forefront is the assimilation of avant-garde technology. Notably, the deployment of Convolutional Neural Networks (CNNs) has emerged as a 

beacon of promise, signaling a transformative trajectory for the industry. Within the intricate weave of agricultural practices, the persistent battle against 

Anthracnose underscores an ongoing struggle to safeguard essential crops. This collective endeavor has given rise to a harmonized response, where the 

infusion of cutting-edge technology, specifically the utilization of Convolutional Neural Networks (CNNs), stands as a beacon of hope and a symbol of 

progress. 

The potential ramifications of this technological alliance extend far beyond the agricultural fields, painting a vivid and expansive picture of a more secure, 

efficient, and sustainable future for agriculture. This collaborative journey between agriculture and state-of-the-art technology not only addresses the 

immediate threats of Anthracnose but also sets the stage for a flourishing era of agricultural prosperity and environmental sustainability. 

Literature Review 

In the exploration of predicting olive anthracnose disease, a comprehensive comparison of machine learning classification algorithms was conducted. 

The algorithms under scrutiny included Random Forest, Support Vector Machine, and Logistic Regression. Each algorithm was assessed for its efficacy 

in disease prediction. The evaluation process employed standard metrics such as accuracy, sensitivity, specificity, and ROC AUC score. Notably, among 

the algorithms tested, Gradient Boosting emerged as the top-performing model in predicting olive anthracnose disease. The research delved into the 

intricacies of data preprocessing techniques, emphasizing aspects like feature selection and mitigating multicollinearity. These steps were crucial in 

refining the input data for the machine learning models, ensuring more accurate and robust predictions. Furthermore, the study highlighted the potential 

impact of soil amendments and foliar application of nutrients as strategies for controlling plant diseases. This comprehensive approach expands the scope 

of disease management beyond purely algorithmic solutions, considering the role of environmental factors and nutritional interventions. The models 

developed in the study exhibited accuracies ranging from 72% to 76% in predicting the occurrence of olive anthracnose disease (OAI>0%). This range 

provides valuable insights into the predictive capabilities of the employed machine learning algorithms, contributing to the ongoing efforts in enhancing 

disease prediction and management strategies in olive cultivation. 
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Methodology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Data Collection:  

i. Gather a diverse and representative dataset of plant images affected by Anthracnose and healthy plants. Ensure that the dataset is labeled accurately. 

2. Data Preprocessing:  

i. Resize images to a consistent size to feed into the CNN.  

ii. Normalize pixel values to a common scale (e.g., 0 to 1). 

iii. Augment the dataset with techniques like rotation, flipping, and zooming to increase the diversity of the training set.  

3.Split the Dataset:  

i. dataset will be divided into training, validation, and testing sets. A common split is 70-15-15, respectively. 

4.Build the CNN Model:\ 

i. Design a CNN architecture suitable for image classification. Start with a pre-existing architecture like VGG16.  

ii. Add convolutional layers, activation functions (e.g., ReLU), pooling layers, and fully connected layers.  

iii. Choose an appropriate loss function, such as binary cross-entropy for binary classification (healthy or infected) or categorical cross-entropy for multi-

class classification. 

5.Compile the Model:  

i. Compile the CNN model with the chosen optimizer, loss function, and metrics. 

 6.Training:  

i. Train the model on the training dataset. Adjust hyperparameters, such as learning rate, based on the performance on the validation set.  

ii. Monitor training metrics to ensure the model is learning effectively.  

7.Validation:  

i. Evaluate the model on the validation set to check for overfitting and adjust the model architecture or training process accordingly.  
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8.Testing:  

i. Assess the final model's performance on the test set to ensure its generalization ability. 

Results 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



International Journal of Research Publication and Reviews, Vol 4, no 12, pp 3584-3588 December 2023                                     3587

 

 

Conclusion 

In conclusion, the seamless fusion of cutting-edge machine learning techniques, particularly harnessed through Convolutional Neural Networks (CNNs), 

marks a groundbreaking stride in confronting the persistent challenge of Anthracnose across vital crops such as olives, mangoes, and cashews. The 

meticulous focus on accurately categorizing infected leaves underscores the revolutionary potential of computer vision in reshaping agriculture. As this 

avant-garde technology garners widespread acceptance, the agricultural panorama propels toward heightened levels of crop resilience and productivity. 

This collaborative and forward-thinking endeavor holds the promise of a future where Anthracnose threats are not just confronted but effectively 

neutralized. It stands as a beacon, making substantial contributions to overall crop health and instilling unwavering confidence among farmers and 

consumers alike. The convergence of innovative methodologies and cross-disciplinary collaboration is poised to redefine the agricultural landscape, 

setting a precedent for sustainable solutions and resilience in the face of crop diseases. 
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