
International Journal of Research Publication and Reviews, Vol 4, no 12, pp 3488-3494 December 2023 
 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

A Step-by-Step Mathematical Derivation of Ant Colony Optimization 

for Solving Subset Selection Problems 

Akshaya Kumar Mandal 

Department of Computer Science, Assam University, A Central University of India Assam, Silchar- 788011, Assam, India 

Email: akshayacs207@gmail.com  

DOI: https://doi.org/10.55248/gengpi.4.1223.123541  

A B S T R A C T 

This article presents a thorough, step-by-step mathematical derivation of Ant Colony Optimization (ACO) tailored specifically for solving Subset Selection 

Problems. ACO, inspired by the foraging behavior of ants, has proven its efficacy as a metaheuristic for combinatorial optimization, and this derivation focuses on 

its application to subset selection scenarios. Beginning with an exploration of the foundational principles of ACO, the derivation delves into the adaptation of these 

principles to address subset selection challenges, emphasizing the formulation of the objective function, pheromone updating mechanisms, and solution construction 

procedures. The mathematical rigor is complemented by intuitive explanations, bridging the theoretical and practical aspects of ACO. Additionally, the article 

highlights the algorithm's versatility in handling diverse subset selection objectives, showcasing its adaptability to various problem domains. In essence, this 

comprehensive derivation provides readers with a profound understanding of ACO's inner workings, enabling them to apply and customize the algorithm effectively 

for subset selection problems in different contexts. 

Keywords: Ant Colony Optimization, Subset Selection Problems, Combinatorial Optimization Problem, Mathematical Derivation, Optimization 

Algorithms. 

1. Introduction 

Subset selection problems are completely different from ordering problems. Out of a set S of n objects we have to select the best subset of’ n’ objects, it 

satisfying some more constraints. In subset selection problems are finding an optimal feasible subset of an initial set of objects with respect to an objective 

function or some constraints [4-13]. Subset selection is a heuristic search process where search space contains states, each of which generate a candidate 

subset for evaluation. Two things must be determined for subset generation, Search starting point and Search strategy [12]. In a subset selection the 

starting point is chosen randomly without any consideration and objects are added or deleted as per the requirement. The subset selection problem is one 

of NP-hard combinatorial problems can be formulated subset, which is easiest to describe and understand. Available algorithms to solve this problem 

needs an exponential time, thus finding a solution to this problem is not currently feasible but verifiable in polynomial time.   

1.1 Subset Selection Problems 

Subset Selection problems involve finding an optimal feasible subset of objects within an initial set of objects. Generally a subset selection problem may 

be defined by a triple (S, SFitness , f) where 

• S is a set of objects. 

• SFitness ⊆  P(S) is a set that contains all feasible subsets of S. 

• f: SFitness → GR is an objective function that associates a real-valued cost f(S∗) with every feasible subsets of objects S′ ∈ SFitness .  

The goal of subset selection problem (S, SFitness , f) is to find S∗ ∈ SFitness and f(S∗) is maximal. Here a few examples of subset selection problems. 
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1.2 Subset Selection process 

     

 

 

 

 

 

 

 

 

 

Figure 1 Subset Selection Processes [10] 

  Minimum vertex covers problems (MVC): The goal is to find a subset of vertices such that for each edge in E, at least one of its two end vertices is 

in the subset and that its cardinality is minimum[10]. For a non-empty vertex set S ⊆ V, if each edge in E has at least one endpoint in S, then S is called 

a vertex cover set of graph G. The vertex cover with the minimum number is the minimum vertex cover set of graph G. For any graph G (V,E) and S ⊆ 

V  ,the following statements are equivalent: 

• S is the minimum vertex cover in G. 

• V-S is the maximum independent vertex of G. 

A mathematical model of Minimum Vertex Cover (MVC) problem is presented in chapter 6. 

Travelling Salesman Problem (TSP): The travelling salesman problem (TSP) is the problem of finding the shortest tour among a set of ‘n’ cities starting 

from one city and journey all other cities once and only once before returning to the home (starting) city. The goal is to find the smallest subset of arc(E′ ⊆

E) of the graph G, i.e. best path in term of minimum distance (or the minimum cost) travel by salesman. Graphically, it can be represented by a complete 

weighted graph G (V, E), where V is the set of vertices representing cities, and E is the set of edges representing paths fully connecting all cities [1-3]. 

Each edge (i,j) ∈ E is associated with a cost dij ,which is the distance between cities i and j. Different examples of the TSP are also split into different 

classes based on the distance between the cities or the type of graph. 

2. Subset-Sum Problems 

The Subset-Sum problem (SSP) is defined as follows: given a set of positive integers S, and a positive integer C. This problem is to find one/all subsets 

of S that sum as close as possible to, but do not exceed C [3, 12]. For example, consider the set S = {1, 2, 3, 4, 5, 6} and let the target sum C be 12. The 

total number of subsets of S in this case is 64. Some of the valid solutions to this problem are the sets, {1,2,3,6}, {1,5,6}, {2,4,6},{3,4,5}.In general, we 

notice that the total number of subsets taken from a set of n elements is  2n. An algorithm that tests all of these possible solution subsets needs an 

exponential time. Here a few examples of subset sum problems: 

 Knapsack Problem:  The subset sum problem is a special case of 0/1 Knapsack problem consists of loading objects in to a knapsack load capacity. Each 

object can be loaded or not loaded into the knapsack, relating 0-1 decision about object loading. The 0/1 knapsack problem does not allow the user to put 

multiple copies of the same items in their knapsack. The goal is to find a subset of objects that maximizes a total profit [5, 14-17].  

2. Graph Representation of SSP 

Let G=(V,E) denoted the graph for Subset Selection problem and the solution to this instance is an unordered vertex subset S ⊆ V  .Each object of the set 

represent vertices in the graph and selected object are represented as a combination of arcs where ants have traversed through the graph. We construct a 

complete graph Gc= (V,Ec ) be the complete graph of Gc . By using Ant Colony Algorithm, the ants would choose the next node arbitrarily. The connected 

function for each edge in graph G is defined as follows:  C: Ec→ {0,1}for each edge (i, j) as [10]: 

                                   C(i, j) = {
1, (i, j) ∈ E

0, (i, j) ∉ Ec − E
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                                                Figure 2 Graph Representation of SSP with 6-Vertices 

By defining the connected value for each edge, we can distinguish the edges between E(G) and 

E(Gc)-E (G).Meanwhile, the connected value is also the pheromone. For ant k , let any vertex be the initial point. In order to ensure that ant k does not 

choose the vertices which have been reached, we update the connected value of edge (i, j) when the ant k reaches the point i . C (i,j)=0 ,( j∈  H) (Select 

H vertices arbitrarily as the initial points and place ant on it.). Then calculating the total value for the edges incident with each vertex in graph G. The 

value of an edge, connectivity value, in E is updated when one of its edge vertices [90] was visited by some ant, say ant k, in the following way: C(i, j)= 
1

n
 , if edge (i, j) ∈ E and either vertex i or j is visited by ant k , in which n is the number of graph vertices,∣ V∣ . First, at the end of each cycle, the pheromone 

left on the vertices of the currently best solution. Suppose that S is the currently best solution. For each vertex i ∈S we will update its pheromone according 

to global updating by:   τi= (1-ρ)τi 

Where ∆τi=
1

∣sk∣
  and ρ ∈ (0,1) is a parameter which simulates the evaporation rate of the pheromone intensity.   So the updated pheromone is:  τi=τi+ρ∆τi 

2.1 ACO for the solution of Subset Selection Problem 

The ACO literature typically development of a construction graph for the problem to be solved as necessary to the application of ACO as it is a graph 

based on shortest path problem that real ants solve when traveling from the nest to a food source. 

According to G.Leguizamon and Z.Michalewicz [6], there is no real concept of path in subset problems. According to Dorigo et al.[1-3], a construction 

graph can be representing solution components as vertices on which pheromone is associated with the objects and these problems in terms of a graph is 

quite artificial. According to Lee et al.[18] where they adopted the graph based ant system to solve feature selection where candidate solution can be 

represented in directed graphs. Finally, Jensen and Shen [19] represented feature selection as graph where the nodes represent features and the edges 

between the nodes denote the choice of the next feature. The search for the optimal feature subset is by an ant traversal through the graph where a 

minimum number of nodes are visited that satisfies the traversal stopping criterion .According Aghdam et al.[20] follow similar method like Jensen and 

Shen but the pheromone is associated with the vertices of graph instead of edges of the graph. The vertices represent features and the edges between them 

indicate the choice of the next feature. Each ant starts with a random feature, from these initial positions, they visits edges probabilistically until a traversal 

stopping criterion is satisfied. 

The previous papers show the need to an alternative problem representation and which follows the general characteristics of ACO meta-heuristic. A 

problem may be modeled as subset problem or a kind of ordering problems. Each objects of the set represents as the node of the graph and the selected 

objects are represented as a combination of arcs where ants have traversed through the graph. Every ant must visits every node in the graph at most once. 

2.3 ACO algorithm for SSP        

Step-1:Initialization parameters: by using formula as follows to give the connected value for each edge in graphG c.           

              C(i, j) = {
1, (i, j) ∈ E

0, (i, j) ∉ Ec − E
 

              and  Sk=φ,i=1,k=1, Select H vertices arbitrarily as the initial points and place ant on it. 

Step-2:Use function C(i,j)=0  to update the connected values of all edges incident with vertex i 

and compute  Cj  
k    =  

1

n
   (j∈ V). If Cj  

k     =  0 , we get the vertex cover set Sk . Else if k<H, let 

 k = k +1 , i = i +1, then go to Step 1. else if k=H, go to Step 4. else go to Step 3. 

Step-3:Compute Cj  
k    the vertex has the maximum value then Sk = Sk  ∪  {ui }.and 

Obtain subset from set S by Sk={Sk,{ui},{Sk  ∪  {ui }}, go to Step-2. 
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Step-4 : Print all subsets of S is Sk={∅ ∪ S1 ∪ … … … … .∪ SH },then  stops algorithm . 

3. Numerical Evaluation of ACO in SSP  

We use graph G in Figure 1 to illustrate the specific implementation of the algorithm. And select the subset of vertex cover of graph G would be obtained. 

3.1 Initialization of Parameters     

    Assume that   α = 1, β = 1, ρ = 0 ,m=6 (i.e number of ants) and 

                          τij=  {
1, (i, j) ∈ E

0, (i, j) ∉ E
 

3.2 A Step by Step Illustration  

Step-1 (ant-1)(iteration-1) 

Let vertex A be the initial point used by ant 1 to search vertex cover set. Give the connected value for each edge in graph G , we have 

C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero. Let S1={A}. 

Step-2: Let the connected value of all edges incident with vertex A be 0 , and then compute Ci
1 ,  

        CB
1=CC

1=CD
1 =

1 

6
+1+1=2.18, CF

1=3 

Step-3: CF
1=3 is the maximum then S1={A,F},goto step 2. 

Step-2:Let the connected value of all edges incident with vertex F be 0 , and then compute Ci
1 ,  

        CB
1=CD

1 =
1 

5
+1=1.02, CE

1 =
1 

5
 = 0.2, CC

1= 1+1=2 goto step 3 

Step-3: Cc
1=2 is the maximum then S1={A,F,C},goto step 2. 

Step-4: Update the connected values of all edges, and  CA
1=CB

1=Cc
1=CD

1 =CE
1=CF

1=0 

So the algorithm stops. Output is S1 = {∅, {A}, {A, F}, {A, F, C}}. 

Iteration-2 

Step-1 (ant-2) 

Let vertex B be the initial point used by ant 2 to search vertex cover set. Give the connected value for each edge in graph c G , we have 

C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero. Let S2={B}. 

Step-2: Let the connected value of all edges incident with vertex B be 0 , and then compute Ci
2 ,  

     CA
2=    

1 

6
+ 1 + 1 + 1 = 3.16, CC

2=CF
2=

1 

6
+1+1=2.18, CE

1=1+1=2, CE
1=1+1+1=3, 

Step-3: CA
2=3.16 is the maximum then S2={B,A},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex A be 0 , and then compute Ci
2 ,  

  CE
1=CC

1=
1 

5
+1=1.02, CD

1  =1+1+1 = 3, CF
1= 1+1=2 goto step 3 

Step-3: CD
2 =3 is the maximum then S2={B,A,D},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex D be 0 , and then compute Ci
2 ,  

        CE
1= 1 , CC

1=0, , CF
1= 1+

1 

4
=1.25 goto step 3 

Step-3: CF
2=1.25 is the maximum then S2={B,A,D,F},goto step 2. 

Step-4: Update the connected values of all edges, and  CA
2=CB

2=Cc
2=CD

2 =CE
2=CF

2=0 

So the algorithm stops. Output is S2 = {∅, {B},{B,A},{B,A,D},{B,A,D,F}}.  

 

Iteration-3 

Step-1 (ant-3) 
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 Let vertex C be the initial point used by ant 3 to search vertex cover set. Give the connected value for each edge in graph c G , we have 

C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero .Let S3={C}. 

Step-2:Let the connected value of all edges incident with vertex C  be 0 , and then compute Ci
3 ,  

        CA
3=

1 

6
+1+1+1=3.16, CB

3=CD
1 =

1 

6
+1+1=2.18, CF

3=3, CE
3=2 

Step-3: CA
3=3.16 is the maximum then S3={C,A},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex A be 0 , and then compute Ci
3 ,  

        CB
3=CD

3 =CE
3 =  

1 

5
+1=1.02,   CF

3= 1+1+1=3 goto step 3 

Step-3: CF
3=3 is the maximum then S3={C,A,F},goto step 2. 

Step-4: Update the connected values of all edges, and  CA
3=CB

3=Cc
3=CD

3 =CE
3=CF

3=0 

So the algorithm stops. Output is S3 = {∅ ,{C},{C,A},{C,A,F}}. 

Iteration-4 

Step-1 (ant-4) 

 Let vertex D be the initial point used by ant 4 to search vertex cover set. Give the connected value for each edge in graph G , we have 

C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero. Let S4={D}. 

Step-2: Let the connected value of all edges incident with vertex B be 0 , and then compute Ci
2 ,  

     CA
4=    

1 

6
+ 1 + 1 + 1 = 3.16, CC

4=CF
4=

1 

6
+1+1=2.18, CE

4=1+1=2, CF
4=1+1+1=3, 

Step-3: CA
4=3.16 is the maximum then S4={D,A},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex D be 0 , and then compute Ci
4 , CE

4=CC
4=

1 

5
+1=1.02, CB

4 =
1

5
+1+1 = 2.2, CF

4= 1+1=2 goto 

step 3 

Step-3 : CB
4=2.2 is the maximum then S4={D,A,B},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex B be 0 , and then compute Ci
4 ,          

CE
4= 1 , CC

1=
1

4
, , CF

1= 1+
1 

4
=1.25 goto step 3 

Step-3: CB
4=1.25 is the maximum then S4={D,A,B,F},goto step 2.  

Step-4: Update the connected values of all edges:  CA
4=CB

4=Cc
4=CD

4 =CE
4=CF

4=0 

So the algorithm stops. Output is S4 = { ∅,{D},[D,A},{D,A,B},{D,A,B,F}}. 

Iteration-5 

Step-1 (ant-5) 

Let vertex E be the initial point used by ant 4 to search vertex cover set. Give the connected value for each edge in graph G , we have 

C(B,A)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero. Let S5={E}. 

Step-2: Let the connected value of all edges incident with vertex B be 0 , and then compute Ci
2 ,  

     CA
5=    

1 

6
+ 1 + 1 + 1 = 3.16, CB

5 =  CC
5=CD

5 =1+1+1=3,  CF
5=

1

6
+1+1=2.16, 

Step-3:  CA
5=3.16 is the maximum then S5={E,A},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex D be 0 , and then compute Ci
5 ,          

CB
5=CC

5=CD
5  =

1

5
+1+1 = 2.2, CF

4= 1+1=2 goto step 3 

Step-3: CB
5=2.2 is the maximum then S5={E,A,B},goto step 2. 

Step-2 : Let the connected value of all edges incident with vertex B be 0 , and then compute Ci
5 ,  

        CD
5 = 1 + 1 = 2 , CC

5= CF
5= 1+

1 

4
=1.25 goto step 3 

Step-3:  CD
5 =2 is the maximum then S5={E,A,B,D},goto step 2. 

Step-4 : Update the connected values of all edges, and  CA
5=CB

5=Cc
5=CD

5 =CE
5=CF

5=0 
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So the algorithm stops. Output is S5 = { ∅,{E},{E,A},{E,A,B},{E,A,B,D}}. 

Iteration-6 

Step-1 (ant-6)  

Let vertex F be the initial point used by ant 1 to search vertex cover set. Give the connected value for each edge in graph G , we have 

C(A,B)=C(A,C)=C(A,D)=C(A,E)=C(B,C)=C(B,F)=C(C,D)=C(D,F)=C(E,F)=1 and other edges have the value zero. Let S6={F}. 

Step-2:  Let the connected value of all edges incident with vertex F be 0 , and then compute Ci
6 ,  

        CB
6=CD

6 =
1 

6
+1+1=2.18, CA

6=4, CC
6=1+1+1=3 

Step-3:  CA
6=4 is the maximum then S6={F,A},goto step 2. 

Step-2: Let the connected value of all edges incident with vertex A be 0 , and then compute Ci
6 ,          

CB
1=CD

1 =
1 

5
+1=1.02, CE

1 =
1 

5
 = 0.2, CC

1=
1

5
+ 1+1=2.2 goto step 3 

Step-3:  Cc
1=2.2 is the maximum then S6={F,A,C},goto step 2. 

Step-4 Update the connected values of all edges, and  CA
6=CB

6=Cc
6=CD

6 =CE
6=CF

6=0 

So the algorithm stops. Output is S6 = { ∅,{F},{F,A},{F,A,C}}. 

Table 4.1 ACO-SSP Computation results 

Ant Initial point        Subsets 

1 A S1={∅, {A}, {A, F}, {A, F, C}} 

2 B S2={∅,  {B},{B,A},{B,A,D},{B,A,D,F}} 

3 C S3={∅ ,{C},{C,A},{C,A,F}} 

4 D S4={∅,{D},{D,A},{D,A,B},{D,A,B,F}} 

5 E S5={∅,{E},{E,A},{E,A,B},{E,A,B,D}} 

6 F S6 = { ∅,{F},{F,A},{F,A,C}} 

So the Subset is 

 Sk={∅,{A},{B},{C},{D},{E},{F},{B,A},{C,A},{A,F},{D,A},{E,A},{F,A},{A,F,C},{C,A,F}, 

         {B,A,D},{E,A,B},{B,A,D,F},{D,A,B,F},{E,A,B,D}}. 

4. Conclusion 

In conclusion, the step-by-step mathematical derivation of Ant Colony Optimization (ACO) for solving Subset Selection Problems has provided valuable 

insights into the algorithm's effectiveness in tackling combinatorial optimization challenges. The presented application of ACO to subset selection, with 

ants navigating through the selection space, has yielded a final sequence Sk that represents optimal subsets based on the algorithm's decision-making 

process. The subsets in Sk reflect the chosen combinations of elements, showcasing the algorithm's ability to adapt and converge towards solutions that 

satisfy the subset selection criteria. This study not only reinforces the robustness of ACO as a metaheuristic but also highlights its versatility in handling 

diverse problem domains. Future research can further explore parameter tuning, scalability, and the algorithm's performance on different subset selection 

scenarios, contributing to the continued enhancement of ACO's applicability in real-world optimization problems. Overall, the presented derivation and 

results contribute to the understanding and application of Ant Colony Optimization in solving subset selection problems, offering a foundation for further 

exploration and refinement in optimization methodologies. 
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