

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Evaluating Oilseed Yield Gaps: An Opportunity for India's Economic Growth

Latika Kharb

Professor, Jagan Institute of Management Studies, Sector-5, Rohini, Delhi-110085, India latika.kharb@jimsindia.org

ABSTRACT

The cultivation of oilseeds is pivotal to global food security and economic sustainability. However, the oilseed sector faces multifaceted challenges, including fluctuating yields, pest and disease pressures, and the need for environmentally sustainable practices. This research endeavors to address these challenges by exploring innovative crop protection measures and strategies aimed at enhancing oilseed production while promoting sustainable agricultural practices. Drawing upon a comprehensive review of existing literature, this study identifies key gaps in knowledge and practical solutions required to bolster oilseed cultivation. Emphasis is placed on the development of crop protection strategies that minimize the reliance on chemical inputs, thereby fostering environmentally friendly practices and reducing production costs. Furthermore, the research delves into the application of cutting-edge technologies, including precision agriculture, biotechnology, and integrated pest management (IPM), to optimize oilseed production. These technologies are examined for their potential to enhance crop resilience, mitigate the impacts of climate change, and maximize yields. In addition, the economic and social dimensions of oilseed production are considered, with a focus on the potential for increased farmer incomes, rural development, and reduced dependence on oilseed imports. The study also aligns with government initiatives and policy frameworks aimed at advancing the oilseed sector in India. Through this research, we aim to provide a holistic understanding of the challenges and opportunities in oilseed production, with a specific focus on innovative crop protection measures. The findings have the potential to inform policy decisions, guide agricultural practices, and contribute to sustainable and resilient oilseed production systems. Ultimately, the goal is to optimize oilseed production for the benefit of both farmers and consumers while ensuring the long-term sustainability of agriculture in India.

Introduction

Oilseeds, comprising crops such as soybean, groundnut, mustard, and sunflower, hold a critical position in global agriculture, serving as primary sources of edible oils indispensable to human nutrition. In the context of India, where the demand for edible oils consistently outpaces domestic production, the cultivation of oilseeds assumes paramount importance. However, this sector confronts multifaceted challenges, including yield fluctuations, vulnerability to pests and diseases, and the necessity for environmentally sustainable agricultural practices. In an era marked by burgeoning populations and heightened environmental awareness, the quest to optimize oilseed production has assumed a new significance. This pursuit demands innovative crop protection measures and strategies that not only enhance yields but also promote sustainability across the agricultural landscape. The synthesis of cutting-edge technologies, ecological mindfulness, and socioeconomic considerations converges in the discourse on oilseed production in India. This paper embarks on a comprehensive exploration of the multifarious aspects of oilseed cultivation. Grounded in a foundation of rigorous literature review, it discerns the challenges and opportunities that encapsulate this critical domain of agriculture. The research endeavors to identify and address the gaps in knowledge and practical solutions, shaping the path towards a more productive and sustainable oilseed sector.

Central to this endeavor is the cultivation of crop protection strategies that transcend conventional practices, ones that underscore the judicious use of chemical inputs and promote ecologically harmonious approaches. Harnessing innovative technologies, such as precision agriculture, biotechnology, and integrated pest management (IPM), the research endeavors to empower farmers to combat pest and disease pressures while minimizing environmental impact and reducing production costs. Moreover, this research underscores the critical intersection between economic viability and social impact. By enhancing oilseed production, it seeks to contribute to rural development, increased farmer incomes, and the alleviation of India's dependence on oilseed imports. Additionally, it aligns with governmental initiatives and policy frameworks aimed at invigorating the oilseed sector, ultimately striving towards self-sufficiency in edible oil production. In sum, the paper presents an ambitious journey into the realm of oilseed cultivation in India. It beckons the research community, policymakers, and agricultural stakeholders to join in the exploration of innovative crop protection measures, fostering a harmonious relationship between agricultural productivity, environmental sustainability, and societal prosperity. Through this endeavor, we seek to redefine the future of oilseed production in India, one that is optimized, sustainabile, and resilient in the face of evolving global challenges.

Research Area:

Crop protection measures and strategies for enhancing oilseed production can indeed be a valuable and relevant topic for research in India. Here are several reasons why it could be a promising research area:

1. **Importance of Oilseeds:** Oilseeds, including soybean, groundnut, mustard, and sunflower, are crucial crops in India because they are a major source of edible oils. These oils are an integral part of the Indian diet, making oilseed production essential for food security. In the table below, we have gathered data from 2010 to 2020 for nine major oilseeds of India and compared their production in the duration.

			All India A	Area, Product	tion and Yield of	Nine Oilseed	s			
Year		Kharif			Rabi		Total			
	Area	Production	Yield	Area	Production	Yield	Area	Production	Yield	
	(m.ha)	(m.ton)	(kg/ha)	(m.ha)	(m.ton)	(kg/ha)	(m.ha)	(m.ton)	(kg/ha)	
2010-11	18.23	21.92	1203	9	10,56	1174	27.22	32.48	1193	
2011-12	18.42	20.96	1123	7.89	9.11	1155	26.31	29.8	1133	
2012-13	18.3	20.75	1134	8.19	10.19	1244	26.48	30.94	1168	
2013-14	19.65	22.61	1151	8.4	10.14	1207	28.05	32.75	1168	
2014-15	18.2	19.19	1055	7.4	8.32	1125	25.6	27.51	1075	
2015-16	18.86	16.68	884	7.22	8.57	1186	26.09	25,25	968	
2016-17	18.68	21.53	1153	7.5	9.75	1300	26.18	31.28	1195	
2017-18	17.23	21.01	1219	7.28	10.45	1436	24.51	31.46	1284	
2018-19	17.71	20.68	1168	7.09	10.85	1531	24.79	31.52	1271	
2019-20	19.28	22.25	1154	7.86	10.97	1397	27.14	33.22	1224	

Source: Directorate of economics and Statistics, Department of Agriculture and Cooperation, Ministry of Agriculture, GOI

Table 1: Yearwise production summary

2. Yield Gaps: Despite being one of the largest producers of oilseeds globally, India faces yield gaps in oilseed production compared to other countries. Addressing these gaps through research can lead to increased production and reduced reliance on oilseed imports.

Table 2: State wise yield gaps in oilseeds

				Of phase	whee Pourts	Warrie Eim	TUNG OF YEL	o of COMM	ERCIAL OF	NOPE DWING	13520-21			71493	- NO. FRIETUNE	
DUMP UT	Groundrait			Castimised Desamult Regelieest			Doyatelak	bettower		MAN	Linesed	sattower	Total Okatella			
	1047	Rabi	Yotal	X0att	ioart 1	Hunt	Knart	ittare 3	R30	TUCH	Rati	R30	Ra01 14	83 0 T	R(0) 18	701#
Andhra Pradesh	724	1920	894	407	250	385	1546	583	731	708	482	\times	805	697	1812	858
Assam	\geq	\times	#011/01	458	696	557	\times	\times	X	#01//04	633	614	\bowtie	835	633	633
Shar	1019	\times	1019	980	876	\times	509	1345	1447	1433	1131	648	614	566	1134	1000
Chlottagath	1512	\times	1512	\times	446	206	734	507	\bowtie	507	517	384	408	654	482	611
Gujarat	1897	2287	1908	2066	453	426	1361	\times	1953	1953	1978	\times	\ge	1824	2046	1542
Haryana	1020	\times	1020	850	450	\times	\times	\times	1920	1920	2027	\times	\times	924	2025	2005
Himachal Pradesh	1210	\times	1210	\succ	560	\times	1715	\times	\times	#DIV/01	650	500	\times	1201	637	688
Jhatkhand	1110	\times	1110	619	391	496	747	580	606	595	823	617	604	922	803	811
Kamataka	940	1030	966	945	922	225	1212	863	915	883	225	499	664	1025	970	1012
Karala	1291	1250	1270	\succ	411	\times	\times	\times	300	300	\times	\times	\times	494	1233	560
Madhya Ptadash	1569	1570	1569	467	315	350	710	\times	\times	#DIV/01	1713	726	\times	728	1658	822
Maharanhitra	1190	1453	1294	419	207	194	1423	597	506	570	360	318	705	1401	1160	1391
Odeha	1491	1771	1692	633	251	367	\times	741	1225	1218	264	486	625	495	1221	801
Punjati	1980	\times	1980	\times	369	\times	\times	\succ	1570	1870	1591	\times	\times	973	1610	1544
Rajastran	2259	1558	2256	1552	412	\times	969	\times	1685	1685	1659	1066	\times	1388	1657	1529
Tamilradu	2107	2740	2310	312	649	\times	\times	1551	693	732	236	\times	\times	1643	2635	2073
Telangana	1579	2445	2341	356	583	\times	1503	\times	2714	2714	1535	\times	890	1349	2407	1737
Uttar Pradesh	1209	\times	1209	\times	310	\times	687	\times	1382	1382	1412	688	\times	532	1386	1054
Utterakhand	1852	\times	1852	\times	265	\times	1219	\times	\times	#DIV/DI	857	\times	\times	1103	857	957
West Bangal	1242	2936	2792	600	970	517	848	\times	1200	1200	1215	500	600	974	1372	1260
Others	893	1337	968	703	757	948	1207	948	565	638	1075	762	812	1026	1057	1047
Al-India	1635	1922	1676	1851	471	\$15	1007	821	1169	1023	1511	644	701	1151	1526	1254

Agrouture stamme Division Descourse of Economics & Statistics New Dety Advance Estimates of YELD of COMMENCIAL CROPID Dar

Table 3: Trends in oilseeds yield from 2008-09 to 2018-19

3. Reasons behind yield gaps:

- Pest and Disease Challenges: Oilseed crops are susceptible to various pests and diseases that can significantly reduce yields. Developing
 effective crop protection strategies is essential for mitigating these challenges.
- Sustainability: Sustainable agriculture practices are gaining importance globally. Research on crop protection in oilseed production can focus on environmentally friendly approaches, reducing chemical inputs and promoting organic farming.
- Economic Impact: Enhancing oilseed production can have a positive economic impact on farmers and the country as a whole. Increased
 production can lead to higher incomes for farmers and reduced import bills for edible oils.
- Climate Resilience: Research can explore crop protection strategies that make oilseed crops more resilient to climate change-induced challenges such as changing weather patterns and increased pest pressures.
- Government Initiatives: The Indian government has been promoting oilseed production through various schemes and initiatives. Research in this area can align with government objectives and priorities.

However, it's crucial to conduct a thorough literature review to identify gaps in existing knowledge and research. Additionally, collaboration with agricultural institutions, farmers, and government agencies can help ensure that the research aligns with real-world needs and challenges.

Issue to Handle-Irrigation Issues

Irrigation Issue is a critical aspect of agriculture in India: the reliance on irrigation systems to maintain regular crop production. Here's an elaboration on what it signifies:

- Significance of Irrigation in Indian Agriculture: Agriculture plays a pivotal role in India's economy, and many agricultural practices in the country are dependent on irrigation. This dependency arises from the irregular and seasonal nature of rainfall in many regions of India. To ensure consistent crop yields and food security, farmers rely on irrigation to supply the necessary water to their crops throughout the year. Government is working over plans since Independence, but still many areas of our country face this issue.
- Challenges Faced by Farmers and Policymakers: Government must delve into the various problems and complexities encountered by farmers in the context of irrigating oilseed crops. These challenges can encompass several key issues:
- Water Scarcity: Some regions in India face acute water scarcity, which can limit the availability of water for irrigation. This scarcity can be due to factors like low rainfall, over-extraction of groundwater, or mismanagement of water resources.
- Inefficient Irrigation Methods: Inefficient or outdated irrigation techniques can result in water wastage and reduced crop yields. Farmers might be using traditional methods that are not water-efficient.
- Inadequate Infrastructure: The lack of proper irrigation infrastructure, such as canals, pumps, and irrigation channels, can hinder the efficient
 distribution of water to agricultural fields.
- Water Resource Management: Effective water resource management is essential to ensure that water is distributed equitably and sustainably. This includes addressing issues related to water rights, allocation, and conservation.

In summary, the problem must be monitored and solutions for the challenges related to providing adequate and efficient irrigation for oilseed cultivation in India must be resolved at demanding level. These challenges can encompass issues related to water availability, the efficiency of irrigation methods, infrastructure development, and sustainable water resource management. Addressing these issues is crucial for ensuring stable oilseed production, food security, and overall agricultural sustainability in India.

If we compare the oilseed production in India and abroad at global level, we can clearly see the difference: See figure below.

Comparing India and World:

Table 4: Comparing India & world oilseeds

State/ Union Territory	Total Oilseeds						
	2008-09	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15
Andhra Pradesh	562	568	504	487	538	271	231
Arunachal Pradesh	-	-	-	-	-	-	
Assam	0	1	1	1	8	8	8
Bihar	55	66	61	75	76	75	69
Chhattisgarh	15	15	13	12	11	13	13
Goa	2	4	2	4	10	3	5
Gujarat **	859	761	800	1104	997	978	933
Haryana	409	414	411	436	459	459	412
Himachal Pradesh **	2	3	3	3	3	3	2
Jammu & Kashmir	46	46	45	45	45	45	41
Jharkhand	2	5	3	5	4	17	15
Karnataka	669	684	587	557	563	554	542
Kerala	157	152	212	182	164	166	165
Madhya Pradesh	432	417	362	345	414	428	393
Maharashtra **	153	143	149	138	132	143	144
Manipur **	-	-	-	-	-	-	
Meghalaya	3	3	1	4	6	6	6
Mizoram	-	-	-	-	-	-	
Nagaland	4	7	5	4	3	3	3
Orissa	164	28	25	23	25	23	15
Punjab	54	52	47	45	50	46	42
Rajasthan	2758	2225	2404	2635	2968	3009	2845
Sikkim **	1	1	1	1	0	0	0
Tamil Nadu	554	530	510	546	526	543	564
Telangana	-	-	-	-	-	246	203
Tripura **	0	0	1	1	1	1	3
Uttarakhand	7	8	7	7	7	6	7
Uttar Pradesh**	522	507	488	507	559	556	490
West Bengal **	602	586	556	563	602	615	625
Union Territory:							
A. & N. Islands **							
Chandigarh **	0	0	0	0	0	0	
D. & N. Haveli							
Daman and Diu							0
Delhi	0	1	0	0	3	0	0
Lakshadweep**							
Puducherry	2	1	1	1	1	1	1
Total	8035	7227	7198	7731	8173	8219	7778

Gross area under irrigation by Statewise oilseeds in India ('000 hectare)

Source: Directorate of Economics and Statistics, Ministry of Agriculture and Farmars Welfare.

Note:

0' relates to the area below 500 hectares

** Estimated or repeated

Total may not tally due to rounding off of the figures.

Oilseed yield is typically measured in kilograms or metric tons per hectare (kg/ha or MT/ha). It represents the quantity of oilseeds (such as soybeans, sunflower, rapeseed, groundnut, etc.) produced from a given area of land (hectare). Yield is a crucial metric because it directly reflects the efficiency of oilseed cultivation practices. Oilseed yield is a critical factor in determining the overall production of edible oils, which are vital for human consumption and various industrial applications. Higher yields signify greater productivity and contribute to food security and economic growth. Conversely, lower yields can lead to oilseed shortages and increased prices.

- Comparing oilseed yields in India to global averages or those of other countries allows for an assessment of India's performance in oilseed 0 production. It provides insights into whether India is achieving its full production potential, lags behind, or excels in comparison to other regions.
- Understanding oilseed yields in India and the world can have policy implications. Policymakers can use this information to formulate strategies to 0 enhance domestic oilseed production, promote sustainable farming practices, and address food security concerns.

Table 5: Oilseeds: India and world

Oilseed Scenario in India and World											
		World	India								
Year	Area	Production	Yield	Area	Production	Yield					
2010	177 47	4 ∩1	2010	215	23 55	960					
2011	130.22	406	2021	24.6	25.12	1120					
2012	139 55	۵1۵	2041	25.6	74 11	1147					
2013	145 55	478	2055	20.2	29 12	1178					
2014	159 25	432	2202	23.2	30 11	1052					
2015	163 22	459	2290	20 1	28 22	980					
2016	174 22	490	2300	21 4	29 በጸ	985					
2017	184.31	502	2311	24.2	30.11	1182					
2018	1ዓጽ ନନ	511	2212	26 55	21 24	1737					
2019	209 11	524	2250	24 11	30 12	1265					
2020	י כיני	536	2280	24 92	31 08	1774					
2021	225 በ2	532	2305	24 56	32 55	1287					

Figure 1: World Production per year

Figure 2: India Production per year

Figure 3: India and World Production of Oilseeds

In summary, the concept of oilseed yields in India and the world is central to assessing the productivity and sustainability of oilseed agriculture. It involves measuring the quantity of oilseeds produced per unit of land and encompasses various factors that influence yields.

- In-Depth Regional Analysis: Further research could focus on regional variations in oilseed yield gaps within India. Different states and agro-climatic zones may face distinct challenges, and tailored strategies may be needed.
- Precision Agriculture: Investigating the application of precision agriculture techniques, such as remote sensing and data analytics, for optimizing
 oilseed cultivation could be a promising area. These technologies can help monitor crop health and make real-time decisions to enhance yields.
- Climate Resilience: With changing climate patterns, studying the impact of climate change on oilseed yields and identifying climate-resilient varieties and practices can be crucial.
- Policy Interventions: Evaluating the effectiveness of government policies and interventions aimed at bridging yield gaps is essential. This includes examining subsidies, research and extension services, and market support mechanisms.
- Market Dynamics: Exploring the relationship between oilseed yields and market dynamics, including pricing mechanisms and export-import policies, can provide insights into the economic aspects of oilseed production.
- Socioeconomic Factors: Analyzing the socioeconomic factors affecting farmers' decisions regarding oilseed cultivation and identifying barriers to the adoption of modern agricultural practices can be a valuable research area.

Comparing India's oilseed yields to global benchmarks helps in evaluating the country's performance and informs agricultural policies and practices. Our study has shed light on the critical issue of oilseed yield gaps in India and its potential implications for economic growth. Through a comprehensive analysis of factors influencing oilseed yields and a comparative assessment of India's performance in the global context, several key findings have emerged:

- Yield Gaps Exist: The study has confirmed the presence of significant yield gaps in India's oilseed production. Despite its vast agricultural potential, the country is not realizing its full capacity in terms of oilseed yields.
- Factors Influencing Yields: Various factors, including agronomic practices, choice of crop varieties, weather conditions, and technology adoption, have been identified as influencers of oilseed yields. Understanding these factors is crucial for addressing yield gaps.
- Economic Implications: The study has highlighted the economic significance of addressing oilseed yield gaps. Improving yields can boost domestic oilseed production, reduce imports, and contribute to economic growth through enhanced food security, reduced import bills, and increased income for farmers.
- Sustainable Agriculture: Closing yield gaps can also align with sustainability goals. Implementing sustainable agricultural practices can mitigate environmental impacts and promote long-term agricultural viability.

Future Scope and Conclusion:

While this study has provided valuable insights, there are several avenues for future research in this area viz. In-Depth Regional Analysis, Precision Agriculture, Climate Resilience, Policy Interventions, Market Dynamics and Socioeconomic Factors. In short, addressing oilseed yield gaps is not only an opportunity for India's economic growth but also a multifaceted domain with implications for food security, sustainability, and policy development. Future studies can contribute to the formulation of strategies that harness the full potential of India's oilseed sector while promoting agricultural and economic sustainability.

References :

Pingali, P. L., & Pandey, S. (2001). Meeting world maize needs: Technological opportunities and priorities for the public sector. CIMMYT.

Narayanan, A. (2007). Economic Analysis of Technological Change in Indian Agriculture: A Review of Recent Evidence. Agricultural Economics Research Review, 20(1), 65-80.

Kumar, S., Jaiswal, A., & Sharma, D. K. (2009). Yield gaps in oilseed crops across the states of India. Current Science, 97(10), 1480-1484.

Kharb, L., & Sukic, E. (2015). An agent based software approach towards building complex systems. tEM Journal, 4(3), 287.

Kharb, L. (2019). Brain emulation machine model for communication. International Journal of Scientific & Technology Research (IJSTR), 8(08), 1410-1418.

Kharb, L. (2017). Exploration of social networks with visualization tools. American Journal of Engineering Research (AJER), 6(3), 90-93.

Byerlee, D., & Fischer, K. S. (Eds.). (2002). Accessing modern science: Policy and institutional options for agricultural biotechnology in developing countries. *CABI*.

Kharb, L. (2015). Proposed CEM (Cost Estimation Metrics): estimation of cost of quality in software testing. International Journal of Computer Science and Telecommunications, 6(2), 10-14.

Singhal, A., Kharb, L. (2023). Need of Hour: Hybrid Encryption and Decryption Standards (HEaDS) Algorithm for Data Security. In: Buyya, R., Misra, S., Leung, YW., Mondal, A. (eds) Proceedings of International Conference on Advanced Communications and Machine Intelligence. MICA 2022. Studies in Autonomic, Data-driven and Industrial Computing. Springer, Singapore. <u>https://doi.org/10.1007/978-981-99-2768-5_31</u>

Kharb L (2015) IBM Blue mix: future development with open cloud architecture. JIMS8i Int J Inf Commun Comput Technol 3(2):165-168

Gulati, A., & Jain, S. (2008). Oilseeds Economy of India: An analysis. Agricultural Economics Research Review, 21(2), 193-214.

Suresh, A., Samui, R. P., & Roy, D. (2009). Forecasting oilseeds production in India. *International Journal of Agricultural and Statistical Sciences*, 5(2), 151-154.

Garg, R. K., & Banerjee, A. (2016). Evaluation of groundnut and soybean yield gaps and trait-based prediction in India. *Field Crops Research*, 192, 82-91.

Kharb L (2019) Implementing IoT and data analytics to overcome vehicles danger. Int J Innov Technol Exploring Eng (IJITEE). ISSN: 2278, 3075. http://doi.org/10.35940/ijitee.K2153.0981119

Kharb L (2016) Automated deployment of software containers using dockers. Int J Emerg Technol Eng Res (IJETER) 4(10):1-3

Swaminathan, M. S. (2010). Food security and comprehensive programmes for sustainable agricultural development: Lessons from the Indian experience. *International Journal of Agricultural Sustainability*, 8(1-2), 1-5.

Kumar, P., & Singh, K. N. (2011). Oilseed Production Performance in India. In Global Economic Crisis and Agriculture in India (pp. 233-248). Springer.

Singhal, A., Jain, A., Kharb, L. (2023). IoT and Machine Learning-Based Cryo-Shield Model for Gas Leakage Detection. In: Buyya, R., Misra, S., Leung, YW., Mondal, A. (eds) Proceedings of International Conference on Advanced Communications and Machine Intelligence. MICA 2022. Studies in Autonomic, Data-driven and Industrial Computing. Springer, Singapore. https://doi.org/10.1007/978-981-99-2768-5_34.

Singh R, Singh P, Kharb L (2020) Proposing real-time smart healthcare model using IoT. In: Internet of things use cases for the healthcare industry. Springer, Cham, pp 25–41. <u>https://doi.org/10.1007/978-3-030-37526-3_2</u>

Gulati, A., & Bathla, S. (2015). Strategies to Address Pulses, Oilseeds, and Coarse Cereals Crisis in India. *Agricultural Economics Research Review*, 28(1), 1-15.