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ABSTRACT 

The use of Mathematic in cryptography can result a safe encryption scheme. Lattices have emerged as a powerful mathematical tool in the field of cryptography, 

offering a diverse set of applications ranging from encryption to secure multi-party computation. This research paper provides a comprehensive review of the role 

of lattices in cryptography, covering both theoretical foundations and practical implementations. The paper begins by introducing the basic concepts of lattices 

and their relevance in cryptographic protocols. Subsequently, it explores key cryptographic primitives based on lattice problems, such as lattice-based encryption 

schemes, digital signatures, and fully homomorphic encryption. The paper also proposes a new lattice based cryptographic scheme. 
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1.INTRODUCTION 

Lattice-based cryptography relies on mathematical structures known as lattices, which are discrete sets of points in n-dimensional space forming a 

periodic structure. Read [1], [5] and [9] for detailed information and understanding of lattices and its application to cryptography. The mathematical 

foundation of lattice-based cryptography involves understanding the properties and applications of these lattices. A lattice is a mathematical structure 

that manifests as a discrete set of points arranged in a periodic, grid-like fashion within n-dimensional space. This concept is foundational to various 

branches of mathematics, including algebra, number theory, and cryptography. 

 

1.1 Definition: 

A lattice is a discrete set of points in n-dimensional space that exhibits periodicity and is generated by integer linear combinations of linearly 

independent basis vectors. Mathematically, a lattice Λ can be defined as: 

Λ = {V = 𝑎1 + 𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛 |𝑎𝑖𝜖  𝑍 

where 𝑏1, 𝑏2 , … , 𝑏𝑛  are linearly independent basis vectors and 𝑎𝑖  are integers. 

Proof of Periodicity: 

Let 𝑣 ∈ 𝛬, then v can be expressed as 𝑎1 + 𝑏1 + ⋯ + 𝑎𝑛𝑏𝑛 |𝑎𝑖 . Now, consider v+t, where t is any vector in the lattice. The new point v+t can be 

expressed as: 

𝑣 + 𝑡 =  𝑎1 + 𝑡1 𝑏1 +  𝑎2 + 𝑡2 𝑏2 + ⋯ + (𝑎𝑛 + 𝑡𝑛)𝑏𝑛  

Since 𝑎𝑖  and 𝑡𝑖  are integers, 𝑣 + 𝑡 is also a lattice point. This demonstrates the periodicity of the lattice. 

 

1.2 Properties: 

1. Translation Invariance: 

Let 𝑣 ∈ 𝛬. Now, consider v+t for any 𝑡𝜖Λ:  

𝑣 + 𝑡 = 𝑎1𝑏1 + 𝑎2𝑏2 + ⋯ + 𝑎𝑛𝑏𝑛 + 𝑡 

This expression, as shown earlier, is a lattice point, confirming translation invariance. 

Example: Consider a 2D lattice with basis vectors b1=[1,0] and b2=[0,1]. The lattice points are all integer combinations of these 

vectors. Translation invariance implies that if v=[a,b] is a lattice point, then v+[c,d] is also a lattice point. 
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2. Basis and Dimension: 

Linear independence of basis vectors is a fundamental property of lattices. If 𝑏1 , 𝑏2 , … , 𝑏𝑛are linearly independent, they span an 

n-dimensional space. 

Example: In a 3D lattice, the basis vectors b1=[1,0,0], b2=[0,1,0], and b3=[0,0,1] form a basis. The lattice points are all 

combinations of integers multiplied by these vectors. 

3. Lattice Points: 

The definition of a lattice explicitly states that each point in the lattice is a result of integer linear combinations of basis vectors. 

Example: In a 2D lattice, consider basis vectors b1=[1,0] and b2=[0,1]. The lattice points are all pairs of integers (a,b) such that 

v=ab1+bb2. 

Understanding these properties is foundational for exploring the applications of lattices in various mathematical and cryptographic contexts. 

 

2.FUNDAMENTAL LATTICE PROBLEMS 

Lattice problems form the basis for the security of lattice-based cryptography. Two fundamental problems in lattice theory are the Shortest Vector 

Problem (SVP) and Learning with Errors (LWE). We'll explore these problems with examples and provide brief proofs of their significance. Read up 

[3], [4] and [6] 

2.1 Shortest Vector Problem (SVP) 

Given a lattice Λ, SVP finds the shortest non-zero vector in the lattice, i.e., find v ∈ Λ such that ∣∣v∣∣ is minimized. 

Consider a 2D lattice with basis vectors b1=[2,1] and b2=[−1,3]. The SVP for this lattice involves finding the shortest non-zero vector. 

The SVP is computationally hard in general lattices, forming the foundation for lattice-based cryptographic schemes. It ensures that finding the shortest 

vector in a lattice is a challenging problem, essential for the security of lattice-based encryption. 

2.2 Learning with Errors (LWE) 

Given a set of noisy linear equations, LWE finds the secret vector s used to generate these equations. In the context of lattices, this involves finding 

s∈Zn given samples of the form 𝑎𝑖 , < 𝑎𝑖 , 𝑠 > +𝑒𝑖 , where 𝑎𝑖 is a lattice vector, ⟨⋅,⋅⟩ is the dot product, and 𝑒𝑖  is a small error. 

Suppose s = [2,−1] is the secret vector, and a1=[3,4], a2=[1,2] are lattice vectors. The samples would be  𝑎1, < 𝑎1 , 𝑠 > +𝑒1  and  𝑎2 , < 𝑎2 , 𝑠 > +𝑒2 . 

The hardness of the LWE problem is crucial for lattice-based cryptography. LWE-based schemes provide security guarantees, especially in the context 

of constructing cryptographic primitives like encryption and digital signatures. 

Understanding the computational complexity and significance of these fundamental lattice problems is essential for appreciating the security 

foundations of lattice-based cryptographic systems. These problems contribute to the resilience of such systems against various cryptographic attacks. 

3.HARDNESS ASSUMPTIONS IN LATTICE CRYPTOGRAPHY 

Lattice-based cryptography relies on the presumed hardness of specific lattice problems. Two prominent assumptions are the hardness of the Shortest 

Vector Problem (SVP) and the Learning with Errors (LWE) problem. We'll explore these assumptions with examples, see [10] for  proofs of their 

significance. 

3.1 Assumption: Hardness of Shortest Vector Problem (SVP) 

The assumption that finding the shortest non-zero vector in a lattice is computationally hard. Consider a 2D lattice with basis vectors b1=[3,1] and b2

=[−2,4]. The SVP involves finding the shortest non-zero vector in this lattice. 

The hardness of the SVP ensures that lattice-based cryptographic schemes remain secure. If an efficient algorithm existed to solve SVP, it could 

compromise the security of lattice-based encryption. 

3.2 Assumption: Hardness of Learning with Errors (LWE) 

The assumption that recovering a secret vector s from noisy linear 𝑎𝑖 , < 𝑎𝑖 , 𝑠 > +𝑒𝑖 , is computationally hard. 

Suppose s=[2,−1] is the secret vector, and a1=[3,4], a2=[1,2] are lattice vectors. The LWE involves finding s given samples 𝑎𝑖 , < 𝑎𝑖 , 𝑠 > +𝑒𝑖 . 

The hardness of LWE is fundamental to lattice-based cryptography. Cryptographic primitives like encryption and digital signatures constructed based 

on LWE assumptions are believed to be secure against both classical and quantum attacks. 

These hardness assumptions are critical for the security of lattice-based cryptographic systems. The proofs of their significance lie in the presumed 

computational infeasibility of solving these lattice problems efficiently, ensuring the security of cryptographic schemes built upon them. 

4.PROPOSED IDEA 

Lattice-based encryption schemes leverage the hardness of lattice problems to provide secure communication in the presence of powerful adversaries, 

including those with quantum capabilities. We propose a lattice-based encryption scheme based on the Learning with Errors (LWE) problem, along 

with mathematical formulations and proofs of security. See the work of [7] and read [8] extensively. 

4.1 Lattice-Based Encryption Scheme Proposal 

Key Generation: 

1. Parameters Setup: 

Choose security parameters n and q and define a lattice Λ ⊂ 𝑍𝑞
𝑛  generated by a basis matrix A. Select a noise distribution D over Z with small support. 

See [8] for his security setup. 
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2. Generate Public Key: 

Choose a random matrix, say  𝑆
𝑅
 𝑍𝑞

𝑛×𝑚  and compute the matrix 𝐸
𝑅
 𝐷𝑛×𝑚 . The public key is A=S + E mod q. 

3. Generate Secret Key: 

The secret key is the matrix S. 

Encryption: 

1. Choose Message and Encode: 

Choose a message m and encode it into a vector u using a suitable encoding function. 

2. Generate Noise and Encrypt: 

Choose a random vector 𝑟
𝑅
 𝑍𝑞

𝑚  and a noise vector 𝑒
𝑅
 𝐷𝑚 . The ciphertext is computed as c=Ar + e + Encode(u) mod q. 

Decryption: 

1. Compute Inner Product: 

Compute the inner product ⟨c, S⟩ mod q to obtain an approximation of Encode(u). 

2. Decode and Recover Message: 

Verify Equality: 

Verify whether ⟨c,A⟩ mod q equals the hash of the original message m. Accept the signature if the equality holds; otherwise, reject. Decode the 

obtained approximation to recover the original message m. 

The security of this lattice-based encryption scheme relies on the assumed hardness of the Learning with Errors (LWE) problem. Specifically, the 

security proof demonstrates that an adversary, even with access to the public key and ciphertext, cannot efficiently distinguish encryptions of different 

messages. 

The security sketch involves reducing the problem of breaking the encryption scheme to solving the LWE problem. Suppose there exists an efficient 

adversary A that breaks the encryption scheme with non-negligible advantage. We can construct an algorithm B that uses A to solve the LWE problem 

efficiently. Since solving LWE is assumed to be hard, this implies that breaking the lattice-based encryption scheme is also hard. 

5.COMPUTATION 

Implementing a full lattice-based cryptography scheme involves complex mathematical operations and cryptographic protocols. See [10] for clarity on  

computational algebra. However, we have provided a basic example of lattice-based encryption using Learning with Errors (LWE) problem in Python. 

Note that this is a simplified example and does not cover all the nuances of a real-world cryptographic system. See also [7] and [8] for their algorithms. 

import numpy as np 

from numpy.linalg import inv 

 

# Parameters 

n = 4 

q = 257 

m = 2 

 

# Key Generation 

A = np.random.randint(0, q, size=(n, m)) 

S = np.random.randint(0, q, size=(n, m)) 

E = np.random.normal(0, 1, size=(n, m)) 

 

# Public Key 

PK = (A + E) % q 

 

# Secret Key 

SK = S 

 

# Encryption 

def encrypt(message, PK): 

    r = np.random.randint(0, q, size=m) 

    C = (np.dot(A, r) + message) % q 

    return C 

 

# Decryption 

def decrypt(ciphertext, SK): 

    return (ciphertext - np.dot(SK.T, ciphertext)) % q 

 

# Example usage 

message = np.array([1, 0]) 

ciphertext = encrypt(message, PK) 
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decrypted_message = decrypt(ciphertext, SK) 

 

print("Original Message:", message) 

print("Ciphertext:", ciphertext) 

print("Decrypted Message:", decrypted_message) 

 

Please note that this is a python simplified example and should not be used for actual security purposes. Real-world lattice-based cryptography 

implementations involve more sophisticated techniques, parameter choices, and security considerations. 

For Java, the process is similar, but the syntax is different. Below is a Java implementation using the Apache Commons Math library for matrix 

operations: 

import org.apache.commons.math3.linear.Array2DRowRealMatrix; 

import org.apache.commons.math3.linear.RealMatrix; 

 

import java.util.Random; 

 

public class LatticeEncryption { 

 

    public static void main(String[] args) { 

        int n = 4; 

        int m = 2; 

        int q = 257; 

 

        // Key Generation 

        RealMatrix A = randomMatrix(n, m, q); 

        RealMatrix S = randomMatrix(n, m, q); 

        RealMatrix E = randomMatrix(n, m, q); 

 

        // Public Key 

        RealMatrix PK = A.add(E).scalarMultiply(q).remainder(q); 

 

        // Secret Key 

        RealMatrix SK = S; 

 

        // Encryption 

        RealMatrix message = randomMatrix(1, m, q); 

        RealMatrix ciphertext = encrypt(message, A, q); 

 

        // Decryption 

        RealMatrix decryptedMessage = decrypt(ciphertext, SK, q); 

 

        System.out.println("Original Message:"); 

        printMatrix(message); 

        System.out.println("Ciphertext:"); 

        printMatrix(ciphertext); 

        System.out.println("Decrypted Message:"); 

        printMatrix(decryptedMessage); 

    } 

 

    private static RealMatrix randomMatrix(int rows, int cols, int modulus) { 

        RealMatrix matrix = new Array2DRowRealMatrix(rows, cols); 

        Random random = new Random(); 

        for (int i = 0; i < rows; i++) { 

            for (int j = 0; j < cols; j++) { 

                matrix.setEntry(i, j, random.nextInt(modulus)); 

            } 

        } 

        return matrix; 

    } 

 

    private static RealMatrix encrypt(RealMatrix message, RealMatrix A, int modulus) { 



International Journal of Research Publication and Reviews, Vol 4, no 11, pp 2175-2179, November 2023                                      2179 

 

        RealMatrix r = randomMatrix(1, A.getColumnDimension(), modulus); 

        return A.multiply(r.transpose()).add(message).scalarMultiply(modulus).remainder(modulus); 

    } 

 

    private static RealMatrix decrypt(RealMatrix ciphertext, RealMatrix SK, int modulus) { 

        return ciphertext.subtract(SK.multiply(ciphertext.transpose())).remainder(modulus); 

    } 

 

    private static void printMatrix(RealMatrix matrix) { 

        for (int i = 0; i < matrix.getRowDimension(); i++) { 

            for (int j = 0; j < matrix.getColumnDimension(); j++) { 

                System.out.print((int) matrix.getEntry(i, j) + " "); 

            } 

            System.out.println(); 

        } 

    } 

} 

 

6.CONCLUSION 

This proposed cryptographic scheme builds upon the hardness of the Ring-LWE problem, offering a secure and efficient solution for both public key 

encryption and digital signatures. The security proofs provide a strong foundation for the resilience of the scheme against various cryptographic attacks. 

Further analysis and implementation are encouraged to validate the practicality and efficiency of the proposed scheme. The proposed lattice-based 

encryption scheme demonstrates how the hardness of lattice problems, particularly the LWE problem, can be harnessed to achieve secure 

communication. The security of the scheme is rooted in the assumed difficulty of solving LWE, making it a promising candidate for post-quantum 

secure cryptography. 
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