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ABSTRACT 

The research examined the exact behavior of plate whose ratio of small dimension to the thickness is greater than 20. The first edge is considered as simple while 

the second edge is taken simple. Also both the third and fourth edges are considered as clamped. Unlike in the case of Ritz and Garlekin, odd order energy functional 

was adopted in the study. The Orientation functions for each plate was first derived, after then, the integral values of the differentiated Orientation functions for the 

various boundary cases were formulated. From these, the rigidness coefficients of the various boundary cases were formulated. The various odd order energy 

functional were formulated but Third order strain energy equation was finally applied for this work. The derived value which was further expanded to generate The 

Third Order Lead Potential Energy Functional. The Third Order Lead Potential Energy Functional was integrated with respect to the amplitude, giving a result 

known as the Main equation. Further minimization of the Main equation  gave rise to the vital buckling load equations. Finally the non-dimensional buckling load 

values were generated at the different aspect ratio values by simple substitution. This was achieved by considering the ratio, m/n ranging from 1.0 to 2.0, 

arithmetically at the interval of 0.1. It was observed critically, that the increase in one value brought about the decrease in the other. 
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Introduction 

A structural element can be referred to as a plate if it possesses three dimensions known as the primary, secondary and tertiary dimension. One of the 

dimensions, usually called the tertiary dimension is usually very small compared to the rest of the dimensions. The isotropic rectangular Simple Simple 

Clamped Clamped  plate are direction independent element. This is due to the fact that the material properties in all directions are the same. In this work, 

the plate element is subjected to Stability analysis, which is sometimes referred to as the plate buckling in solid structural mechanics. Although the 

buckling analysis of rectangular plates has received the attention of many researchers for several centuries Prior to this time, other researchers have gotten 

solution using even order energy functional for the study of plate Buckling. This work will investigate the buckling tendency of SIMPLE SIMPLE 

CLAMPED CLAMPED isotropic plate, under the influence of the non-even order energy functional.   

1.1    The Stability Load Equation.  

 The strain Energy which was derived from the first principle forms the base for the formulation potential energy. Lead potential energy, Lp is the 

summation of Strain energy, Se and External Work, Xw given as:  

 Lp = Se + Xw                                        1  
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To derive the strain energy, Є the product of normal stress,η and normal strain, ц in x direction is considered as 

 ηxцx =
𝐸𝑧2

1–pr
2

([
𝜕2𝑜𝑓

𝜕𝑥2
]

2

+ pr [
𝜕2𝑜𝑓

𝜕𝑥𝜕𝑦
]

2

)                 2 

while their product in y direction is considered as 

ηyцy =
𝐸𝑧2

1–pr
2

([
𝜕2𝑜𝑓

𝜕𝑦2
]

2

+ pr [
𝜕2𝑜𝑓

𝜕𝑥𝜕𝑦
]

2

)        3 

and finally the product of the in-plane shear stress and in-plane shear  

strain  is given as: 𝜗𝑥𝑦ρxy = 2 
𝐸𝑧2(1 – pr)

(1 – pr
2)

[
𝜕2𝑜𝑓

𝜕𝑥𝜕𝑦
]

2

      4 

adding all together gives 

ηxцx + ηyцy + 𝜗𝑥𝑦ρxy    =
𝐸𝑧2

1–pr
2

([
𝜕2𝑜𝑓

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑜𝑓

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑜𝑓

𝜕𝑦2
]

2

)    5 

But  Lp  =
1

2
∬ Sexy

dxdy          6 

where Se =  
Ez2

1–pr
2
  ∫ ([

𝜕2𝑜𝑓

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑜𝑓

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑜𝑓

𝜕𝑦2
]

2

)     7 

Upon minimisation of the expressions above, the third order strain energy equation is given as  

 Se =
𝐹𝐺

2
∫ ∫ (

∂3𝑜𝑓

∂𝑥3
.

∂𝑜𝑓

∂x
+ 2

∂3𝑜𝑓

∂x ∂y2
.

∂of

∂x
+

∂3𝑜𝑓

∂𝑦3
.

∂of

∂y
)

m

0

n

0
dxdy      8 

with the external load  as Xw = – 
𝐵𝑥

2
∫ ∫ (

  ∂of

∂x
)

m 

0

n

0

2

dxdy                     9 

The third order Lead potential energy functional is expressed mathematically as  

Lp =
𝐹𝐺

2
∫ ∫ (

∂3𝑜𝑓

∂𝑥3
.

∂of

∂x
+ 2

∂3𝑜𝑓

∂x2 ∂y
.

∂of

∂y
+

∂3𝑜𝑓

∂𝑦3
.

∂of

∂y
) dxdy −

𝐵𝑥

2
∫ ∫

∂2𝑜𝑓

∂𝑥2
dxdy       10 

Lp =
𝐹𝐺

2
∫ ∫ (

∂3𝑜𝑓

∂𝑥3
.
∂of

∂x
+ 2

∂3𝑜𝑓

∂x2 ∂y
.
∂of

∂y
+

∂3𝑜𝑓

∂𝑦3
.
∂of

∂y
) dxdy −

Sload

2
∫ ∫

∂2𝑜𝑓

∂𝑥2
dxdy            11  

        But   𝑜𝑓 = 𝐴 ∗ 𝑓             12  

where of,  𝑆𝑙𝑜𝑎𝑑, A and of  are the deflection, stability load  amplitude and shape function  and on introducing Equation 12 into  Equation 11 gives  

 Lp =
A2.𝐹𝐺

2
∫ ∫ .

𝑛

0

𝑚

0
(

∂3𝑜𝑓

∂𝑥3
.

∂of

∂x
+ 2

∂3𝑜𝑓

∂x2 ∂y
.

∂of

∂y
+

∂3𝑜𝑓

∂𝑦3
.

∂of

∂y
) dxdy −

A2.Sload

2
∫ ∫

∂2𝑜𝑓

∂𝑥2
. fdxdy                    13   

The Lead potential energy was further differentiated with respect to the Amplitude and orientation function and that gave  

dLp

dA
= 0 =

2A𝐹𝐺

2
∫ ∫ .

𝑛

0

𝑚

0
(

∂3𝑓

∂𝑥3
.

∂f

∂x
+ 2

∂3𝑓

∂x2 ∂y
.

∂f

∂y
+

∂3𝑓

∂𝑦3
.

∂f

∂y
) dxdy −

2ASload

2
∫ ∫ .

𝑛

0

𝑚

0
(

∂f

∂x
)2dxdy      14  

Rearranging Equation 14  in terms of non dimensional parameters I = 
x

m
 and J = 

y

n
 gives 

0 =
2A. 𝐹𝐺

2
∫ ∫ .

𝑛

0

𝑚

0

(
∂3𝑓

∂𝐼3
.
∂f

∂I
+ 2

∂3𝑓

∂I2 ∂J
.
∂f

∂J
+

∂3𝑓

∂𝐽3
.
∂f

∂J
) dxdy −

2ASload

2
∫ ∫ .

𝑛

0

𝑚

0

(
∂f

∂I
)2dxdy   15 

Making the stability load the formula gives  

Sload =
TopLp

LowLp
                                 16 

where  

TopLp  =  
2𝐴. 𝐹𝐺

2
∫ ∫ .

1

0

1

0

([
𝜕3f

𝜕𝐼3
] .

∂f

∂I
+ 2

1

𝑝2
[

𝜕3f

𝜕J𝜕𝐼2
] .

∂f

∂J
 +

1

𝑝4
[
𝜕3f

𝜕𝐽3
] .

∂f

∂J
) dIdJ                           17 

and   LowLp =
2A.𝐹𝐺

2
∫ ∫ .

1

0

1

0
(

∂f

∂I
)2dIdJ                   18 

 That means equation 16 can also be expressed as  

Sload =
𝐹𝐺 ∫ ∫ .

1
0

1
0 ([

𝜕3f

𝜕𝐼3].
∂f

∂I
+2

1

𝑝2[
𝜕3f

𝜕I𝜕𝐽2].
∂f

∂I
 +

1

𝑝4[
𝜕3f

𝜕𝐽3].
∂f

∂J
)dIdJ

1

a2 ∫ ∫ (
  ∂f

∂I
)

1 
0

1
0

2
dIdJ

       19 

1.2   Formulation of the orientation function  

For the derivation of the shape functions, Two major support conditions were considered,  namely Simple support which is denoted as Si and Clamped 

support which is denoted as Ci. For Simple support condition, the deflection equation ”of” was differentiated twice to get “of 2” on the X axis. Both the 

deflection equation and second derivatives of the deflection equation were equated to zero, giving two equations. The values of  I  were considered as 
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one at left edge and  zero at the right edge. Then on the left hand support, both the deflection equation and first derivative of the deflection equation were 

equated to zero and simultaneous equations were also formed by considering I = 0 at the left hand support for X axis. The same process was repeated on 

Y axis since it shows the same edge orientation like the case of  X axis. On the vertical axis, J is one at the top but zero at the bottom. 

1.3   Orientation Function For Simple Simple Clamped Clamped Plate 

 

 

 

 

 

 

Figure 1    Simple Simple Clamped Clamped Plate 

   The X axis 

 

 

 

 

 

Figure 2 Simple-Clamped support on x-x axis 

Considering the X- X axis 

 But   fx = mo + m1I + m2 I
2 + m3I

3 + m4I
4         20 

fx
1 = m1 + 2m2I + 3m3I

2 + 4m4I
3         21 

fx
11 = 2m2 + 6m3I +12m4I

2          22 

Introducing the boundary conditions, reduces the Equations 20-22 as explained below 

At the left support, I = 0 

When fx = 0   

fx = 0 = mo + m1I + m2 I
2 + m3I

3 + m4I
4                               23 

mo= 0 

Also when   fx
11= 0                  24  

fx
 ii= 0 = 2m2 + 0+ 0+0              25 

2m2 = 0            26 

 m2 = 0             27  

At the right support, I =1 

fx = 0  

fx = mo + m1I + m2 I
2 + m3I

3 + m4I
4              28    

fx
1 = m1 + 2m2 I  + 3m3I

2+ 4m4I
3                                29 

Substituting the value I, which considered as 1, gives 

fx = m1 + 0 + m3 + m4
                                                                                                                                        30 

 That means              

 0 = m1+ m3 + m4   where m0 = m2 = 0                                                                               31 
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leaving 

m1+ m3 = -m4                                                                                                                     32 

Also when fx
1 = 0 substituting 1 for I gives 

fx
1 = 0 = 0 = m1 + 3m3+ 4m4        33 

Recall that m2=0 

That implies that 

-4m4 = m1 + 3m3                        34 

Solving Equation 32 and 34 simultaneously gives 

 m1 = 0.5m4,  

 m3 = -1.5m4 

Putting the derived values back to the general Equations gives  

fx = (0.5m4)I + 0 + (-1.5m4)I
3 + m4 I

4          35  

That means  fx = m4 (0.5I -1.5I3 + I
4)    36  

The case of horizontal Direction (Y- Y axis) 

The process remains the same due to the fact that the edges are the same. In both cases, the plate is supported simply on one end and Clamped at the other 

end.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fy = no + n1J + n2 J
2 + n3 J

3 + n4 J
4                    37  

The first derivative on Y axis gives  

fy
11 = 2n2J + 6n3J + 12n4 J

2              38 

Considering the boundary conditions on the clamped ends gives   

At  J = 0, 

fy = 0 = no + 0+ 0 + 0 + 0             39  

Leaving no = 0          40 

Also   

fy
11 = n2+0 + 0 + 0 + 0           41 

n2 = 0           42 

At J = 1, 

fy = 0 = n1 + 0 + n3 + n4                      43 

f = 0 
f11 = 0 
 

J = 0 

 

J 
=1 
 

f = 0 

f1= 0 
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n1  + n3 = -n4                                                  44 

but differentiating fy gives 

fy
1 = n1 + 2n2 J

 + 3n3 J
2 + 4n4 J

3                   45  

Recall that n2 = 0, leaving Equation 45 as 

fy
1 = 0 = 0 = n1 + 3n3 + 4n4

          46 

when the  J is substituted as 1 

That means   n1 + 3n3 = - 4n4                               47 

Solving Equation 44 and 47 together gives  

 n3 = -1.5n4                       48 

Substituting Equation 48 into 47 gives 

n1 = 0.5n4            49 

Putting them back into the general equation gives  

fy =  (0.5n4)J + 0 + (-1.5n4)J
3 + n4 J

4         50 

 That means  

fy =  n4(0.5J -1.5J3 + J4)          51  

 Bringing Equation 36 and 51 together gives  

But    f = fy* fx 

But   f  = m4*n4(0.5I -1.5I3 + I
4)(0.5J -1.5J3 + J4)        52  

1.4   Formulation of The Differential values 

The Orientation function is give as (0.5I -1.5I3 + I
4)(0.5J -1.5J3 + J4) with the Amplitude as 

m4*n4 and considering the amplitude as 1, Equation 52  was further minimized by  differentiating at levels, The formulated values were further  

integrated to get the various Rigidness  coefficients, these includes 

  ∂f

∂I
= (0.5 − 4.5I2  +  4I3)(0.5J − 1.5J3  + J4)                                53 

  ∂2f

∂I2
= (−9I +  12I2)(0.5J − 1.5J3  + J4)                                        54 

  ∂3f

∂I3
= (−9 +  24I)(0.5J − 1.5J3  + J4)                  55 

  ∂2f

∂I ∂J
= (0.5 − 4.5I2  +  4I3)(0.5 − 4.5J2  + 4J3)                   56 

  ∂f

∂I ∂J2
 = (0.5 − 4.5I2  +  4I3)(−9J + 12J2)            57 

Also for the vertical components gives  

  ∂f

∂J
= (0.5I − 1.5I3  + I4)(0.5 − 4.5J2  +  4J3)                                58 

  ∂2f

∂J2
= (0.5I − 1.5I3  + I4)(−9J +  12J2)                                        59 

  ∂3f

∂J3
= (0.5I − 1.5I3  + I4)(−9 +  24J)                              60 

1.5   Formulation of The Rigidness Coefficients 

The Rigidness coefficients were derived by further integrating these derived values. That is 

rc1= ∫ ∫
  ∂3f

∂I3
∗

  ∂f

∂I

1

0

1

0
dIdJ                    61  

rc1 = ∫ ∫ [(−9 + 24I)(0.5J − 1.5J3 + J4) ∗ (0.5 − 4.5I2  +  4I3)(0.5J − 1.5J3 + J4)]
1

0

1

0
dIdJ    62  

 bringing the like terms together gives  

= ∫ ∫ [(−9 +  24I)(0.5 − 4.5I2 + 4I3) ∗ (0.5J − 1.5J3  + J4)(0.5J − 1.5J3  + J4)]
1

0

1

0
dIdJ      63 

multiplying them gives 
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  = ∫ ∫ [−9(0.5 − 4.5I2  +  4I3) + 24I(0.5 − 4.5I2  +  4I3)) ∗ ((0.5J(0.5J − 1.5J3  +  J4) −        1.5J3(0.5J − 1.5J3  + J4)  + J4(0.5J − 1.5J3  +
1

0

1

0

 J4))) ]   dIdJ                                                64   

further  minimization yields 

rc1 = (1.8) * (0.007539683) 

     = 0.0135714 

The second rigidness coefficient was derived as follows 

rc2 = ∫ ∫
  ∂3f

∂I ∂J2
∗

  ∂f

∂I

1

0

1

0
dIdJ                      65 

rc2=∫ ∫ [(0.5 − 4.5I2  +  4I3)(−9J +  12J2) ∗ (0.5 − 4.5I2  +  4I3)(0.5J − 1.5J3  +          J4)]
1

0

1

0
dIdJ  66 

Bring the like terms together gives 

= ∫ ∫ [(0.5 − 4.5I2 +  4I3)(0.5 − 4.5I2  +  4I3) ∗ (−9J + 12J2)(0.5J − 1.5J3  + J4)]
1

0

1

0
dIdJ   67 

Multiplying the like terms gives 

∫ ∫ [(0.5 (0.5 − 4.5I2  +  4I3) − 4.5I2 (0.5 − 4.5I2  +  4I3) +  4I3(0.5 − 4.5I2  +  4I3)) ∗       (−9J(0.5J − 1.5J3  +  J4) + 12J2(0.5J − 1.5J3  +
1

0

1

0

 J4))] dIdJ                                    68 

  rc2 = (0.085714)*(0.085714)  

        = 0.007347 

Furthermore integrating the product Equation 60 by 58 give the third stiffness coefficient. That is  

rc3 = ∫ ∫
  ∂3f

∂J3
∗

  ∂f

∂J

1

0

1

0
dIdJ                                69 

rc3=∫ ∫ [(0.5I − 1.5I3  + I4)(−9 +  24J) ∗ (0.5I − 1.5I3  + I4)(0.5 − 4.5J2  +  4J3)]
1

0

1

0
dIdJ            70 

 Bring the like terms together and multiplying them gives  

rc3=∫ ∫ [(0.5I(0.5I − 1.5I3 + I4) − 1.5I3(0.5I − 1.5I3  + I4) + I4(0.5I − 1.5I3  +  I4)) ∗          (−9 (0.5 − 4.5J2 + 4J3) + 24J(0.5 − 4.5J2 +
1

0

1

0

4J3))] dIdJ                    71 

 rc3= (0.0075396) * (1.8) 

    = (0.01357143) 

and finally  integrating the product Equation 53 by 53 give the sixth rigidness coefficient.  

That is  

rc6 = ∫ ∫ (
  ∂f

∂I
∗

  ∂f

∂I

1

0

1

0
)dIdJ  

rc6=∫ ∫ ((0.5 − 4.5I2 + 4I3)(0.5J − 1.5J3 + J4) ∗ (0.5 − 4.5I2  +  4I3)(0.5J − 1.5J3  +   J4)
1

0

1

0
)dIdJ  72 

Collecting the like terms together and multiplying out gives  

= ∫ ∫ ((0.5 (0.5 − 4.5I2  +  4I3) − 4.5I2(0.5 − 4.5I2  +  4I3) +  4I3(0.5 − 4.5I2  +        4I3))(0.5J − 1.5J3  + J4) ∗ (0.5J(0.5J − 1.5J3 + J4)  −
1

0

1

0

1.5J3(0.5J − 1.5J3 + J4) +           J4(0.5J − 1.5J3 + J4)))dIdJ                          73 

    Opening the brackets gives 

   rc6  =   (0.00754) ∗ (0.00754)                                         74 

          =  0.0000568516 

The Stability Equation was finally reduced in terms of the rigidness coefficients and that gives 

Sload =
𝐹𝐺(rc1+2

1

𝑝2rc2 +
1

𝑝4rc3)

sc6m2
                      75 

Substituting the real values in to Equation 75 gives 

Sload =
D(0.013572+2

1

𝑝20.007374 +
1

𝑝40.013572)

0.0006463a2
                   76 



International Journal of Research Publication and Reviews, Vol 4, no 11, pp 1777-1784 November 2023                                     1783

 

 

1.6   Derived Results and Discussions. 

The Stability buckling load coefficients were considered at different aspect ratios. Different values for the rigidness coefficients and the critical Stability 

load coefficients were derived. The rigidness coefficients were shown inthe first table while the other contains the critical stability coefficients for the 

aspect ratio of m/n, both for the previous and present study. The values of the aspect Ratios ranges from 2.0 to 1.0 and increases at the value 0.1. From 

the values generated in the tables, it was observed that as the aspect ratio increases from 1.0 to 2.0, the critical buckling load decreases. The observation 

in both the present and previous work were as presented Table 1i and Table 1ii.  

Table 1i  Rigidness Coefficients from Present researchers 

  Rigidness coefficients, 𝑟𝑐𝑖    Results  

      rc1 0.013572 

      rc2 0.007347 

     rc3 0.013572 

     rc6 0.0006463 

 

Table 1ii Stiffness Coefficients from Previous Work 

 

   Rigidness coefficients, 𝑟𝑐𝑖      Results 

      rc1 0.013498 

      rc2 0.007433 

     rc3 0.01349 

     rc6 0.0006455 

 

Table1iii Stability loads for Simple-Simple-Clamped-Clamped Plate from Previous/Present. 

 

 

    m/n 

 

   2 

 

 1.9 

 

1.8 

 

1.7 

 

1.6 

      S 27.97463 28.8941 30.0098 31.38204 33.09596 

 
    Sload 

Previous 27.97463
FG

𝑚2
 28.8941

FG

𝑚2
 30.0098

FG

𝑚2
 31.38204

FG

𝑚2
 33.09596

FG

𝑚2
 

 Present 27.9959
FG

𝑚2
 28.90885

FG

𝑚2
 30.0171

FG

𝑚2
 31.3808

FG

𝑚2
 33.08489

FG

𝑚2
 

 

Table 1iii  cnt’d 

In Conclusion, a simple simple clamped clamped plate order of odd polynomial functional can be resolved using third order energy functional, since the 

percentage different between the present and previous is very infinitesimal and in some cases the same. 
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