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A B S T R A C T 

This paper presents the design challenge of integrating a new adaptive updating rule based on Reinforcement Learning (RL) approach into a Proportional-Integral-

Derivative (PID) controller for nonlinear systems. This study presents a novel design approach where Reinforcement Learning (RL) complements conventional 

PID control technology. The proposed scheme utilizes a single Radial Basis Function (RBF) network to concurrently calculate the control policy function of the 

Actor and the value function of the Critic. The inputs of the RBF network correspond to system error, output difference, and second-order output difference, defining 

them as system states within the PID controller structure. A newly defined Temporal Difference (TD) error, incorporating an error criterion based on the discrepancy 

between one-step ahead prediction and the reference value, is employed. By utilizing the gradient descent method with the TD error performance index, the updating 

rules are derived, enabling adaptive calculation of network weights and the kernel function. The efficiency and robustness of the proposed scheme are demonstrated 

through numerical simulations conducted on nonlinear systems. 

Keywords: Reinforcement Learning, PID control, Adaptive control 

1. Introduction 

PID control has long been recognized as a highly effective and widely utilized control scheme in various industrial processes and mechanical systems, 

owing to its versatility, exceptional reliability, and straightforward operational characteristics [1]. When the mathematical model of a controlled plant is 

unknown, PID controllers offer the advantage of being manually tuned by operators and control engineers using empirical knowledge. However, to 

enhance performance, classical tuning methods like the Ziegler-Nichols [2] method and Chien-Hrones-Reswich method [3] are often employed in process 

control, surpassing the outcomes achieved through manual tuning. Although classical tuning methods are effective for simple controlled plants, their 

performance cannot be guaranteed when dealing with complex systems that exhibit non-linearity, uncertainty, and unknown dynamics. Moreover, since 

it is often challenging to construct an exact model from real systems, the concept of adaptive PID control has gained significant attention over the past 

two decades as a means to address these complexities. 

Various adaptive PID control strategies have emerged, among which model-based adaptive PID control is prominent that are addressed in [5], [6], [7], 

adaptive PID control based on neural network [8], [9]. It has been established that model-based adaptive PID control relies on the assumption that the 

constructed model accurately represents the true dynamics of the plant [10]. Nonetheless, the process of modeling complex systems is often time-

consuming and prone to inaccuracies, leading to the possibility of improper adjustment of PID parameters. In contrast, adaptive PID control utilizing 

neural networks employs supervised learning to optimize network parameters. However, this approach has certain limitations, including the challenge of 

obtaining a suitable teaching signal and the difficulty of predicting values for unlabeled data. Consequently, with the rapid advancement of computer 

science, the application of adaptive PID control based on more advanced machine learning technologies has been extensively explored as a potential 

solution to overcome these limitations. 

The control engineering community has witnessed a growing application of machine learning technology across diverse fields that introduced in the [11]. 

A multitude of algorithms have been developed to address complex control problems, enabling desirable performance and intelligent decision-making. 

Furthermore, the significant advancements in computing power have facilitated the practical implementation of sophisticated learning algorithms. In the 

realm of machine learning, Bishop et al. [12] have classified algorithms into three categories: supervised learning, unsupervised learning, and 

reinforcement learning (RL). RL stands out as distinct from supervised and unsupervised learning [13]. According to a definition provided by [14], RL 

involves an agent that aims to learn the optimal approach for accomplishing a task by iteratively interacting with its environment. RL has already 

demonstrated its transformative potential across various applications [15], [16]. From a control perspective, RL refers to an agent (controller) that interacts 

with a controlled system (environment) and adjusts its control actions (control signal) accordingly [17]. The integration of RL technology with adaptive 

PID control holds significant promise for process control applications, and numerous studies have investigated this combination [4], [18], [19], [20], [21]. 

In [4], the reinforcement signal was defined as the error between the current output and the reference signal, potentially leading to prediction losses. [18], 
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[20], [21] adopted the same updating rule but did not provide the trajectories of PID parameters. Additionally, the updating rule for all three parameters 

was condensed into a single equation. A model-based design method was presented in [19]. 

Based on the aforementioned observations, this paper focuses on the development of a PID controller with a new adaptive updating rule based on RL 

technology for nonlinear systems. The Actor-Critic structure [22], a prominent class of RL technology, is considered as a benchmark in some design 

methods. This structure involves an actor component responsible for applying control signals to the system, and a critic component that simultaneously 

evaluates the output's value. Notably, the Actor-Critic structure is widely recognized as the most versatile and successful approach to date [13]. In this 

study, the concept of implementing an actor and a critic using a Radial Basis Function (RBF) network is explored, which can reduce storage requirements 

and avoid repetitive calculations. Within the Actor-Critic structure based on the RBF network, a novel adaptive updating rule can be devised. 

The main contributions of this study can be summarized as follows. Firstly, the reinforcement signal is redefined to incorporate the one-step predictive 

output, thereby including the prediction error in the TD error. Secondly, the new adaptive updating rule is derived based on the one-step TD error. Lastly, 

the proposed scheme adopts a model-free design approach, making it highly suitable for complex real systems. 

The structure of this paper is as follows. Section 2 presents the problem formulation, along with the introduction of two reasonable assumptions. In 

Section 3, the proposed adaptive PID controller based on the Actor-Critic algorithm is described. Section 4 showcases numerical simulations and a 

comparative study to demonstrate the effectiveness and feasibility of the approach. Lastly, Section 5 concludes the paper. 

Nomenclature 

Aradius of  

Bposition of 

Cfurther nomenclature continues down the page inside the text box 

1.1 Problem Statement 

Let us consider the following discrete-time systems, which are described by nonlinear dynamics in the form of affine state space difference equations 

 𝑥(𝑛 + 1) = 𝑓(𝑥(𝑛)) + 𝑔(𝑥(𝑛))𝑢(𝑛)                                                                                            

 𝑦(𝑛) = ℎ(𝑥(𝑛), 𝑢(𝑛 − 1))                                                                                                                                                         (1)                                                                 

with  state  𝑥(. ) ∈ 𝑅𝑚,  control  input  𝑢(. ) ∈ 𝑅𝑛  and  output 𝑦(. ).  Given the nature of RL technology, where detailed model information may be 

unknown, it is possible to generalize the above system into a more compact form as 

 𝑥(𝑛 + 1) = 𝐹(𝑥(𝑛), 𝑢(𝑛))         

 𝑦(𝑛) = ℎ(𝑥(𝑛), 𝑢(𝑛 − 1))                                                                                                                                                (2) 

It is required to provide two assumptions on the above system in order to capture the ideas about RL technology. 

                                  

              

 

 

 

 

 

 

                                                                 Fig. 1. The block diagram of the proposed scheme 

Assumption 2.1: The aforementioned system adheres to the 1-step Markov property as the state at time n + 1 solely relies on the state and inputs at the 

preceding time n, irrespective of any historical data. 

This assumption falls within the domain of Markov decision processes (MDP), which aims to attain a predetermined objective by employing a satisfactory 

control policy. MDP is formulated in a manner akin to RL technology, thereby playing a pivotal role in integrating control problems with RL technology. 

MDP serves as a mathematically idealized representation of the RL problem [14].  

Assumption 2.2: The sign of partial derivatives of ℎ(. ) with respect to all arguments is known, and it is also regarded as the sign of system Jacobian [25]. 
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1.2 Controller Structure 

The application of PID controllers to process systems is widely acknowledged, and it is commonly understood that the presence of derivative kick can 

affect the performance of the closed-loop system. Consequently, this research paper presents a velocity-type PID controller that effectively mitigates the 

issue of derivative kick: 

                𝑢(𝑛) = 𝑢(𝑛 − 1) + 𝐾𝐼(𝑛)𝑒(𝑛) + 𝐾𝑃(𝑛)∆𝑦(𝑛) − 𝐾𝐷(𝑛)∆
2(𝑛)                                          (3) 

that is 

            ∆𝑢(𝑛) = 𝐾(𝑛)∅(𝑛)                                                                                                                     (4)                                                                              

where, ∅(𝑛) is defined as 

              ∅(𝑛) ∶=  [𝑒(𝑛),−∆𝑦(𝑛), −∆2𝑦(𝑛)]𝑇                                                                                             (5) 

and it is regarded as system state. ∆ denotes the difference operator defined by ∆∶= 1 − 𝑧−1. The ∆2(𝑛) then becomes: 

            ∆2𝑦(𝑛) = 𝑦(𝑛) − 2𝑦(𝑛 − 1) + 𝑦(𝑛 − 2)                                                                                             (6) 

𝐾(𝑛) ≔ [𝐾𝐼(𝑛),𝐾𝑃(𝑛),𝐾𝐷(𝑛)] is a vector of control parameters. 𝑒(𝑛) is the control error and is defined by the difference between reference signal 𝑦𝑑 

and system output y as follows, 

         𝑦(𝑛) = 𝑦𝑑(𝑛) − 𝑦(𝑛)                                                                                                                                                 (7) 

1.3 Objective 

In this paper, our objective is to design a PID controller with a novel adaptive updating rule under the Actor-Critic structure. To achieve this, we present 

a schematic diagram in Fig. 1, illustrating the system state ∅(𝑛) construction process. Initially, the system state is constructed based on the input error 

𝑒(𝑛) and the current system output. These constructed values are then fed into the Actor-Critic structure as inputs. 

The Actor component of our method continuously adjusts the controller online using the observed system state throughout the system trajectory. On the 

other hand, the critic component evaluates the system's performance by receiving both the system state and the reinforcement signal 𝑟(𝑛 + 1). 

This evaluation results in the production of the Temporal Difference (TD) error, which is considered a crucial basis for updating the parameters. 

By utilizing the TD error, we update the parameters in order to optimize the performance of the PID controller. Overall, our paper focuses on developing 

a PID controller with an innovative adaptive updating rule within the framework of the Actor-Critic structure.   

 

                                                          

 

      

 

 

 

 

 

 

                                                                             Fig. 2. RBF network topology with Actor-Critic structure 

2. Adaptive Controller Design 

This section will provide a comprehensive explanation of the proposed algorithm, delving into its intricacies and details. 

2.1 Temporal Difference (TD) error 

Let's begin by introducing a value function, which is defined as follows: 

               𝑉(𝑛) = ∑ 𝛾𝑖−𝑛𝑟(𝑥(𝑖), 𝑢(𝑖))∝
𝑖=𝑛                                                                                                                                                      (8) 
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with 0 < 𝛾 ≤ 1 a discount factor and u(n) is the control signal. 𝑟(𝑥(𝑖), 𝑢(𝑖)) is called reinforcement signal and can be selected based on a quadratic 

function. By rewriting eq. (8) as 

𝑉(𝑛) = 𝑟(𝑥(𝑛), 𝑢(𝑛)) + 𝛾∑ 𝛾𝑖−(𝑛+1)𝑟(𝑥(𝑖), 𝑢(𝑖))∞
𝑖=𝑛+1                                                                                                                                    (9) 

Rather than computing the infinite sum of the aforementioned equation, one can employ the present control signal u(n) to solve the corresponding discrete 

difference equation: 

 𝑉(𝑛) = 𝑟(𝑥(𝑛), 𝑢(𝑛)) + 𝛾𝑉(𝑛 + 1), 𝑉(𝑛) = 0                                                                                                 (10) 

This equation is commonly referred to as the Bellman equation, and leveraging it allows us to define a TD error as the disparity between the two sides: 

 𝛿𝑇𝐷(𝑛) = 𝑟(𝑥(𝑛), 𝑢(𝑛)) + 𝛾𝑉(𝑛 + 1) − 𝑉(𝑛)                                                                                                                 (11) 

2.2 Actor-Critic learning based on RBF network 

The RBF network has been employed as a method for parameter identification through function mappings. Its simple structure, parameter convergence, 

and effective learning capabilities are acknowledged as advantages, as discussed in reference [23]. Consequently, in this study, the implementation of the 

Actor-Critic approach utilizes the RBF network, and its network topology is illustrated in Fig. 2, comprising three-layer neural networks. 

 The input layer is responsible for gathering the available process measurements and constructing the system states. Within the RBF network 

topology, this enables the passage of system states to the hidden layers, which are directly shared by both the Actor and the Critic. To generate the control 

signal u(n) and value function, a straightforward approach is adopted, involving a weighted sum of the function values associated with the units in the 

hidden layer [24]. The following description provides a more in-depth insight into each layer. 

 In the input layer, the system state variable 𝑥𝑖 (where i represents the input variable index) is incorporated. The input vector ∅(𝑛) ∈ 𝑅3 is then 

forwarded to the hidden layer, where it is utilized to compute the output of the hidden unit. 

 Within the hidden layer, ∅𝑗(𝑛) represents a vector encompassing the elements [∅1(𝑛),…… . , ∅ℎ(𝑛)], where h corresponds to the number of 

hidden units. The chosen kernel function for the hidden unit in the RBF network is the Gaussian function. Consequently, the resulting output ∅(𝑛) is 

represented as follows: 

 ∅𝒋(𝒏) = 𝒆𝒙𝒑(−
‖∅(𝒏)−𝝁𝒋(𝒏)‖

𝟐

𝟐𝝈𝒋
𝟐(𝒏)

) , 𝒋 = 𝟏, 𝟐, 𝟑, ……… , 𝒉                                                                                                                  (12) 

where, 𝜇𝑗 and 𝜎𝑗  are the center vector and width scalar of the unit, respectively. The center vector is defined as follows: 

 𝜇𝑗(𝑛) ≔ [𝜇1𝑗 , 𝜇2𝑗 ,  𝜇3𝑗]
𝑇         

The third layer is called output layer where the outputs of the Actor and the Critic are involved. It should be noted that as mentioned previously the 

outputs are calculated in a simple and direct way. Therefore, it can yield the PID parameters K(n) in the following: 

 𝐾𝑃,𝐼,𝐷(𝑛) = ∑ 𝑤𝑗
𝑃,𝐼,𝐷(𝑛)∅𝑗(𝑛)

ℎ
𝑗=1                                                                                                                            (13) 

with the weights 𝑤𝑛𝑗 between the jth hidden unit and output layer of the Actor. The value function of critic part can be obtained as follows: 

 𝑽(𝒏) = ∑ 𝑽𝒊(𝒏)∅𝒊(𝒏)
𝒉
𝒊=𝟏                                                                                                                                                              (14) 

In the context of the Critic, 𝑽𝒊(𝒏) represents the weight connecting the ith hidden unit to the output layer. 

The different output weights can be fine-tuned using a gradient-based learning algorithm, allowing us to derive an adaptive updating rule based on user-

specified parameters. Referring back to Equation (5), the reinforcement signal in this study is defined as 

 𝒓(𝒙(𝒏),𝒖(𝒏)) ≔
𝟏

𝟐
(𝒚𝒅(𝒏 + 𝟏) − 𝒚(𝒏 + 𝟏))

𝟐                                                                                                      (15) 

This term signifies the distinction between predictive performance and the reference value. As a result, the TD error transforms into 

 𝜹𝑻𝑫(𝒏) =
𝟏

𝟐
(𝒚𝒅(𝒏 + 𝟏) − 𝒚(𝒏 + 𝟏))

𝟐 + 𝜸𝑽(𝒏 + 𝟏) − 𝑽(𝒏)                                                                                                   (16) 

Consequently, the cost function in this study is represented as follows: 

 𝑱(𝒏) =
𝟏

𝟐
𝜹𝑻𝑫
𝟐 (𝒏)                                                                                                                                                                            (17) 

Hence, the partial differential equations concerning each output weight of the Actor are formulated as follows: 

 𝒘𝒊
𝑷(𝒏 + 𝟏) = 𝒘𝒊

𝑷(𝒏) − 𝜶𝒘
𝝏𝑱(𝒏)

𝝏𝒘𝒊
𝑷(𝒏)

                                                                                                                                                          (18) 

Where 𝜶𝒘 is learning rate and 

 
𝝏𝑱(𝒏)

𝝏𝒘𝒊
𝑷(𝒏)

=
𝝏𝑱(𝒏)

𝝏𝜹𝑻𝑫(𝒏)
.
𝝏𝜹𝑻𝑫(𝒏)

𝝏𝒚(𝒏+𝟏)
.
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
.
𝝏𝒖(𝒏)

𝝏𝑲𝑷(𝒏)
.
𝝏𝑲𝑷(𝒏)

𝝏𝒘𝒊
𝑷(𝒏)

= 𝜹𝑻𝑫(𝒚(𝒏) − 𝒚(𝒏 − 𝟏))∅𝒊(𝒏)
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
                                                       (19) 
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𝝏𝑱(𝒏)

𝝏𝒘𝒊
𝑰(𝒏)

=
𝝏𝑱(𝒏)

𝝏𝜹𝑻𝑫(𝒏)
.
𝝏𝜹𝑻𝑫(𝒏)

𝝏𝒚(𝒏+𝟏)
.
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
.
𝝏𝒖(𝒏)

𝝏𝑲𝑰(𝒏)
.
𝝏𝑲𝑰(𝒏)

𝝏𝒘𝒊
𝑰(𝒏)

= −𝜹𝑻𝑫𝒆(𝒏)∅𝒊(𝒏)
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
                                                   (20)  

 

 
𝝏𝑱(𝒏)

𝝏𝒘𝒊
𝑫(𝒏)

=
𝝏𝑱(𝒏)

𝝏𝜹𝑻𝑫(𝒏)
.
𝝏𝜹𝑻𝑫(𝒏)

𝝏𝒚(𝒏+𝟏)
.
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
.
𝝏𝒖(𝒏)

𝝏𝑲𝑫(𝒏)
.
𝝏𝑲𝑫(𝒏)

𝝏𝒘𝒊
𝑫(𝒏)

= 𝜹𝑻𝑫(𝒚(𝒏) − 𝟐𝒚(𝒏 − 𝟏) + 𝒚(𝒏 − 𝟐))∅𝒊(𝒏)
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
                       (21) 

It's important to emphasize that prior knowledge of the system Jacobian, denoted as 𝝏𝒚(𝒏 + 𝟏)/𝝏𝒖(𝒏), is essential for computing the aforementioned 

equations. In this context, we introduce a relationship ∈= |∈|𝒔𝒊𝒈𝒏(∈), and consequently, the system Jacobian can be derived using the following 

equation. 

 
𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
= |

𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
| 𝒔𝒊𝒈𝒏(

𝝏𝒚(𝒏+𝟏)

𝝏𝒖(𝒏)
)                                                                                                                                                 (22) 

with 𝒔𝒊𝒈𝒏(∈) = 𝟏(∈> 𝟎),−𝟏(∈< 𝟎). Building upon the aforementioned assumption, we can deduce the sign of the system Jacobian [25]. Moving 

forward, the updating rule for the output weight of the Critic is as follows: 

 𝒗𝒊(𝒏 + 𝟏) = 𝒗𝒊(𝒏) − 𝜶𝒗
𝝏𝑱(𝒏)

𝝏𝒗𝒊(𝒏)
= 𝒗𝒊(𝒏) + 𝜶𝒗𝜹𝑻𝑫(𝒏)∅𝒊(𝒏)                                                                                                           (23) 

where 𝜶𝒗 is the learning rate. 

The hidden layer's hidden units' centers and widths are updated as follows: 

 𝝁𝒊𝒋(𝒏 + 𝟏) = 𝝁𝒊𝒋(𝒏) − 𝜶𝝁
𝝏𝑱(𝒏)

𝝏𝝁𝒊𝒋(𝒏)
= 𝝁𝒊𝒋 + 𝜶𝝁𝜹𝑻𝑫(𝒏)𝒗𝒋(𝒏)∅𝒋(𝒏)

𝝋𝒊(𝒏)−𝝁𝒊𝒋(𝒏)

𝝈𝒋
𝟐(𝒏)

                                                                      (24) 

while 

 𝝈𝒊(𝒏 + 𝟏) = 𝝈𝒊(𝒏) − 𝜶𝝈
𝝏𝑱(𝒏)

𝝏𝝈𝒊(𝒏)
= 𝝈𝒊 + 𝜶𝝈𝜹𝑻𝑫(𝒏)𝒗𝒊(𝒏)∅𝒊(𝒏)

‖𝝋𝒊(𝒏)−𝝈𝒊(𝒏)‖
𝟐

𝝈𝒊
𝟑(𝒏)

                                                                       (25) 

where 𝜶𝝁 is the learning rate of center and 𝜶𝝈 is the learning rate of width. 

2.3 Algorithm Summery 

Algorithm 1 outlines each design step for the proposed adaptive PID controller under the Actor-Critic structure based on the RBF network. To enhance 

performance, it is essential to provide a clear explanation of the user-specified parameters, as some degree of trial and error may be necessary during the 

algorithm's implementation. 

Algorithm 1: Adaptive PID controller under Actor-Critic based on RBF network 

1. At time t = 0, initialize the control input signal 𝒖(𝟎) and the reference signal 𝒚𝒅(𝒏). 

2. Commence by initializing the parameters 𝒘𝒋
𝑷,𝑰,𝑫(𝟎), 𝒗𝒊(𝟎), 𝝁𝒊𝒋(𝟎), 𝝈𝒊(𝟎) and establish the user-specified learning rates for 𝜶𝒘, 𝜶𝒗, 𝜶𝝁, and 

𝜶𝝈. 

3. for t = 1 : EndTime 

4. Obtain the system error e(t) by measuring the system output y(t). 

5. Calculate the kernel function (12) within the hidden layer. 

6. Determine the current PID parameters from equation (4) for the Actor's output, and compute the Critic value function V(t) using equation (14) 

at time t. 

7. Obtain the current control signal by 

 ∆𝒖(𝒏) = 𝑲𝑰(𝒏)𝒆(𝒏) − 𝑲𝑷(𝒏). ∆𝒚 − 𝑲𝒅(𝒏)∆
𝟐𝒚(𝒏)    

8. Execute the control signal on the controlled system and generate a predictive estimate of the system output y(n + 1). 

9. Formulate the system state using the predictive value: 

 ∅(𝒏 + 𝟏):= [𝒆(𝒏 + 𝟏), ∆𝒚(𝒏 + 𝟏), ∆𝟐𝒚(𝒏 + 𝟏)]𝑻.  

10. Calculate the value function V (n + 1) from (14). 

11. Obtain the TD error 𝜹𝑻𝑫(𝒏) from (16). 

12. Adjust the PID parameter weights using equations (19) through (21), and update the weights of the value function in accordance with equation 

(23). 

13. Revise the centers and widths of the RBF kernel functions using equations (24) through (25). 

14. end for 
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3. Numerical Simulations 

In this section, we perform numerical simulations and a comparative analysis to assess the effectiveness and viability of the proposed approach. We will 

examine its performance on the non-linear system described in reference [26]. 

 𝑦(𝑛 + 1) =
𝑦(𝑛)𝑦(𝑛−1)[𝑦(𝑛)+2.5]

1+𝑦(𝑛)2+𝑦(𝑛−1)2
+ 𝑢(𝑛) + 𝜉(𝑛)                                                                                                                                 (26) 

The Gaussian noise, denoted as ξ(n), has a zero mean and a variance of 0.012. It's important to mention that due to page limitations, the static characteristics 

of this nonlinear system are not presented. The reference signal values are defined as follows: 

 𝒚𝒅(𝒏) =

{
 
 

 
 
𝟐. 𝟓        𝒇𝒐𝒓 𝟎 ≤ 𝒏 < 100
𝟑. 𝟓     𝒇𝒐𝒓 𝟏𝟎𝟎 ≤ 𝒏 < 200 
𝟏      𝒇𝒐𝒓 𝟐𝟎𝟎 ≤ 𝒏 < 300
𝟑      𝒇𝒐𝒓 𝟑𝟎𝟎 ≤ 𝒏 < 400
𝟎                      𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆

                                                                                                                                               (27) 

The user-specified learning rates included in the proposed are summarized as follows: 

 𝜶𝒘 = 𝟎. 𝟎𝟏𝟑, 𝜶𝒗 = 𝟎. 𝟎𝟐𝟏,𝜶𝝁 = 𝟎. 𝟎𝟎𝟐𝟓,𝜶𝝈 = 𝟎. 𝟎𝟎𝟗   

and the coefficient 𝛾 equals to 0.98. The hidden units in topology RBF network are decided as 3. The initial PID parameters in the proposed scheme are 

set as 

 𝐾(0) = [0 0 0]𝑇    

In the proposed scheme, no initial value input is required. The simulation results are displayed in Fig. 3, demonstrating the scheme's ability to track the 

reference signal even under strong non-linearities. Furthermore, the scheme adapts well to changes in the reference signal. Fig. 4 shows the dynamic 

evolution of the PID parameters, which are updated based on the changing weights. Over time, these parameters tend to stabilize, indicating the 

effectiveness of the new updating rule within a specific range. The TD error, depicted in Fig. 5, hovers close to zero at steady state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                      Fig. 3. Control result obtained by the proposed scheme 
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Fig. 4. Trajectories of adaptive PID parameters 

 

 

 

 

 

 

 

 

 

 

                           

 

 

                                

Fig. 5. Trajectories of TD error 
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Fig. 6. Control result obtained by the conventional scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Control result obtained by the conventional scheme 

The comparative analysis of the proposed approach involves the utilization of a traditional adaptive PID tuning technique. The standard gradient method 

is applied to modify the PID parameters. Control outcomes are illustrated in Figures 6 and 7. Figure 6 demonstrates that the practical tracking issue is 

successfully addressed, albeit with a more pronounced overshoot compared to the proposed method. This can be attributed to the system's substantial 

non-linearity. 
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4. Conclusions 

In this paper, a novel adaptive PID controller is examined within the Actor-Critic framework, employing an RBF network for nonlinear systems. An 

innovative adaptive update rule is introduced for weight adjustments in the network. Initially, a conventional PID controller was integrated with 

reinforcement learning, utilizing an RBF network, with online PID tuning. The reinforcement signal's determination incorporated predictive output, 

ensuring precise updates. Furthermore, the RBF network's hidden layer was shared by both the Actor and the Critic, leading to reduced storage 

requirements and lower computational costs for hidden unit outputs. Notably, initial PID parameters were initialized to zero, eliminating the need for 

prior knowledge of the controlled system. Subsequently, numerical simulations were conducted to demonstrate the efficiency and feasibility of the 

proposed approach for complex nonlinear systems, resulting in the stabilization of PID parameters through the novel adaptive update rule. However, a 

limitation of this method lies in the requirement for user-specified parameters, necessitating empirical tuning within a certain range. An intriguing question 

pertains to the proper initialization of initial parameters. Additionally, the practical implementation of the proposed approach in a real-world system is 

necessary to validate its effectiveness. 
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