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ABSTRACT

The research centers on the buckling effect of rectangular Clamped-Simple-Clamped- Fixed plate Isotropic plate. This was done using 3rd energy Functional. The
CiSiCiFi plate was considered as the direct independent plate. That means the material properties like the flexural rigidity, poison ratio and young elastic modulus
of elasticity are the same round about the shape of the object. The shape functions were first derived and then the various integral values of the differentiated shape
functions, of the various boundary conditions were all gotten. Based on the derived results, the stiffness coefficients of the various boundary arrangements were
also formulated. Upon further minimizations , the Third order strain energy equation was derived and further expansion Third order strain energy equation gave
rise to the Third Order Overall Potential Energy Functional. The Third Order Overall Potential Energy Functional, with respect to the amplitude was further
integrated and this gave a result known as the Lead equation. Further minimization of the Lead equation gave rise to the Vital buckling load equations. Next to this
was the formulation of the non-dimensional buckling load parameters which, m/n ranging from 1.0 to 2.0,and considering it at the interval of 0.1. The relationship
of the non-buckling load parameters against the various aspect ratios was shown on the graph.
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Introduction

A plate element can be considered as a structural element having straight or curves boundaries, and also possessing three dimensions known as the
primary, secondary and tertiary dimension. The tertiary dimension also known as the plate thickness are usually very small compared to other dimensions.
The isotropic rectangular CiSiCiFi plate have all their material properties in all directions as the same and so they classified as direction independent
element. Stability analysis sometimes is referred to as the plate buckling has been a subject of study in solid structural mechanics for a long time now.
Although the buckling analysis of rectangular plates has received the attention of many researchers for several centuries Prior to this time,. other
researchers have gotten solution using both the Second and Fourth the Order energy functional for Buckling of plate. None of the scholars have any work
on buckling of plate using Third order energy functional and so the resolution of the buckling tendency of CLAMPED SIMPLE CLAMPED FIXED
isotropic plate using third order energy functional is the gap the work tends to fill. The plates arrangement can be as shown

1.1 Formulation of The Buckling Load Equation.

Overall potential energy, O, is the summation of Strain energy, € and External Work, E,, given as: O, = € + E,, li

To derive the strain energy, € the product of normal stress and normal strain in x direction is considered as

_ Bz ([o2rk]? 921k 2) ,
§xax T2 ([6)(2] tu [E)xay] Lii
while their product in y direction is considered as
_ Ez? ([a?fK]? a2fk]?
§y6y T2 ([63/2] + H[axay] ) Liii

And finally the product of the in-plane shear stress and in-plane shear
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N ) . Ez2(1-p [92fk]? .
strain is given as: T, Yy, = 2 TN _6x6y] liv
adding all together gives

_ Ez? ([9*fK)? a27k1%  [9%fk Z)
50+ 8,0+ rory =1 ([55] +2[55] +[54] v
_1lq = = _ Ez? a27k1? a2fK1%  [9%fk]? .
But€ = foxye dxdy where € = e ) <[6x2] +2 [6x6y] + [a;ﬂ] 1vi
Upon minimisation of the expressions above, the third order strain energy equation is given as
_ G n m (93fk ofk Ok ofk | 03fk ofk .
€_2f0 fO (0x3'0x +20x6y2'0x+ 6y3'6y)dXdy 2
. Bx (n m [ dfk\2 .
with the external load as v =—==[" [} (X) dxdy 2ii

The third order total potential energy functional is expressed mathematically as

_G 2k ofk Bk ofk | 03fk afk _ Bx 2 fk ..
Op= Zf'f (3x3 " ox +20x26y' ay + ay3 '6y)dXdy 2 ff ax2 dxdy 2ii

Rearranging the total potential energy equation in terms of non dimensional parameters, the buckling load equation is gotten as

PES I L T
1 .1 afk\?
Io Jo (G7) aar

G 11 [33fk] afk 93fk ] ofk 93fk] afk
= fo-([ : [ L [— 9y djdr

913 | a1
2iii

1.2 Derivation of Shape Function

Three major support conditions were considered, in the derivation of the shape functions and they namely Fixed support which was denoted as Fi,
Simple support which is denoted as Si and Clamped support which is denoted as Ci. For Simple support condition, the deflection equation F and the 2™
order derivative of the deflection equation F2, were equated to zero and simultaneous equations were formed by considering J = 0 at the left hand support
for X axis and | = 1 at the right. Also considering the top as J=1and I = 1 at the bottom support for the Y axis. For the Clamped support condition, the
deflection equation, F and 1% order derivative of the deflection equation, F*, were equated to zero and simultaneous equations were formed by considering
J =0 at the top support and | = 0 at the bottom support for the Y axis, while at the Right hand support, J = 1 while | = 1 at the left support for X axis.
These equations were solved simultaneously to obtain the various values of the primary and secondary dimensions (n;, my, n2 m, ng ms ngandmy) for the

CiSiCFi plate element. Where J and | are non-dimensional axis parallel to X and Y axis respectively as earlier explained.

1.3 Formulation of Shape Function For Clamped-Simple-Clamped-Fixed Plate

CiSiCiFi

Fig 1a Isotropic Rectangular CiSiCiFi Plate

The case of horizontal Direction (X- X axis)

J=0 J=1
F=0
F =0 F>=0
F2=0

Fig 1b Simple-Fixed Support on x-x axis
Considering the X- X axis
But Fx=ne+nd+n, 2 +nP+nd*+nsd 6
Fi'=ny+ 2n,J + 3n3J? + 4,33+ 5n5* 7
F?=2n, + 6n3] +12n,3%+ 20ns3° 8

= 6ns+ 24n,J + 60“5.]2 9
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Introducing the boundary conditions, reduces the Equations 6-9 as
At the left support, J =0

When F,=0

Fx=0=n,+0+0+0+0

no=0

Also when f,i=0

Fii= 0 =2n, + 0+ 0+0

2n,=0

n,=0

At the right support, J =1

2
Fl=ny+ 0+ 3ng+ 4n,+ 5n5 = —%

Further simplifying Equation 15 gives

2n
n; =—T5—3n3—4n4—5n5

Also for the second derivative of the Deflection,
F?2= 0=0+6n3+12n,+ 20ns

Making nz the subject gives

__ —12n,-20ns
ny =———

—10ng

n; = 2n,

For the third derivative of the Deflection,
F3 =0= 6n3+ 24n4 + 60n5

= 0= 6n3+ 24n, + 60“5

_ —60ng—24n,

n
s 6

Comparing Equation 19 and 22 gives

_ —60n5-24n,
6

Bringing the like terms together and further simplifying gives

—10ng

n, =
4 3

But substituting Equation 24 into Equation 22 gives
-60n5-24(—35)
Ny=——3—
6

Further simplification gives

10ns

N3=
3 3

Putting Equations 25 and 26 into Equation 16 gives

—10ng

2 10
m =30 -4

) — 5ng

7ns

n, =—
1 3

Recall that Fy = no+ nyd + Ny J2 + N3+ ngd* + ngl®

Putting the derived values into Equation 29 gives

_ 7] . 103 10J*
Fesns C5+5 -5+

The case of horizontal Direction (Y- Y axis)
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F=0
| = 0 \&A F2:0

Fy=mo+ myl +my P+ mg®+myl*

The first derivative on Y axis gives

Fyt = my+2 my | + 3msl? + 4m, I°

Considering the boundary conditions on the clamped ends gives
At1=0,

Fy=0=m,+0+0+0+0

Leaving my=0

Also

Flt=m+0+0+0+0

m;=0

Atl=1,

Fy=0=0+0+my+ mg+my

m, + mz=-m,

F'=0=0+2m,+3ms+4m,

M, =-mz-m,

Putting Equation 40 into the first derivatives gives
Fy' =0=0+2(- mg - mg) + 3mz+ 4m,

Opening the bracket gives

mz+2m, =0

That means mz=-2m,

Putting it back into Equation 40 gives

m; = - (-2my) - my

m; = +m,

Substituting the derived values into Equation 30 gives
Fy = myl? -2my® + my1*

Fy=mq(I?-2° + 1)

That means F = F*Fy=mg(12 -2 + 14) * ns(—%] + %]3 - %’4 +1°)
fic = fio*fk, = mang (28 + 1)(= 2 + 125 — 1 4. p5)
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The shape function is give as (I -2I° + I4)(—7;] + %]3 - %1 +17%) 50

Equation 50 is further differentiated at different stages , from where the stiffness coefficients were derived. These includes

40J3

2= (28 + 1) (- 1+ 3072 — 2L 4 5% N
Ok _ 2 2 _ 408 4 a2 3

orar = (—3 3017 = ==+ 5]")(21 -6 + 4F) 6
o _ 7 2 _ 40P N 2

aor = (-3 307 - —-+5]9)(2-121 + 12P) -
TH = (2P + )(= 1+ 60) — 10  4]% + 20]%) o
Pk _ 12 513, 4 2

B = (12 -2 + I*)(60 — 80] + 60]?) o5
also

O = (2161 + 4P) (-2 + 25 1 4 sy -
%z(z -12I+12I2)(—7;]+%I3_%]4+]5) .
a3tk 3 4

- :(-12+24|)(—§+%_%+]s) .

Integrating the product Equation 55 by 51 give the first stiffness coefficient. That

is
_ 11 3%k ofk
SC1= fO fO P * ﬁ_ldld] 59
sci=f; Jy [ = 213 + 19)(60 — 80] + 60)%) * (12 — 21° + 1*) (—2 + 30)? — % +519)] dig) 60
bringing the like terms together gives
3
=0 [(12 =28 + 1902 = 21° + 1*) + (60 — 80] + 60)%)(— 2 + 30)2 — - + 514)] didj 60a

multiplying them gives

=y P02 =2+ 1) =203 (12 = 28 4 1) + 1% - 2% + 1) + (60 (~2+302 = 2% 4 5)%) — 80J (=2 + 30 —
60) (~2 4302 = 2L+ 5]4))] didj

further minimization yields
sc,=0.789 * 0.8296
=0.65455

also integrating the product Equation 53 by 51 give the second stiffness coefficient.

That is

SCo= f01 fol ;;?: * ‘;—?‘dld] 61
scz=f) 1 [(= 243017 = 2L+ 5)%) (2 — 121 + 1212) « (12 = 21 + 19)(= 2 + 30]2 = 22 4 5%)] did 62
Bring the like terms together gives

i@ =121 + 122 -2+ 14 « (=24 3017 - 9+ 514) (— 2+ 3012 ~H 51| did] 62a

Multiplying the like terms gives

40

[N [(2 (12 =213 4 1*) — 121 (12 — 213 4 1*) + 121212 — 213 + 1%)) = (—g(—g +30)2 - 713 +5%) + 30]2(—§+ 302 —

3
sc,=0.01891 * 2.11599
=0.0400137

40)3
3

40

(24307 = 2L+ 514 (= 2+ 301 = 2L+ 51%)) + 5]*) | i

Furthermore integrating the product Equation 58 by 56 give the third stiffness coefficient. That is

93k afk
sca= [ Jy o x5 dld] 63

3
seo=f; Jy [(—12 + 24n (-2 + 2=

— 24y s 21— 612+ 41%) (- 2+ 15 - 2 gy i 64

scs= 0.0001579 * 3.77781

40]3
3

60b

+ 5]4) +

ERERE

62b
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=0.00059651

and finally integrating the product Equation 51 by 51 give the sixth stiffness coefficient. That is

1 01, dfk
sCs= f fo(a—]*

sco= [y J |07 —21° + 14)(= 2+ 30)7 -

afk.
<did)

40)3
3

Collecting the like terms together gives

=Jy f [0z =2 + 14y« (2 =28 + 14y (=24 3007 -

Opening the brackets gives

+5]%) « (12 = 21° + 14)(=2 +30)2 -

40J3
3

40)3
3

40)3
3

+5]%) (=2 +30)2 -

=00 [(12 (12 =21 + 14) = 23(12 = 2I° + 14) + [4(12 = 2° + 14)) x (=2 (=2 + 30> —

40)3
3

-24+30)%
3

40

sCs=0.018111 * 0.8478

=0.0153545

L4514 + 5]*(= 2 + 3012 = 2L 4 5]4))] gy

Reducing Equation 2iii in terms of the stiffness coefficients gives

1 1
D(scy+2—sc; +—5scC:
_ ( 1 pz 2 p4, 3)

Y =
scga?

Substituting the real values in to Equation 65 gives

D(0.65455+2%0.0400137 +—70.00059651)

=
P

x =

0.0153545a?

+ 5]4)] did

+ 5]4)] did

O 4 5]%) +30](~ 2 + 30)? -
65b

65

RESULTS AND DISCUSSION.

The results for the stiffness coefficients and the critical buckling load coefficients were derived. The critical buckling load coefficients were considered
at different aspect ratios. The first table represents the values of the stiffness coefficients while the other contains the critical buckling coefficients for the
aspect ratio of m/n, both for the previous and present study. The values of the aspect Ratios ranges from 2.0 to 1.0 with arithmetic increase of 0.1. From
the values generated in the tables, it was observed that as the aspect ratio increases from 1.0 to 2.0, the critical buckling load decreases. This occurred
both in the present and previous results.

Table 1.1 Stiffness Coefficients from Previous researchers

Stiffness coefficients, sc Derived values
SCy 0.67096
SCy 0.04043
SC3 0.006047
SCe 0.0159444

Table 1.2 Stiffness Coefficients from Present Work

Stiffness coefficients, sc Derived values
SCy 0.65455
SC, 0.0400137
SC3 0.0059651
SCs 0.0153545

Table 1.3 Critical buckling load values for CSCF Plate from Previous/Present.

m/n 2 1.9 1.8 1.7 1.6
B 43.9346 44.0759 44.2415 44.4373 44.6711
Previous 43.3728 43.5151 43.6826 43.8814 44.1201
Bx Present 43.9346 44.0759 44.2415 44.4373 44.6711
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Table 1.3 cont’d.

m/n 1.5 1.4 1.3 1.2 1.1 1
B 44.9533 45.2985 45.7268 46.2674 46.9632 47.88
Previous 44.4101 44.7674 45.2148 45.7859 46.5315 47.5319
G
Bx; Present 44.9533 45.2985 45.7268 46.2674 46.9632 47.88
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