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ABSTRACT 

The research centers on the buckling effect of rectangular Clamped-Simple-Clamped- Fixed plate Isotropic plate. This was done using 3rd energy Functional. The 

CiSiCiFi plate was considered as the direct independent plate. That means the material properties like the flexural rigidity, poison ratio and young elastic modulus 

of elasticity are the same round about the shape of the object. The shape functions were first derived and  then the various integral values of the differentiated shape 

functions, of the various boundary conditions were all gotten. Based on the derived results, the stiffness coefficients of the various boundary arrangements were 

also formulated. Upon further minimizations , the Third order strain energy equation was derived and  further expansion Third order strain energy equation gave 

rise to the Third Order Overall Potential Energy Functional. The Third Order Overall Potential Energy Functional, with respect to the amplitude was further 

integrated and this gave a result known as the Lead equation. Further minimization of the Lead equation gave rise to the  Vital buckling load equations. Next to this 

was the formulation of the non-dimensional buckling load parameters which, m/n ranging from 1.0 to 2.0,and considering it at the interval of 0.1. The relationship 

of the non-buckling load parameters against the various aspect ratios was shown on the graph. 
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Introduction 

A plate element can be considered as a structural element having straight or curves boundaries, and also possessing three dimensions known as the 

primary, secondary and tertiary dimension. The tertiary dimension also known as the plate thickness are usually very small compared to other dimensions. 

The isotropic rectangular CiSiCiFi plate have all their material properties in all directions as the same and so they classified as direction independent 

element. Stability analysis sometimes is referred to as the plate buckling has been a subject of study in solid structural mechanics for a long time now. 

Although the buckling analysis of rectangular plates has received the attention of many researchers for several centuries Prior to this time,. other 

researchers have gotten solution using both the Second and Fourth the Order energy functional for Buckling of plate. None of the scholars have any work 

on buckling of plate using Third order energy functional and so the resolution of the buckling tendency of CLAMPED SIMPLE CLAMPED FIXED 

isotropic plate using third order energy functional is the gap the work tends to fill. The plates arrangement can be as shown  

1.1    Formulation of The Buckling Load  Equation.  

Overall potential energy, Op is the summation of Strain energy, Є and External Work, Ew given as: Op = Є + Ew                      1i  

To derive the strain energy,Є the product of normal stress and normal strain in x direction is considered as 

 §xðx =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑘

𝜕𝑥2
]

2

+  µ [
𝜕2𝑓𝑘

𝜕𝑥𝜕𝑦
]

2

)                 1ii 

while their product in y direction is considered as 

§yðy =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑘

𝜕𝑦2
]

2

+  µ [
𝜕2𝑓𝑘

𝜕𝑥𝜕𝑦
]

2

)        1iii 

And finally the product of the in-plane shear stress and in-plane shear  
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strain  is given as: 𝜏𝑥𝑦γxy = 2 
𝐸𝑧2(1 – µ)

(1 – µ2)
[

𝜕2𝑓𝑘

𝜕𝑥𝜕𝑦
]

2

      1iv 

adding all together gives 

§xðx + §yðy + 𝜏𝑥𝑦γxy    =
𝐸𝑧2

1–µ2
([

𝜕2𝑓𝑘

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓𝑘

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓𝑘

𝜕𝑦2
]

2

)     1v 

But Є =
1

2
∬ Є̅

xy
dxdy where Є̅ =  

Ez2

1–µ2
  ∫ ([

𝜕2𝑓𝑘

𝜕𝑥2
]

2

+ 2 [
𝜕2𝑓𝑘

𝜕𝑥𝜕𝑦
]

2

+ [
𝜕2𝑓𝑘

𝜕𝑦2
]

2

)   1vi 

Upon minimisation of the expressions above, the third order strain energy equation is given as 

  Є =
𝐺

2
∫ ∫ (

∂3𝑓𝑘

∂𝑥3
.

∂𝑓𝑘

∂x
+ 2

∂3𝑓𝑘

∂x ∂y2
.

∂fk

∂x
+

∂3𝑓𝑘

∂𝑦3
.

∂fk

∂y
)

m

0

n

0
dxdy      2i 

with the external load  as ѵ = – 
𝐵𝑥

2
∫ ∫ (

  ∂fk

∂x
)

m 

0

n

0

2

dxdy                   2ii 

The third order total potential energy functional is expressed mathematically as  

Op=
𝐺

2
∫ ∫ (

∂3𝑓𝑘

∂𝑥3
.

∂fk

∂x
+ 2

∂3𝑓𝑘

∂x2 ∂y
.

∂fk

∂y
+

∂3𝑓𝑘

∂𝑦3
.

∂fk

∂y
) dxdy −

𝐵𝑥

2
∫ ∫

∂2𝑓𝑘

∂𝑥2
dxdy      2ii 

Rearranging the total potential energy equation in terms of non dimensional parameters, the buckling load equation is gotten as  

Bx =

G

a2 ∫ ∫ .
1

0
1

0 ([
𝜕3fk

𝜕𝐽3 ].
∂fk

∂J
+2

1

𝑝2[
𝜕3fk

𝜕J𝜕𝐼2].
∂fk

∂J
 +

1

𝑝4[
𝜕3fk

𝜕𝐼3 ].
∂fk

∂I
)dJdI

∫ ∫ (
  ∂fk

∂J
)

1 
0

1
0

2
dJdI

      2iii 

1.2   Derivation of Shape Function  

Three major support conditions were considered, in  the derivation of the shape functions and they  namely Fixed  support which was denoted as Fi, 

Simple support which is denoted as Si and Clamped support which is denoted as Ci. For Simple support condition, the deflection equation F and the 2nd 

order derivative of the deflection equation F2, were equated to zero and simultaneous equations were formed by considering J = 0 at the left hand support 

for X axis and I = 1 at the right. Also considering the top as  J = 1 and I = 1 at the bottom support for the Y axis. For the Clamped support condition, the 

deflection equation, F and 1st order derivative of the deflection equation, F1, were equated to zero and simultaneous equations were formed by considering  

J = 0 at the top support and I = 0 at the bottom support for the Y axis, while at the Right hand support, J = 1 while I = 1 at the left support for X axis.  

These equations were solved simultaneously to obtain the various values of the primary and secondary dimensions (n1, m1, n2, m2 n3, m3, n4 andm4) for the 

CiSiCFi plate element. Where  J and I are non-dimensional axis parallel to X and Y axis respectively as earlier explained.   

1.3   Formulation of  Shape Function For Clamped-Simple-Clamped-Fixed Plate 

 

 

 

 

 

Fig 1a Isotropic Rectangular CiSiCiFi Plate 

The case of horizontal Direction (X- X axis) 

 

 

 

 

Fig 1b Simple-Fixed Support on x-x axis 

Considering the X- X axis 

 But   Fx = no + n1J + n2 J
2 + n3J

3 + n4J
4 + n5J

5  6 

Fx
1= n1 + 2n2J + 3n3J

2 + 4n4J
3+ 5n5J

4  7 

F2 = 2n2 + 6n3J +12n4J
2 + 20n5J

3  8 

F3 = 6n3+ 24n4J + 60n5J
2 9 

xJ 

YI 
CiSiCiFi  

 

F =0 
F2=0 
 

F = 0 
F2= 0 

 

J=0 
 

J=1 
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Introducing the boundary conditions, reduces the Equations 6-9 as 

At the left support, J = 0 

When Fx = 0 

Fx = 0 = no + 0 + 0 + 0+ 0           10 

no= 0 

Also when   fx
ii= 0          11  

Fii= 0 = 2n2 + 0+ 0+0                     12 

2n2 = 0           13 

 n2 = 0           14  

At the right support, J =1 

Fx
1 = n1 + 0 + 3n3

 + 4n4+ 5n5 = −
2n5

3

         15 

 Further simplifying Equation 15 gives 

n1  = −
2n5

3
− 3n3 − 4n4 − 5n5           16 

Also for the second derivative of the Deflection, 

F2 = 0 = 0 + 6n3 +12n4
 + 20n5

           17 

Making n3 the subject gives  

  n3  =
−12n4− 20n5

6

            18 

n3  =
−10n5

3
− 2n4           19 

For the third derivative of the Deflection, 

F3 = 0 = 6n3+ 24n4 + 60n5
            20 

F3 = 0 = 6n3+ 24n4 + 60n5
             21 

n3= 
−60n5−24n4

6

             22 

Comparing Equation 19 and 22 gives  

−10n5

3
− 2n4 =

−60n5−24n4

6

                      23  

Bringing the like terms together and further simplifying gives 

n4 =
−10n5

3
                24 

But substituting Equation 24 into Equation 22 gives  

n3= 
−60n5−24(

−10n5
3

)

6
                        25  

Further simplification gives  

n3= 
10n5

3

                    26  

Putting Equations 25 and 26 into Equation 16 gives 

n1  = −
2n5

3
− 3(

10n5

3
) − 4(

−10n5

3
) − 5n5         

 27 

n1  = −
7n5

3

            28 

Recall that Fx = no + n1J + n2 J
2 + n3J

3 + n4J
4 + n5J

5        29 

Putting the derived values into Equation 29 gives 

Fx = n5 (−
7J

3
+

10J3

3
−

10J4

3
+ J5)                 30 

The case of horizontal Direction (Y- Y axis) 
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Fy = mo + m1I + m2 I
2 + m3 I

3 + m4 I
4             31  

The first derivative on Y axis gives  

Fy
1 = m1+2 m2 I + 3m3I

2 + 4m4 I
3            32 

Considering the boundary conditions on the clamped ends gives   

At I = 0, 

Fy = 0 = mo + 0+ 0 + 0 + 0              33  

Leaving mo = 0               34 

Also   

Fy
1 = m1+0 + 0 + 0 + 0            35 

m1= 0          36 

At I = 1, 

Fy = 0 = 0 + 0 + m2 + m3 + m4              37 

m2 + m3 = - m4         38  

Fy
1 = 0 = 0 + 2m2 + 3m3 + 4m4            39 

 m2 = - m3 - m4              40 

Putting Equation 40 into the first derivatives gives  

Fy
1 = 0 = 0 + 2(- m3 - m4) + 3m3 + 4m4           41 

Opening the bracket gives  

m3 + 2m4 = 0         42  

That means m3 = -2m4             43 

Putting it back into Equation 40 gives   

m2 = - (-2m4) - m4              44 

m2 = +m4               45 

Substituting the derived values into Equation 30 gives 

Fy = m4I
2 -2m4I

3 + m4I
4             46 

Fy = m4(I
2 -2I3 + I4)                              47 

That means    F = Fx*Fy = m4(I
2 -2I3 + I4) * n5(−

7J

3
+

10J3

3
−

10J4

3
+ J5)            48  

fk = fkx*fky = m4n5 (I2 -2I3 + I4)(−
7J

3
+

10J3

3
−

10J4

3
+ J5)            49  

F=0 
F 2=0 
 

I = 0 

 

I=1 
 

F =0 
F 2=0 
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The shape function is give as (I2 -2I3 + I4)(−
7J

3
+

10J3

3
−

10J4

3
+ J5)          50 

Equation 50 is further  differentiated at different stages , from where the stiffness coefficients were derived. These includes 

  ∂fk

∂J
= (I2 -2I3 + I4)(−

7

3
+ 30J2 −

40J3

3
+ 5J4)            51 

  ∂2fk

∂J ∂I
= (−

7

3
+ 30J2 −

40J3

3
+ 5J4)(2I -6I2 + 4I3)            52 

  ∂fk

∂J ∂I2
= (−

7

3
+ 30J2 −

40J3

3
+ 5J4)(2 -12I + 12I2)           53 

  ∂2fk

∂J2
= (I2 -2I3 + I4)(−

7

3
+ 60J − 10 ∗ 4J2 + 20J3)                        54 

  ∂3fk

∂J3
= (I2 -2I3 + I4)(60 − 80J + 60J2)            55 

also  

  ∂fk

∂I
= (2I -6I2 + 4I3) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)                    56 

  ∂2fk

∂I2
= (2 -12I + 12I2)(−

7J

3
+

10J3

3
−

10J4

3
+ J5)                           57 

  ∂3fk

∂I3
= (-12 + 24I)(−

7J

3
+

10J3

3
−

10J4

3
+ J5)                        58 

Integrating the product Equation 55 by 51 give the first stiffness coefficient. That  

is  

sc1= ∫ ∫
  ∂3fk

∂J3
∗

  ∂fk

∂J

1

0

1

0
dIdJ             59  

sc1=∫ ∫ [(I2 − 2I3  +  I4)(60 − 80J + 60J2) ∗ (I2 − 2I3 + I4) (−
7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ   60 

 bringing the like terms together gives  

      = ∫ ∫ [(I2 − 2I3  + I4)(I2 − 2I3 + I4) ∗  (60 − 80J + 60J2)(−
7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ   60a 

multiplying them gives 

  = ∫ ∫ [(I2(I2 − 2I3 +  I4) − 2I3 (I2 − 2I3 + I4) + I4(I2 − 2I3 + I4)) ∗  (60 (−
7

3
+ 30J2 −

40J3

3
+ 5J4) − 80J (−

7

3
+ 30J2 −

40J3

3
+ 5J4) +

1

0

1

0

60J2 (−
7

3
+ 30J2 −

40J3

3
+ 5J4))]     dIdJ                           60b 

further  minimization yields 

sc1= 0.789 * 0.8296 

     =0.65455 

also integrating the product Equation 53 by 51 give the second stiffness coefficient.  

That is  

sc2 = ∫ ∫
  ∂3fk

∂J ∂I2
∗

  ∂fk

∂J

1

0

1

0
dIdJ             61 

sc2=∫ ∫ [(−
7

3
+ 30J2 −

40J3

3
+ 5J4) (2 − 12I +  12I2) ∗ (I2  − 2I3 + I4)(−

7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ    62 

Bring the like terms together gives 

∫ ∫ [(2 − 12I +  12I2)(I2  − 2I3 + I4) ∗ (−
7

3
+ 30J2 −

40J3

3
+ 5J4) (−

7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ  62a 

Multiplying the like terms gives 

∫ ∫ [(2 (I2  − 2I3 + I4) − 12I (I2  − 2I3 + I4) +  12I2(I2  − 2I3 + I4)) ∗ (−
7

3
(−

7

3
+ 30J2 −

40J3

3
+ 5J4) + 30J2(−

7

3
+ 30J2 −

40J3

3
+ 5J4) −

1

0

1

0
40J3

3
(−

7

3
+ 30J2 −

40J3

3
+ 5J4(−

7

3
+ 30J2 −

40J3

3
+ 5J4)) + 5J4)] dIdJ      62b 

sc2= 0.01891 * 2.11599 

   = 0.0400137 

Furthermore integrating the product Equation 58 by 56 give the third stiffness coefficient. That is  

sc3 = ∫ ∫
  ∂3fk

∂I3
∗

  ∂fk

∂I

1

0

1

0
dIdJ          63 

sc3=∫ ∫ [(−12 +  24I)(−
7J

3
+

10J3

3
−

10J4

3
+ J5) ∗ (2I − 6I2 + 4I3) (−

7J

3
+

10J3

3
−

10J4

3
+ J5)]

1

0

1

0
dIdJ   64 

sc3= 0.0001579 * 3.77781 
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    = 0.00059651 

and finally  integrating the product Equation 51 by 51 give the sixth stiffness coefficient. That is  

sc6 = ∫ ∫ (
  ∂fk

∂J
∗

  ∂fk

∂J

1

0

1

0
)dIdJ         63 

 

sc6= ∫ ∫ [(I2  − 2I3  +  I4)(−
7

3
+ 30J2 −

40J3

3
+ 5J4) ∗ (I2  − 2I3  +  I4)(−

7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ  64 

Collecting the like terms together gives  

= ∫ ∫ [(I2  − 2I3  +  I4) ∗ (I2  − 2I3  +  I4)(−
7

3
+ 30J2 −

40J3

3
+ 5J4)(−

7

3
+ 30J2 −

40J3

3
+ 5J4)]

1

0

1

0
dIdJ  65 

Opening the brackets gives 

= ∫ ∫ [(I2 (I2  − 2I3  +  I4) − 2I3(I2  − 2I3  +  I4)  +  I4(I2  − 2I3  +  I4)) ∗ (−
7

3
(−

7

3
+ 30J2 −

40J3

3
+ 5J4) + 30J2(−

7

3
+ 30J2 −

40J3

3
+ 5J4) −

1

0

1

0
40J3

3
(−

7

3
+ 30J2 −

40J3

3
+ 5J4) + 5J4(−

7

3
+ 30J2 −

40J3

3
+ 5J4))] dIdJ                                                                          65b 

sc6 = 0.018111 * 0.8478 

     = 0.0153545 

Reducing Equation 2iii in terms of the stiffness coefficients gives 

Bx =
D(sc1+2

1

𝑝2sc2 +
1

𝑝4sc3)

sc6a2
        65 

Substituting the real values in to Equation 65 gives 

Bx =
D(0.65455+2

1

𝑝20.0400137 +
1

𝑝40.00059651)

0.0153545a2
      66 

RESULTS AND DISCUSSION. 

The results for the stiffness coefficients and the critical buckling load coefficients were derived. The critical buckling load coefficients were considered 

at different aspect ratios. The first table represents the values of the stiffness coefficients while the other contains the critical buckling coefficients for the 

aspect ratio of m/n, both for the previous and present study. The values of the aspect Ratios ranges from 2.0 to 1.0 with arithmetic increase of 0.1. From 

the values generated in the tables, it was observed that as the aspect ratio increases from 1.0 to 2.0, the critical buckling load decreases. This occurred 

both in the present and previous results.  

Table 1.1   Stiffness Coefficients from Previous researchers 

               Stiffness coefficients, sc          Derived values 

                         sc1           0.67096 

                         sc2           0.04043 

                         sc3           0.006047 

                         sc6           0.0159444 

 

Table 1.2   Stiffness Coefficients from Present Work 

 

               Stiffness coefficients, sc          Derived values 

                         sc1           0.65455 

                         sc2           0.0400137 

                         sc3           0.0059651 

                         sc6           0.0153545 

 

Table 1.3 Critical buckling load values for CSCF Plate from Previous/Present.  

 

 

    m/n 

 

   2 

 

 1.9 

 

1.8 

 

1.7 

 

1.6 

      B 43.9346 44.0759 44.2415 44.4373 44.6711 

 

    Bx 

Previous 43.3728 43.5151 43.6826         43.8814 44.1201 

 Present 43.9346 44.0759 44.2415 44.4373 44.6711 
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Table 1.3  cont’d. 
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m/n 

 

1.5 

 

1.4 

 

1.3 

 

1.2 

 

1.1 

 

1 

B 44.9533 45.2985 45.7268 46.2674 46.9632 47.88 

 

Bx
G

n2
 

Previous 44.4101 44.7674 45.2148 45.7859 46.5315 47.5319 

Present 44.9533 45.2985 45.7268 46.2674 46.9632 47.88 


