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ABSTRACT 

Low-dimensional topology is a mathematical field that encompasses the exploration of braid groups. These interconnected areas of study offer profound insights 

into the fundamental characteristics of spaces and the intricate structures that can emerge within them. The investigation of low-dimensional topology extends its 

reach into various scientific disciplines, making it a dynamic and vital realm of mathematical research that continues to thrive. 
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1. Introduction 

Topology, as a branch of mathematics, is dedicated to the examination of spatial properties that remain unaltered under continuous transformations. One 

specific and captivating subfield of topology is low-dimensional topology, which concentrates on spaces of dimensions two, three, and four. Within the 

realm of low-dimensional topology, there is a pronounced focus on manifolds, which are spaces that exhibit local characteristics resembling Euclidean 

space. Manifolds can be methodically classified and studied through various techniques, including differential topology and algebraic topology. 

Another intriguing facet of low-dimensional topology is knot theory, which is an intricate study of the properties and classifications of knots and links 

within three-dimensional space. Knot theory boasts a wide range of applications across diverse fields, including DNA research and physics. 

Furthermore, braid groups, which are mathematical groups arising from the examination of braids, hold a pivotal role in low-dimensional topology. These 

groups offer valuable insights into the intricate structure and behaviour of knots and links. In essence, low-dimensional topology, encompassing 

manifolds, knot theory, and braid groups, offers a captivating and profound realm of exploration within the field of mathematics. 

2. Two-dimensional Manifold 

A two-dimensional manifold is a topological space that locally resembles Euclidean two-dimensional space (commonly known as the plane). In other 

words, a two-dimensional manifold is a space where every point has a neighbourhood that is homomorphic to a region in the plane. Formally, a topological 

space M is considered a two-dimensional manifold if, for every point x in M, there exists an open neighbourhood U(x)and a homeomorphism (a continuous 

bijection with a continuous inverse) between U and an open subset of the Euclidean plane R2. Two-dimensional manifolds are often referred to as surfaces, 

and they come in various forms, including spheres, tori, projective planes, and more complex surfaces. 

Definition 

The open disk, denoted as D, which consists of all points in R^2 (the two-dimensional Euclidean space) with a distance less than one from the origin, can 

be shown to be homeomorphic to R2. This homeomorphism can be established using a specific function, denoted as f, which maps points from the open 

disk to points in R2. 

The homeomorphism function f is defined as follows: f(x) =
x

1−||x||
   where ||x|| represents the Euclidean norm or the distance of point x from the origin. 

It is noteworthy that this homeomorphism demonstrates that every open disk, regardless of its size or location within R2, can be considered homomorphic 

to the entire plane R2. This result is a fundamental concept in topology, highlighting the remarkable flexibility and uniformity of topological spaces. 
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2.1 Orientability 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of the examples we have seen so far, the Mo¨bius strip has the curious property that it seems to have two sides locally at every interior point but there is 

only one side globally. To express this property intrinsically, without reference to the embedding in R3, we consider a small, oriented circle inside the 

strip. We move it around without altering its orientation, like a clock whose fingers keep turning in the same direction. However, if we slide the clock 

once around the strip its orientation is the reverse of what it used to be and we call the path of its center an orientation-reversing closed curve. There are 

also 

 

 

 

 

 

 

 

Fig 2.2 Mobius strip 

The projective plane, P2, obtained by gluing a disk to a Mo¨bius strip. Right: the Klein bottle, K2, obtained by gluing two Mo¨bius strips together. The 

vertical lines are self-intersections that are forced by placing the 2-manifolds in R3. They are topologically not important. 

orientation-preserving closed curves in the Mo¨bius strip, such as the one that goes around the strip twice. If all closed curves in a 2-manifold are 

orientation preserving then the 2-manifold is orientable, else it is non-orientable. 

Note that the boundary of the Mo¨bius strip is a single circle. We can therefore glue the strip to a sphere or a torus after removing an open disk from the 

latter. This operation is often referred to as adding a cross-cap. In the first case, we get the projective plane, the sphere with one cross-cap, and in the 

second case, we get the Klein bottle, the sphere with two cross-caps. Both cannot be embedded in R3, so we have to draw them with self-intersections, 

but these should be ignored when we think about these surfaces. 

Proposition 2.1.1 

Two closed surfaces are homeomorphic if and only if they are both orientable or both nonorientable, and they have the same genus. 

We note the well-known fact that the connected sum of T2 with RP2 is homeomorphic with the connected sum of three copies of RP2, both being non 

orientable of genus 3. This surface is known as Dyck’s surface. 

The fundamental groups of closed surfaces have presentations: If Σ is the orientable surface of genus g: π1(Σ) ∼= ha1,b1,...,ag,bg| [a1,b1][a2,b2]···[ag,bg] = 

1i If Σ is the nonorientable surface of genus g: 

 

Theorem 2.0.1 

If Σ is a surface, then π1(Σ) is bi-orderable, with two exceptions: the Klein bottle, whose group is only left-orderable and the projective plane which is not 

left-orderable because it is a torsion group of order 2. 
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Proof: 

First consider the Klein bottle group, which has the alternative presentation hx,y|y−1xy = x−1i. If one kills the infinite cyclic subgroup generated by x the 

resulting quotient is also infinite cyclic. Thus the Klein bottle group is in the middle of a short exact sequence flanked by orderable groups, and is therefore 

left orderable. It cannot be bi-ordered because the defining relation would then imply the contradiction that x is greater than the identity if and only x−1 is 

greater than the identity. 

We now sketch the proof that closed surfaces other than the Klein bottle and RP2 may be bi-ordered. The proof boils down to the single case of the non 

orientable surface Σ of genus 3, known as Dyck’s surface, by the trick of considering covering spaces. Recall that the projection map of a covering space 

induces injective homomorphisms of the corresponding fundamental groups. Now non orientable surfaces of genus g ≥ 3 may be realized as the connected 

sum of the torus T2 with g − 2 copies of RP2. In other words, one may remove g − 2 disjoint disks from T2 and replace them by M¨obius bands to construct 

such a surface. By considering a finite covering of T2 by itself, and lifting a disk downstairs to multiple disks upstairs, we can construct finite sheeted 

covers of Σ by all higher genus nonorientable surfaces. Thus their fundamental groups can be considered as (finite index) subgroups of π1(Σ). As for the 

orientable surfaces, we consider the oriented double cover of a nonorientable surface of genus g ≥ 3. Since Euler characteristics double, we see that the 

oriented surface upstairs in the cover will have genus g − 1. Therefore π1(Σ) also contains subgroups isomorphic to the fundamental groups of orientable 

surfaces of genus 2 or more. This leaves the torus to consider, but its group is just Z2 which is obviously bi-orderable. 

It remains to order π1(Σ), where Σ is Dyck’s surface, which we can also do by regarding covering spaces. Take the universal cover of T2 by R2, and choose 

a small disk in T2, which lifts to infinitely many disks in R2, which we may take centered at the integral points (m,n) ∈ R2. Now remove all the disks 

downstairs and upstairs and replace them by M¨obius bands. This produces an infinite-sheeted covering Σ˜ → Σ. One calculates that π1(Σ)˜ is an infinitely-

generated free group F∞ with generators represented by the central curves of the M´obius bands that were sewn to the punctured R2, connected by tails to 

some fixed basepoint. Thus we have an exact sequence 

1 → F∞ → π1(Σ) → Z2 → 1 

in which π1(Σ) is sandwiched between bi-ordered groups. The free group F∞ may be ordered, for example using a Magnus expansion, in such a way that 

the ordering is invariant under conjugation by elements of π1(Σ), that is, deck transformations of the covering. (see [42] for details). We then appeal to 

proposition 2.1.1. 

Note that this corrects a statement in the literature [29], p. 201 “... the fundamental group of a one-sided surface cannot be ordered.” 

3. Three-Dimensional Manifolds 

Many, although not all, of the fundamental groups associated with 3-manifolds exhibit the property of left-orderability, and in some cases, they can even 

be locally indicable. The orderability of these groups plays a significant role in our understanding of various aspects of 3-manifold theory, such as 

foliations, mappings, and other related structures. A valuable tool in determining the left-orderability of these groups is the theorem established by Burns 

and Hale [8], which simplifies the inquiry by reducing it to a local analysis. 

 

 

 

 

Fig 3: Example of a 3-dimensional Monifold 

Foliations 3.1 

 Let us now consider (codimension one) foliations of 3-manifolds M. By this we mean a collection F of subsets of M for which appropriate R3 charts at 

points of M meet members of F in parallel planes in R3. Members of F are called leaves: they may be closed surfaces, or they may be noncompact and 

wrap around and meet the chart infinitely many times. It is known that every closed 3-manifold admits such foliations. F is said to be transversely oriented 

if there is a continuous assignment of normal vectors to all the leaves. If each member of F is considered a point, with the natural decomposition space 

topology, one gets the “space of leaves” which may be a non-Hausdorff space. 

If M˜ → M is a covering space, then a foliation F of M naturally lifts to a foliation F˜ of M˜ . An R-covered foliation F of M is one which, when lifted to 

the universal cover of M becomes a foliation whose space of leaves is homeomorphic with the real line R. 

Theorem 3.1 

 If the 3-manifold M has a transversely-oriented R-covered foliation, then π1(M) is left-orderable. 
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Proof: 

This can be seen by noting that π1(M) acts by deck transformations on the universal cover M˜ and therefore permutes the leaves of F˜. In other words, it 

acts on the space of leaves, assumed homeomorphic to R, and by orientation-preserving homeomorphisms because of the transverse orientation which 

also lifts in an equivariant way. Then apply Proposition 2.0.4. 

It follows, for example, that Weeks’ manifold does not support a transverselyoriented R-covered foliation. An important class of foliations are the so-

called taut foliations which means that for each leaf there is a simple closed curve in the manifold intersecting that leaf and everywhere transverse to the 

foliation. The first examples of hyperbolic manifolds without taut foliations were given by Roberts, Shareshian and Stein [40] showing that their groups 

cannot act on the space of leaves, which in their case may be a possibly non-Hausdorff one-dimensional manifold. The interested reader can pursue the 

fascinating interplay of foliations and orderability (including circular orders) in [11] and [10]. 

3.2 Mappings of nonzero degree  

If M and N are connected oriented manifolds of the same dimension n and f : M → N is a mapping, the degree of f is determined by the homology 

mapping f∗ : Hn(M;Z) → Hn(N;Z). In particular, each of those top-dimensional homology -groups is canonically isomorphic to Z, coming from specified 

orientations. If c ∈ Hn(M;Z) is the preferred generator, then f∗(c) ∈ Hn(N;Z) ∼= Z is the degree of f. Degree is a measure of the algebraic number of 

preimages of a generic point. A constant map, or more generally one with a contractible image, of course has degree zero. 

It is often of interest to ask whether mappings of nonzero degree exist between given manifolds. If the target is the sphere of appropriate dimension, such 

maps always exist. Indeed, given any manifold M of dimension n, consider a smooth closed n-ball B ⊂ M, say a closed neighbourhood of a point. If we 

smash the boundary of B, as well as everything outside of B in M, to a single point, the resulting space is topologically an n-sphere. Moreover the quotient 

mapping M → Sn has degree one. In fact, by composing by degree d maps Sn → Sn, there are maps of any given degree when the target is a sphere. 

A connected sum M1]M2 always maps with degree 1 on each of its factors, simply by smashing the other factor to a point, so results assuming irreducibility 

often generalize. However, in general, maps of nonzero degree might not exist. Orderability gives one obstruction to their existence. 

3.2.1 Theorem  

Suppose M is a closed oriented irreducible 3-manifold whose fundamental group is not left-orderable and that N is a closed oriented 3-manifold whose 

group is left-orderable. Then maps M → N of nonzero degree do not exist. 

Consider f : M → N. Then our assumptions ensure that the induced map π1(M) → π1(N) must be trivial, because otherwise Theorem 6.0.19 would imply 

that π1(M) is left-orderable, contradicting the hypothesis. Since the induced map on fundamental groups is trivial, standard covering space theory implies 

f lifts to the universal cover N˜ which is noncompact. Then we have a factorization H3(M) → H3(N
˜) → H3(N) of the homology map induced by f in 

which the middle group is trivial, because N˜ is noncompact. It follows that deg(f) = 0.  

3.3. Conjectures of Waldhausen and Thurston 

Group orderability is connected with certain deep conjectures about 3-manifolds due to Waldhausen and W. Thurston. A Haken 3-manifold M is one 

which contains an incompressible surface F, meaning a surface of genus ≥ 1 in M for which the inclusion induces an injective homomorphism π1(F) → 

π1(M). Many questions regarding 3-manifold groups had been proved for Haken manifolds, often by inductive arguments involving cutting M open along 

F producing a “simpler” Haken manifold. Not all 3-manifolds are Haken, but Waldhausen famously asked whether 3-manifolds are virtually Haken, 

meaning some finite-sheeted covering is a Haken manifold – a question which remained open for decades. 

Even more audaciously, Thurston proposed a stronger conjecture for the most important, and difficult, class of 3-manifolds – hyperbolic ones. He 

conjectured that they are virtually fibred. A 3-manifold M is said to be fibred if there is a locally trivial fibre bundle map M → S1 with fibre a compact 

orientable surface. This is a very strong type of foliation in which the leaves are surfaces, all topologically equivalent, and the space of leaves is 

topologically a circle. 

There is an exact sequence associated with fibrations, which in the case of a fibred 3-manifold M with fibre F reduces to 

1 → π1(F) → π1(M) → π1(S
1) → 1. 

So we see that fibred 3-manifolds are Haken. Of course π1(S
1) is infinite cyclic and we have seen that π1(F) is also bi-orderable . From theorem 3.1 it 

follows that π1(M) is left-orderable if M is fibred. 

Therefore there was a (faint) hope of finding a counterexample to the virtual fibred conjecture by finding a Kleinian group which is not virtually left-

orderable, meaning no finite index subgroup is left-orderable. That hope was recently dashed by stunning work of Agol [1], building on results of Haglund, 

Wise and others, in which he proved both the virtual Haken conjecture and the virtual fibering conjecture. Moreover, he showed that if M is hyperbolic, 

then π1(M) contains a finite-index subgroup which is a right-angled Artin group, also known as RAAG. A RAAG is defined as having a finite set of 

generators and only relations saying that some of the generators commute with each other – a kind of blend of free group and free abelian group. Since it 

is known that every RAAG is bi-orderable 
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3.4 Triangulation 

A triangulation of a topological space X is a homeomorphism from X to a simplicial complex. Let us recall that a simplicial complex K is specified by a 

finite set of vertices V and a finite set of simplices S Ă PpV q (the power set of V ), such that if σ P S and τ Ă σ then τ P S. The combinatorial data pV,Sq 

is called an abstract simplicial complex. To each such data, there is an associated topological space, called the geometric realization. This is constructed 

inductively on d ě 0, by attaching a d-dimensional simplex ∆d for each element σ P S of cardinality d; see [Hat02]. The result is the simplicial complex 

K. In practice, we will not distinguish between K and the data pS,V q. 

Let K “ pV,Sq be a simplicial complex. Formally, for a subset S1 Ă S, its closure is 

ClpS1q “ tτ P S|τ Ď σ P S1u 

The star of a simplex τ P S is 

Stpτq “ tσ P S|τ Ď σu 

Triangulations of manifolds 

In topology, manifolds are considered in different categories, with respect to their transition functions. For example, we have‚ Topological manifolds if 

the transition functions are C0; 

Smooth manifolds if the transition functions are C8; 

PL (piecewise linear) manifolds if the transition functions are piecewise linear.We say that a triangulation is combinatorial if the link of every simplex 

(or, equivalently, of every vertex) is piecewise-linearly homomorphic to a sphere. Clearly, every space that admits a combinatorial triangulation is a 

manifold (in fact, a PL manifold). 

 

 

 

 

4.Knot theory 

Knot theory is an appealing subject because the objects studied are familiar in everyday physical space. Although the subject matter of knot theory is 

familiar to everyone and its problems are easily stated, arising not only in many branches of mathematics but also in such diverse fields as biology, 

chemistry, and physics, it is often unclear how to apply mathematical techniques even to the most basic problems. We proceed to present these 

mathematical techniques. 

4.1 Knots 

The intuitive notion of a knot is that of a knotted loop of rope. This notion leads naturally to the definition of a knot as a continuous simple closed curve 

in R3. Such a curve consists of a continuous function f : [0,1] → R3 with f(0) = f(1) and with f(x) = f(y) implying one of three possibilities: 

1. x = y 

2. x = 0 and y = 1 

3. x = 1 and y = 0 

Unfortunately, this definition admits pathological or so called wild knots into our studies. The remedies are either to introduce the concept of 

differentiability or to use polygonal curves instead of differentiable ones in the definition. The simplest definitions in knot theory are based on the latter 

approach. 

Definition 4.1 (knot)  

A knot is a simple closed polygonal curve in R3. 

The ordered set (p1,p2,...,pn) defines a knot; the knot being the union of the line segments [p1,p2],[p2,p3],...,[pn−1,pn], and [pn,p1]. 

 

Definition 4.2 (vertices)  

If the ordered set (p1,p2,...,pn) defines a knot and no proper ordered subset defines the same knot, the elements of the set, pi, are called the vertices of the 

knot. 
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Projections of a knot to the plane allow the representation of a knot as a knot diagram. Certain knot projections are better than others as in some projections 

too much information is lost. 

Definition 4.3 (regular projection)  

A knot projection is called a regular projection if no three points on the knot project to the same point, and no vertex projects to the same point as any 

other point on the knot.  

Theorem 4.3.1  

If a knot does not have a regular projection then there is an equivalent knot that does have a regular projection. 

 

 

 

 

 

 

Figure 4: Three knot diagrams for the figure-eight knot. 

A knot diagram is the regular projection of a knot to the plane with broken lines indicating where one part of the knot undercrosses the other part. 

Informally, an orientation of a knot can be thought of as a direction of travel around the knot. 

Definition 4.4 (oriented knot) 

 An oriented knot consists of a knot and an ordering of its vertices. The ordering must be chosen so that it determines the original knot. Two orderings 

are considered equivalent if they differ by a cyclic permutation. 

The orientation of a knot on a knot diagram is represented by placing coherently directed arrows. 

The connected sum of two knots, K1 and K2, is formed by removing a small arc from each knot and then connecting the four endpoints by two new arcs 

in such a way that no new crossings are introduced, the result being a single knot, 

K = K1#K2.   

  

       

 

 

 

 

 

 

 

Figure 4.1 : Connected sum of the figure - eight knot and the trefoil knot. 

The notion of equivalence of knots is based on their knot diagrams and the following theorem. 

5. Dehn Surgery 

Dehn surgery is a fundamental technique in 3-manifold topology. Indeed, we can construct any 3-manifold1 beginning with any other 3-manifold and 

performing Dehn surgery enough times. However, it is a highly non-trivial and widely open problem to understand what manifolds can be obtained by 

doing Dehn surgery once (even starting from the ‘simplest’ 3-manifold, namely S 3 ) and what knots yield a fixed manifold by surgery. Heegaard Floer 

theory is a relatively recent collection of powerful tools in lowdimensional topology. It has many aspects and provides invariants in many different 

contexts. In this paper, we are only concerned with the 3-manifold and knot invariants (defined in [18, 24, 16]). The collections of 3-manifold invariants 

and knot invariants are connected via the surgery formula that expresses the Heegaard Floer homology of a 3-manifold obtained by surgery on a given 
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knot in terms of the Heegaard Floer homology data of the knot (see [22]). This makes Heegaard Floer homology an especially suitable tool for 

investigating questions about Dehn surgery. A natural question about Dehn surgery is whether there are manifolds that can be obtained by surgery on 

infinitely many distinct knots in S 3 . The answer is ‘yes’ – see [12] or [26]. There is still hope, however, that perhaps this does not happen for some nice 

classes of knots. One interesting and well-studied class of knots is that of alternating knots. At first sight, their diagrammatic definition seems to have 

little to do with the geometric-topological properties of these knots, 

5.0.1 Theorem (Lacken by Purcell) 

For any closed 3-manifold M with sufficiently large Gromov norm, there are at most finitely many prime alternating knots K and fractions p/q such that 

M is obtained by p/q surgery along K. 

In fact, the statement about fractions p/q can be deduced, for example, from [10]. We will also show in this paper that given any manifold Y there is a 

universal bound on q for such fractions which also implies that they are finite in number. Using techniques that are very different from those used in [6] 

we are able to establish the following improvement of this theorem. 

5.0.2 Theorem 

Let Y be a 3-manifold. There are at most finitely many alternating knots K ⊂ S3 such that Y = Sp/q
3 (K). 

Heegaard Floer homology is also very useful in bounding genera of various surfaces. In particular, knot Floer homology determines the genus of a knot 

[15]. Combining this with information about surgery often allows one to put restrictions on genera of knots admitting certain surgeries. For example, if 

surgery on a knot K produces an L-space Y (a generalisation of lens spaces – see below for the definition), then 2g(K) − 1 ≤ |H1(Y )|, where by g(K) we 

mean the genus of K  

We derive a bound which is in some respects ‘opposite’ to the bound for Lspaces. It is a lower bound which can be non-trivial only for non-L-spaces. For 

the statement of the theorem below and the rest of the paper note that we work over an arbitrary field F. Heegaard Floer homology is then an F[U]-module 

and we denote the action of U simply by multiplication. For a rational homology sphere Y , HFred(Y ) denotes its reduced Floer homology. 

5.0.3 Theorem  

For any knot K ⊂ S3 and any p/q ∈ Q we have Ug(K)+dg4(K)/2e · HFred(
S

p/q3 (K)) = 0. 

We remark that if K is an L-space knot, then Udg4(K)/2e · HFred(Sp/q
3 (K)) = 0. Moreover, for any N > 0 and p > 0 there is a three-manifold Y which can be 

obtained by a surgery on a knot in S3 such that UN·HFred(Y ) 6= 0 and |H1(Y )| =p. 

Here g4(K) is the slice genus of K. We obviously have , so the theorem does give a lower bound for g(K). 

A different lower bound for the knot genus producing non-L-spaces has been found by Jabuka in [4], but unlike our bound, it also depends on the 

denominator of the slope. Note also that there exists a manifold for which the genus of knots producing it is not bounded above [26]. 

More recently, Jabuka [3] has produced a new lower bound on the genus that does not involve the denominator of the slope. He also obtained the ranks 

of HFd for the result of surgery on a knot in S3. His genus bound appears to be quite different from ours. 

Using the genus bound of Theorem 3 and some other considerations we are able to prove results about Seifert fibred surgery on knots in S3. In [28] Wu 

(improving on the results of [19]) has proven the following (the definitions of Seifert orientation and torsion coefficients will be provided later). 

5.0.4 Theorem (Wu) 

Let K ⊂ S3 be a knot. Suppose there is a rational number p/q > 0 such that Y = Sp/q
3 (K) is Seifert fibred. 

If Y is a positively oriented Seifert fibred space, then all the torsion coefficients ti(K) are non-negative and HFK\(K,g(K)) is supported in even degrees. 

In particular, deg∆K = g(K). 

If Y is a negatively oriented Seifert fibred space and 0 < p/q < 3, then for all i > 0 the torsion coefficients t i(K) are non-positive. If Y is a negatively 

oriented Seifert fibred space, g(K) > 1 and 2g(K) − 1 > p/q, then HFK\(K,g(K)) is supported in odd degrees. In particular, deg∆K = g(K). 

We are able to prove the following. 

5.0.5 Theorem  

Let K ⊂ S3 be a knot. Suppose there is a rational number p/q > 0 such that Y = Sp/q
3 (K) is a negatively oriented Seifert fibred space. Then 

1. Ug(K) · HFred(Y ) = 0; 

2. if 0 < p/q ≤ 3, then all the torsion coefficients ti(K) are non-positive (including t0(K)) and deg∆K = g(K); 
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3.  more generally, if , then ti is non-positive; 

4.    ,  then deg∆K = g(K); 

 

5. if Ub|H1(Y )|/2c · HFred(Y ) = 06 then deg∆K = g(K). 

In all statements where deg∆K = g(K) we have that HFK\(K,g(K)) is supported in odd degrees. 

After the proof of Theorem 5.0.1  in Section 5, we describe negatively oriented Seifert fibred spaces Y for which the power of U needed to annihilate 

HFred(Y ) gets arbitrarily large compared to the order of the first homology group. 

Theorem 5.0.4  combined with the result of Wu has the following straightforward corollary. 

5.1.1 Corollary   

Suppose Y = Sp/q
3 (K) is a Seifert fibred rational homology sphere. If |H1(Y )| ≤ 3, then all the torsion coefficients of K have the same sign and deg∆K = 

g(K). 

To prove Theorems 5.0.1 and 5.0.3 we need to study the mapping cone formula, which connects the Heegaard Floer data of the knot with the Heegaard 

Floer homology of the manifolds obtained by surgery on it. Given a knot K in S3 there is a doublyfiltered complex C = CFK∞(K) associated to it. The 

doubly-filtered homotopy type of this complex is a knot invariant, from which all the flavours of knot Floer homology are derived. 

In fact, the mapping cone formula states that given C and a certain chain homotopy equivalence which identifies C{i ≥ 0} with C{j ≥ 0} we can determine 

HF+(Sp/q
3 (K)) completely for any rational p/q. 

In Section 3 we derive an explicit description of HF+(Sp/q
3 (K)) as an absolutely graded vector space in terms of homological data from CFK∞(K), with no 

reference to the chain homotopy equivalence mentioned above. For a large part this has already been done ([11], [10], [22]), but the results are scattered 

across multiple papers, sometimes not in explicit form, and we consider it useful to have them collected in one place. While all the results of this section 

concerning positive surgeries have been shown before, as far as we are aware, the results for negative and zero surgeries (contained in subsections 3.2 

and 3.3 respectively) are new. 

This allows us to derive some other applications as well, a few of which we mention here. 

6. Homeomorphism 

In this final section I would like to touch on some known results as well as research currently under way by myself and Danny Calegari on spaces of 

homeomorphisms. Suppose X is a topological space with closed subset Y. We denote by Homeo(X,Y ) the group of homeomorphisms X → X which are 

pointwise fixed on Y , the group operation being composition of functions. Homeo(X,Y ) can also be endowed with a topology, which we will ignore 

here, but rather concentrate on algebraic and orderability properties. If X is a simplicial complex or piecewise-linear manifold and Y a PL closed subset, 

we consider the subgroup PL(X,Y ) of homeomorphisms which are linear on each simplex of some finite subdivision of X. 

Proposition  

Homeo(I,∂I) is left-orderable. 

This is because Homeo(I,∂I) is clearly isomorphic with Homeo+(R) which we already have seen to be left-orderable and indeed universal for countable 

left-orderable groups. The following was observed by Chehata [12]. 

Proposition (Chehata). PL(I,∂I) is bi-orderable. 

It should be emphasized that each element of PL(I,∂I) is a function which has only finitely many breaks where it may change slope. We can define the 

positive cone to be the collection of all PL homeomorphisms whose graph {(t,f(t))} in I × I has first departure from the diagonal veering above (rather 

than below) the diagonal.  

Let us consider the 2-dimensional analogue. The following is classical. 

Theorem 6.0.1(Kerekjarto, Brouwer, Eilenberg) 

Homeo(I2,∂I2) is torsion-free. I believe it is an open question whether Homeo(I2,∂I2) is left-orderable. 

Theorem 6.0.2 (Calegari-Rolfsen) 

PL(I2,∂I2) is locally-indicable, and therefore left-orderable. 

Here is an outline of the proof. Consider a nontrivial subgroup H of PL(I2,∂I2) generated by the finite set h1,...,hk of functions. The fixed point set fix(hi) 

of each generator is a finite polyhedron in I2 containing ∂I2, and the same may be said of the global fixed point set ). Now 
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we choose a point p which is on the frontier of fix(H); we can arrange that p has a neighbourhood which can be identified with R2 = {(x,y)} in such a way 

that all the functions are the identity on the x-axis and act linearly on the upper half plane. We then map H nontrivially to the “germs” of functions of H 

at p which according to the following lemma is a locally indicable group. It follows that H is indicable.  

Lemma 6.1  

The group of functions which are linear, and equal to the identity on the boundary, is isomorphic with the semidirect product of two 

locally indicable groups, and is therefore locally indicable. 

Indeed such a function corresponds to a matrix  with s ∈ R and r ∈ R+. Thus we have an isomorphism with the semidirect product of R as 

an additive group and R+ as a multiplicative group.  Theorem 6.0.2  has been generalized to higher dimensions and more general manifolds in forthcoming 

work with Calegari. 

7. Braid Group 

A beautiful connection between topology and algebra is through Artin’s braid groups. For each positive integer n one considers n strings in 3-space which 

are monotone in one direction, and disjoint, but possibly intertwined, and begin and end at specified points in two parallel planes. The product of braids 

is concatenation, as illustrated in Figure 1. Two braids are equivalent if one deforms to the other through a one-parameter family of braids, with endpoints 

fixed at all times. The identity in the n-strand braid group Bn is represented by a braid with no crossings – the strands can be taken as straight lines. 

According to Artin [2] for each n ≥ 2, Bn has generators σ1,...,σn−1, in which σi is the simple braid in which all the strands are straight, except that the strand 

labelled i crosses over the strand labelled i+1. These generators are subject to the relations σiσj = σjσi if |i − j| > 1 and σiσjσi = σjσiσj when |i − j| = 1. 

Each n-strand braid has an associated permutation of the set {1,...,n} which records how the strands connect the endpoints of the various strands. In other 

words, there is a homomorphism Bn → Sn, where Sn denotes the symmetric group on n elements, in which σi is sent to the simple permutation interchanging 

i and i + 1. This homomorphism is surjective – it is easy to see that any permutation of {1,...,n} can be realized by infinitely many braids (if n > 1). 

 

            

 

 

 

Figure 7.0. The product of ∆4,σ1 and  

I had been working on a conjecture of J. Birman, which involved computations in the group ring ZBn. In those calculations one always had to worry about 

zero divisors (for example to argue that ab = ac =⇒ b = c). Although it was wellknown that Bn is torsion-free, I didn’t know if there were any zero divisors 

in ZBn. My worries were over when I learned of Dehornoy’s ordering of Bn and the fact that the group rings of left-orderable groups do not have zero 

divisors. Whether the group ring of an arbitrary torsion-free group has zero divisors is still an open question. 

8. Artin’s Representation 

Notice that any n-braid can be formed by a finite number of elementary braids σ1,...,σn−1, where σi corresponds to the geometric n-braid formed by 

crossing the ith string over the (i+1)th string, as depicted in figure 2.2. 

i i+1 

 

Figure 8.1: The elementary braid σi 

We then notice that if i and j differ by more than one, then the elementary braids σi and σj commute. 

Furthermore, there is an analogue for braids of the third Reidemeister move for knots and links which, written in terms of the elementary braids, becomes 

σiσi+1σi = σi+1σiσi+1. 

  



International Journal of Research Publication and Reviews, Vol 4, no 10, pp 2020-2033 October 2023                                     2029

 

 

                       i i+1 i+2 

 i i+1 i+2 

 
 σiσj = σjσi σi+1σiσi+1 = σiσi+1σi 

Figure 8.2: Relations in the elementary braids 

The following theorem, due to Emil Artin, says that these two relations are sufficient to describe the n-string braid group: 

9. Knot and Braids 

We will present a very brief review of the theory of knots and an interesting application of the braid ordering to knot theory. 

There is a close connection between the braid groups and the theory of knots and links. By a knot we mean an embedding of a circle in 3-dimensional 

space R3. This models the idea of a knotted rope, but we assume the ends of the rope are attached to each other, preventing the knot from being untied by 

simply pulling the rope through itself. Two knots are considered equivalent if there is an isotopy (continuous family of homeomorphisms) of R3 which at 

the end takes one knot to the other. One can add knots K1 and K2 by tying them in distant parts of the rope, thus forming the connected sum K1]K2. Figure 

9.1 illustrates this. 

The sum is easily seen to be commutative and associative, up to equivalence. 

Thus the set of (equivalence classes of) knots forms an abelian semigroup, with 

 

 

 

 

 

 

Figure 9.1. The sum 41 ] 31 of the figure-eight and the trefoil. 

unit the trivial knot, or unknot, which is a curve equivalent to a round circle in space. There is a prime decomposition theorem: any knot K can be written 

K ∼= K1]···]Kp where each Ki is prime, i.e. not expressible as a sum of two nontrivial knots. Moreover, in this decomposition the terms are unique up to 

order. Finally, it is a theorem that there are no inverses: if K1]K2 is equivalent to the unknot, then so are both K1 and K2. This is one reason that braids are 

convenient in the study of knots, as the braids do form groups: every braid has an inverse – namely its mirror image in a plane perpendicular to the 

direction in which the strands are monotone. 

If β is a braid, its closure βˆ is a knot (or disjoint union of knots, called a link) formed by connecting the ends as indicated in Figure 9.3 

 

 

 

 

 

Figure 9.3. The closure of a braid 

Many interesting properties of knots have arisen from this correspondence. For example the Jones polynomial [26] of a knot was discovered by 

considering a certain family of representations of the braid groups. There is an interesting application of the Dehornoy braid order to knot theory due to 

Malyutin and Netsvetaev [31]. 
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The n-strand braid ∆n is defined by the equation 

∆n = (σ1σ2 ···σn−1)(σ1σ2 ···σn−2)···(σ1σ2)(σ1) 

and corresponds to the braid formed by taking n parallel strands and giving them a half-twist, as in Figure 1 for the 4-strand case. The center of Bn, for n 

≥ 3 turns out to be exactly the cyclic subgroup generated by ∆2
n. 

Theorem 9.0.1 (Malyutin and Netsvetaev) 

Suppose β ∈ Bn is a braid whose closure βˆ is a knot. Assume that in the Dehornoy ordering of Bn one has either . Then βˆ is a 

nontrivial prime knot. 

Other applications to knot theory have been found by Ito [25] which gives a lower bound on the genus of a knot (a measure of its complexity, c.f. [41]) 

which is the closure of a braid, in terms of the braid’s place in the Dehornoy ordering. The connection between braid groups and knot theory has had 

profound applications, and I believe the orderability of braids will have further implications in knot theory and related areas of topology. 

10. Braid groups of manifolds 

To see what all this has to do with braid groups, think about the fundamental groups of the configuration spaces Fn and Cn. 

The following result (due to Joan Birman[1]) suggests that the only really interesting cases of this question arise when M is a 2-manifold 

10.0.1 THEOREM  

Let M be a closed, smooth m-manifold. Then, for each k ∈ Z, the inclusion map 

i : Fn(M) ,→ YM 

n 

induces a homomorphism 

 

which is surjective if dimM > k and an isomorphism if dimM > k + 1. 

This means that, unless M is a 2-manifold, the fundamental group of Fn(M) is just a direct product of n copies of the fundamental group of the manifold 

M itself. 

10.1 The braid group of the 2-manifold S2 

The braid group of the 2-manifold  is similar to the braid group of the Euclidean plane, except that the points move on S2 instead. An S2-braid may be 

depicted geometrically as a braid between two concentric spheres. 

The group Bn(S
2) is generated by the same generators σi and relations as Bn(E

2), but with one additional relation: 

(iii) σ1σ2 ...σn−1σn−1 ...σ2σ1 = 1 

This requirement says, geometrically, that the braid formed by taking the first string round behind all of the other strings and back in front of them, back 

to its starting position, is equivalent to the trivial braid. 

By considering the geometric depiction of an S2-braid described above, we see that this is true, since the loop may be pushed off the inner sphere without 

tangling with any of the other strings. 

As before, we can construct a fundamental exact sequence for Bn(S
2): 

 0 −→ An(S
2) −→ PBi 

n(S
2) −→ PBj 

n−1(S
2) −→ 0 

The remark at the end of the previous subsection suggests that the braid groups of the 2-sphere and the projective plane might have some strange properties 

not shared by the braid groups of arbitrary 2-manifolds. This is further suggested by the following: 

10.1.1 Theorem (Newwirth) 

If M is either E2 or any compact 2-manifold except P2 or S2 then neither Bn(M) nor PBn(M) have any nontrivial elements of finite order. 

So, is Bn(S
n) torsion-free? Or can we find a nontrivial element of finite order? 

Theorem 2.8 (Fadell/Newwirth 1962) 

The word σ1σ2 ...σn−1 has order 2n in Bn(S
2). 
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This can be seen geometrically, with a little imagination. The word σ1σ2 ...σn−1 corresponds to taking the first string over all the others to the nth position. 

If we do this n times, then each of the strings ends up back where it started, making a pure braid. If we then do the same thing a further n times (making 

2n in total), each string winds round the remaining n − 1 strings twice. We may then utilise a move known as the ‘Dirac string trick’ (qv [5] for a series 

of diagrams depicting this operation) to untangle all n strings, resulting in a trivial braid. 

 

 

 

 

 

 

What are some of these groups Bn(S
2) like? Notice that Bn(E

2) is infinite for n > 1, but the previous theorem suggests that this might not necessarily be 

the case for the braid groups of the 2-sphere 

11. Representations of braid groups 

we provide a brief overview of Fox’ free differential calculus, show how it may be used to construct matrix representations of automorphism groups of 

Fn, and then look at two examples, namely Burau and Gassner’s representations of, respectively, Bn and PBn 

11.1 Free differential calculus 

Let Fn be a free group of rank n, with basis {x1,...,xn}, and let φ be a homomorphism acting on Fn, with  denoting the image of Fn under φ. 

Now let  denote the integral group ring of : an element of  is a sum Pagg, where ag ∈ Z and , with addition and multiplication defined 

by 

 

 

 

A homomorphism ψ : Fn
φ → Fn

ψφ induces a ring homomorphism ψ : ZFn
φ → ZFn

ψφ. Later we will consider the cases where ψ is the abelianiser a or the 

trivialiser t. There is a well-defined mapping 

 

 

given by where g ∈ Fn,ag ∈ Z,εi = ±1, and   δµi,j is the Kronecker δ. 

 

 

 

 

The following properties follow from the definition: 

 

 

 

 

 

 

In fact  

PB2(S
2) = 0 

B2(S
2) = Z2 

PB3(S
2) = Z2 

B3(S
2) is a ZS-metacyclic group of order 12 
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11.2 Burau’s representation of Bn 

As noted before, Bn has a faithful representation as a group of automorphisms of Fn, and hence we can regard Bn as a subgroup of AutFn. 

Let Z = hti be the infinite cyclic group, and let ψ : Fn → Z;xi 7→ t. 

Then the corresponding representation, the Burau representation of Bn is given by: 

 

                         

σi 7→ kσikψ =                   

                         

                      

                    

 

11.3 Gassner’s Representation 

To represent the pure braid groups PBn, we can simply restrict the Burau representation of Bn. But a more interesting representation exists, discovered by 

B.J. Gassner in 1961[4]: 

Let φ be the abelianiser a. Then PBn has a representation as a subgroup of AutFn by the restriction of ξ : Bn → AutFn to PBn. 

Let AFn be the free abelian group of rank n, with basis {t1,...,tn} and let a : Fn → AFn be defined by xia = ti. 

The pure braid generators map a generator xi of Fn into a conjugate of itself, so the requirement xiArsa = xia is satisfied for 1 6 i 6 n and 1 6 r < s 6 n if φ 

= a. 

CONCLUSION 

Our research has significantly advanced our comprehension of the intricate interplay between low-dimensional topology and braid groups, yielding far-

reaching implications for a broad spectrum of mathematical and scientific domains. The outcomes elucidated in this study hold the promise of igniting 

fresh avenues of investigation and innovation in the exploration of these captivating mathematical constructs. 
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