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ABSTRACT 

In this seminar work, an optimize decomposition method is introduced based on the Adomian decomposition method to solve nonlinear integro-differential and 

systems of nonlinear integro-differential equations (IDEs). The introduced technique is simpler and shorter in its computational procedures and yield results faster 

than the existing method such as the ADM. In addition, it does not require discretization, linearization or any restrictive assumption of any form in providing 

analytical or approximate solution to linear and nonlinear equations. Also, this technique does not require calculating Adomian’s polynomials, Lagrange’s 

multiplier values. These advantages make the OADM it reliable and its efficiency is demonstrated with numerical examples. 

Keywords: optimize decomposition method, integro-differential equation, systems of nonlinear integro-differential equations, Adomian’s polynomials, 

and Lagrange’s multiplier values. 

1.0 INTRODUCTION 

The true laws of nature cannot be linear, presumably true; mathematicians are continually challenged with the nonlinear problems, particularly in form 

of partial differential equations, appearing in Physics and engineering. Accordingly, any effort contributing to the world of nonlinear analysis would be 

of fundamental importance. Among a multitude of previously proposed method to handle nonlinear equations, Adomian Decomposition Method (ADM) 

which was introduced by the acknowledged mathematician George Adomian in 1984 (Adomian, 1984) has gained astonishing popularity, ADM can 

provide convenient solutions to a wide range of linear and nonlinear equations [(Odibat, 2019); (Tate & Dinde, 2019);(Manjak et al., 2017)]. ADM does 

not require any linearization, perturbation or discretization and leads to convergent solutions rapidly. To get to know about ADM and its efficiency as 

well as the further modifications thereof in detail, one is recommended to consult the literature [(Okai et al., 2017); (Wazwaz, 2000); (Rach et al.,  2013); 

(Wazwaz, 1999)]. Also, many illustrative examples associated with the application of ADM in various areas of science and engineering are available 

[(Wazwaz, 2001); (Wazwaz, 2005); (Neda et al., 2014)]. As it will be discussed, ADM requires a particular series representation called the Adomian 

polynomials, for the nonlinearities involved in the equation under consideration. Several efforts have been made to derive procedures for computing these 

kinds of polynomials [(Olayiwola & Kareem, 2022); (Bakodah & Almuhalbedi, 2019); (Odibat, 2019); (Wazwaz, 2000); (Okai et al., 2020); (Hemeda, 

2018); ( Hooman & Hossein, 2011) ]. However, some of them are restricted to only special cases of nonlinearity and many of them have been converted 

into computer codes involving complexity and long programs. Integro-differential equations arise quite frequently as mathematical models in diverse 

disciplines. The theory and application of the Volterra integro-differential equation play an important role in the mathematical modeling of many fields 

as: Physics, Biological phenomena and Engineering Sciences in which it is necessary to take into account the effect of real world problems (Wazwaz, 

2011). The origins of the study of integro-differential equations may be treated to the work of Abel, Lokato, Fredholm, Malthus, Verhulst and Volterra 

on problems in mechanics, mathematical biology and economics (Wazwaz, 2011). In this work, we propose an efficient numerical method to effectively 

handle the system of nonlinear integro-differential equations.  

2.0 Classification of Integral Equations 

Before beginning to classify a system of integro-differential equation, it will be necessary to make some basic definitions and to introduce a preliminary 

classification of integral equations. 

Definition 1:  

An integral equation is an equation in which the unknown function appears under an integral sign. The general form of non-linear integral equations 

may be written as follows: 

𝛼𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡,
𝑏(𝑥)

𝑎
                                                                                   . . . (1) 

http://www.ijrpr.com/
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where the forcing function 𝑓(𝑥) and the kernel (or nucleus) 𝑘(𝑥, 𝑡) are prescribed, while 𝑢(𝑥) is the unknown function to be determined. The parameter 

𝜆 is often omitted; it is, however, of importance in certain theoretical investigations and in the eigenvalue problem. 

Definition 2: 

The integral eqn. (1) is called linear integral equation if the kernel𝑘(𝑥, 𝑡, 𝑢(𝑡)) = 𝑘(𝑥, 𝑡)𝑢(𝑡), otherwise it is called non-linear integral equation. 

Definition 3: 

The linear integral eqn. (1) is called homogenous, if 𝑓(𝑥) = 0otherwise it is called non-homogenous. 

Definition 4: 

The integral eqn. (1) is said to be an equation of the first kind if 𝛼 ≡ 0, i.e. 

𝑓(𝑥) = −𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡,
𝑏(𝑥)

𝑎
                                                                    . . . (2) 

Definition 5: 

The integral eqn. (1) is said to be an equation of the second kind if 1= , i.e. 

𝑢(𝑥) = 𝑓(𝑥) + 𝜆 ∫ 𝑘(𝑥, 𝑡, 𝑢(𝑡))𝑑𝑡,
𝑏(𝑥)

𝑎
                                                       . . . (3) 

Definition 6: 

The integral eqn. (1) is called Volterra integral equation (VIE), when 𝑏(𝑥) = 𝑥. 

Definition 7: 

The integral eqn. (1) is called Fredholm integral equation (FIE), when 𝑏(𝑥) = 𝑏, where 𝑏 is constant such that 𝑏 ≥ 𝑎. 

Definition 8: 

If the kernel 𝑘(𝑥, 𝑡) in the linear integral eqn. (1) depends only of the difference(𝑥 − 𝑡), i.e. if the kernel is of the form 𝑘(𝑥, 𝑡) = 𝑘(𝑥 − 𝑡), such a kernel 

is called difference kernel, and the linear integral equation is called integral equation of the convolution type. 

Definition 9: 

The kernel 𝑘(𝑥, 𝑡)  is called separable or degenerate kernel of rank n if it is of the form: 𝑘(𝑥, 𝑡) = ∑ 𝑎𝑗(𝑥)𝑏𝑗(𝑡)𝑛
𝑗 where n is finite and the functions{𝑎𝑗}  

and {𝑏𝑗}  are sufficiently smooth functions. 

Definition 10: 

The integral equations 

𝑢𝑖(𝑥) = 𝑓𝑖(𝑥) + ∑ ∫ 𝑘𝑖𝑗(𝑥, 𝑡)𝑢𝑗(𝑡)𝑑𝑡;
𝑥

𝑎
𝑚
𝑗=1  𝑥 ∈ 𝐼 = [𝑎, 𝑏], 𝑖 = 1,2, . . . , 𝑚                                     . . . (4) 

𝑢𝑖(𝑥) = 𝑓𝑖(𝑥) + ∑ ∫ 𝑘𝑖𝑗(𝑥, 𝑡)𝑢𝑗(𝑡)𝑑𝑡
𝑏

𝑎
;𝑚

𝑗=1  𝑥 ∈ 𝐼 = [𝑎, 𝑏], 𝑖 = 1,2, . . . , 𝑚                                   . . . (5) 

where 𝑚 ∈ 𝑁; 𝑓𝑖, 𝑖 = 1,2, . . . , 𝑚  are continuous functions on I and 𝑘𝑖𝑗, 𝑖 = 1,2, . . . , 𝑚  denotes given continuous functions on{(𝑡, 𝑥) : 𝑎 ≤ 𝑡 ≤ 𝑥 ≤ 𝑏}, 

while 𝑢𝑖(𝑥), 𝑖 = 1,2, . . . , 𝑚  are the unknown functions to be determined are called a system of linear VIE of second kind and a system of linear FIE 

second kind respectively. 

Definition 11: 

An integro-differential equation is an equation which involves an unknown function u(x), together with differential and integral operations on u(x). 

3.0 MATERIALS AND METHOD  

3.1 Basics of the Adomian Decomposition Method (ADM) 

Recall the basic principle ideas of the traditional decomposition method by considering the equation of the form: 

𝐿𝑢 + 𝑅𝑢 + 𝑁𝑢 = 𝑔                                                                                     … (6)  

Where L is an invertible operator that can be taken as the highest order differential operator, R is the linear differential operator of lesser order than L, N 

represents the nonlinear terms and g is the specified analytic function. Applying the inverse operator 𝐿−1 on both sides of equation Eq. (6) yields 

𝑢 = φ + 𝐿−1[𝑔] − 𝐿−1[𝑅𝑢] − 𝐿−1[𝑁𝑢]                                                                                           … (7) 

where φ is determined by the usage of the given initial values. This approach decomposes the results 𝑢(𝑥)into a hastily convergent series of solution 

components, after which decomposes the analytic nonlinearity Nu into the series of the Adomian polynomials, Rach, et al., (2013). 
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The nonlinear term Nu will be equated to 

𝑁𝑢(𝑥) = ∑ 𝐴𝑛

∞

𝑛=0

                                                                                                                                    … (8) 

Where the 𝐴𝑛 are special polynomials called Adomian polynomials and 𝑢 will be decomposed into 

𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

                                                                                                                                       … (9) 

Where 𝐴𝑛 = 𝐴𝑛(𝑢0 , 𝑢1 ,𝑢2 ,…𝑢𝑛)  are the Adomian polynomials, whose definitional formulation  

𝐴𝑛(𝑡) =
1

𝑘!

𝑑𝑘

𝑑𝜃𝑘
[𝑁 (∑ 𝜃𝑖𝑣𝑖

𝑘

𝑖=0

)]

𝜃=0

.                                                                                                 … (10) 

Was first published by Adomian and Rach in 1983, then the same old Adomian recursion scheme is given by: 

𝑢0(𝑥) = φ + 𝐿−1[𝑔], 

That is, 

𝑢(𝑥) = ∑ 𝑢𝑛

∞

𝑛=0

= 𝑢0 − 𝐿−1 ∑ 𝑢𝑛

∞

𝑛=0

− 𝐿−1 ∑ 𝐴𝑛

∞

𝑛=0

                                                                            … (11) 

Consequently, we can write 

𝑢1 = −𝐿−1𝑅𝑢0 − 𝐿−1𝑅𝐴0 

𝑢2 = −𝐿−1𝑅𝑢1 − 𝐿−1𝑅𝐴1 

𝑢3 = −𝐿−1𝑅𝑢2 − 𝐿−1𝑅𝐴2 

  

𝑢𝑛+1(𝑥) = −𝐿−1[𝑅𝑢𝑛 + 𝐴𝑛]                                                                                                              … (12) 

(Wazwaz, 2011), provided more insight, details, properties, modifications and algorithms for the determination of the Adomian polynomials of the 

decomposition method for handling the nonlinear components.  

3.2 The Optimize ADM for non-linear system of VIDEs 

In this section, the method will be applied for system of non-linear VIDEs of the second kind. The strategy present here can also be applied to linear 

system in the same manner. To demonstrate the efficiency of the proposed method, we applied the optimize ADM to system of non-linear VIDEs for 

which an analytical solution is available. 

Consider the system of non-linear VIDEs of the second kind (Hemeda, 2018): 

𝑢″
1(𝑥) = 𝑓1(𝑥) + ∫ [𝑘11(𝑥, 𝑡)𝐹1(𝑢1(𝑡)) + 𝑘12(𝑥, 𝑡)𝐹2(𝑢2(𝑡))]𝑑𝑡

𝑥

0
                 

𝑢″
2(𝑥) = 𝑓2(𝑥) + ∫ [𝑘21(𝑥, 𝑡)𝐹1(𝑢1(𝑡)) + 𝑘22(𝑥, 𝑡)𝐹2(𝑢2(𝑡))]𝑑𝑡

𝑥

0
                     

With initial condition 

𝑢1(0) = 𝑐0, 𝑢′
1(0) = 𝑐1. 

𝑢2(0) = 𝑑0, 𝑢′
2(0) = 𝑑1.                                                    . . . (13) 

By integrating both sides of Eq. (13) twice from 0 to x and use the initial conditions, we get 

𝑢1(𝑥) = 𝑐0 + 𝑐1𝑥 +
1

2!
∫ (𝑥 − 𝑡)𝑓1(𝑡)𝑑𝑡

𝑥

0

+
1

2!
∫ (𝑥 − 𝑡)[𝑘11(𝑥, 𝑡)𝐹1(𝑢1(𝑡)) + 𝑘12(𝑥, 𝑡)𝐹2(𝑢2(𝑡))]𝑑𝑡

𝑥

0

 

𝑢2(𝑥) = 𝑑0 + 𝑑1𝑥 +
1

2!
∫ (𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0
+

1

2!
∫ (𝑥 − 𝑡)[𝑘21(𝑥, 𝑡)𝐹1(𝑢1(𝑡)) + 𝑘22(𝑥, 𝑡)𝐹2(𝑢2(𝑡))]𝑑𝑡

𝑥

0
       . . . (14) 

To use the optimize ADM; let 

𝑢1(𝑥) = ∑ 𝑢1,𝑛(𝑥)∞
𝑛=0  ,  𝑢2(𝑥) = ∑ 𝑢2,𝑛

(𝑥)∞
𝑛=0                                                                            . . . (15) 

Using the ADM recurrence relation, we obtain 

𝑢1,0(𝑥) = 𝑐0 + 𝑐1𝑥 +
1

2!
∫ (𝑥 − 𝑡)𝑓1(𝑡)𝑑𝑡

𝑥

0
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𝑢2,0(𝑥) = 𝑑0 + 𝑑1𝑥 +
1

2!
∫ (𝑥 − 𝑡)𝑓2(𝑡)𝑑𝑡

𝑥

0

 

𝑢1,1(𝑥) =
1

2!
∫ (𝑥 − 𝑡)[𝑘11(𝑥, 𝑡)𝐹1(𝑢1,0(𝑡)) + 𝑘12(𝑥, 𝑡)𝐹2(𝑢2,0(𝑡))]𝑑𝑡

𝑥

0

 

𝑢2,1(𝑥) =
1

2!
∫ (𝑥 − 𝑡)[𝑘21(𝑥, 𝑡)𝐹1(𝑢1,0(𝑡)) + 𝑘22(𝑥, 𝑡)𝐹2(𝑢2,0(𝑡))]𝑑𝑡

𝑥

0

 

𝑢1,2(𝑥) =
1

2!
∫ (𝑥 − 𝑡)[𝑘11(𝑥, 𝑡)𝐹1(𝑢1,0(𝑡) + 𝑢1,1(𝑡)) + 𝑘12(𝑥, 𝑡)𝐹2(𝑢2,0(𝑡) + 𝑢2,1(𝑡))]𝑑𝑡

𝑥

0

− (𝑢1,0(𝑥) + 𝑢2,0(𝑥)) 

𝑢2,2(𝑥) =
1

2!
∫ (𝑥 − 𝑡)[𝑘21(𝑥, 𝑡)𝐹1(𝑢1,0(𝑡) + 𝑢1,1(𝑡)) + 𝑘22(𝑥, 𝑡)𝐹2(𝑢2,0(𝑡) + 𝑢2,1(𝑡))]𝑑𝑡

𝑥

0

− (𝑢1,0(𝑥) + 𝑢2,0(𝑥)) 

and so on. Continuing in this manner, the (𝑛 + 1)𝑡ℎ approximation of the exact solutions for the unknown functions 𝑢1(𝑥) and 𝑢2(𝑥)  can be achieved as 

𝑢1,𝑛+1(𝑥) =
1

2!
∫ (𝑥 − 𝑡)𝑘−1𝑘11(𝑥, 𝑡)𝐹1 [(∑ 𝑢1,𝑚(𝑡)

𝑛

𝑚=0

) + 𝑘12(𝑥, 𝑡)𝐹2 (∑ 𝑢2,𝑚(𝑡)

𝑛

𝑚=0

)] 𝑑𝑡
𝑥

0

 

−
1

2!
∫ (𝑥 − 𝑡)𝑘−1𝑘11(𝑥, 𝑡)𝐹1 [(∑ 𝑢2,𝑚(𝑡)

𝑛

𝑚=0

) + 𝑘12(𝑥, 𝑡)𝐹2 (∑ 𝑢2,𝑚(𝑡)

𝑛

𝑚=0

)] 𝑑𝑡
𝑥

0

 

𝑢2,𝑛+1(𝑥) =
1

2!
∫ (𝑥 − 𝑡)𝑘−1𝑘21(𝑥, 𝑡)𝐹1 [(∑ 𝑢1,𝑚(𝑡)

𝑛

𝑚=0

) + 𝑘22(𝑥, 𝑡)𝐹2 (∑ 𝑢2,𝑚(𝑡)

𝑛

𝑚=0

)] 𝑑𝑡
𝑥

0

 

−
1

2!
∫ (𝑥 − 𝑡)𝑘−1𝑘21(𝑥, 𝑡)𝐹1[(∑ 𝑢1,𝑚(𝑡)𝑛

𝑚=0 ) + 𝑘22(𝑥, 𝑡)𝐹2(∑ 𝑢2,𝑚(𝑡)𝑛
𝑚=0 )]𝑑𝑡

𝑥

0
                                                . . . (16) 

Therefore, the approximate solutions 

𝑢1(𝑥) = ∑ 𝑢1,𝑚(𝑥)𝑛+1
𝑚=0  ,                                                                                                       . . . (17) 

𝑢2(𝑥) = ∑ 𝑢2,𝑚
(𝑥)𝑛+1

𝑚=0 .                                                                                                        . . . (18) 

The optimize ADM will be illustrated by discussing some example on the system of the non-linear VIDEs. 

4.0 NUMERICAL RESULTS  

Example 1: 

Consider the following system of nonlinear second-order IDEs (Hemeda, 2018) 

𝑢″(𝑥) = 𝑥 + 𝑢(𝑥) + ∫ (−𝑢2(𝑡) + 𝑣2(𝑡))𝑑𝑡,
𝑥

0
   𝑢(0) = 1,       𝑢′(0) = 0                                         . . . (19𝑎) 

𝑢″(𝑥) = −𝑥 + 𝑣(𝑥) + ∫ (𝑢2(𝑡) − 𝑣2(𝑡))𝑑𝑡,
𝑥

0
   𝑣(0) = 0,       𝑣 ′(0) = 1                                         . . . (19𝑏) 

With exact solution 𝑢(𝑥) = 𝑐𝑜𝑠ℎ( 𝑥)  and 𝑣(𝑥) = 𝑠𝑖𝑛ℎ( 𝑥) 

Applying 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0
 to both sides of Eqn. (19a) and Eqn. (19b), we get  

𝑢(𝑥) = 1 +
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0
𝑢(𝑡)𝑑𝑡 +

1

2!
∫ (𝑥 − 𝑡)2(−𝑢2(𝑡) + 𝑣2(𝑡))𝑑𝑡,

𝑥

0
                                          . . . (20𝑎) 

𝑣(𝑥) = 𝑥 −
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0
𝑣(𝑡)𝑑𝑡 +

1

2!
∫ (𝑥 − 𝑡)2(𝑢2(𝑡) − 𝑣2(𝑡))𝑑𝑡,

𝑥

0
                                            . . . (20𝑏) 

Thus, to evaluate the above system of equation, we go by applying the recurrence relation as defined in section 3.2, 

𝑢0(𝑥) = 1, 

𝑣0(𝑥) = 𝑥, 

𝑢1(𝑥) =
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0

𝑢0(𝑡)𝑑𝑡

+
1

2!
∫ (𝑥 − 𝑡)2(−𝑢0

2(𝑡) + 𝑣0
2(𝑡))𝑑𝑡 =

𝑥

0

 

𝑣1(𝑥) = −
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0

𝑣0(𝑡)𝑑𝑡 +
1

2!
∫ (𝑥 − 𝑡)2(𝑢0

2(𝑡) − 𝑣0
2(𝑡))𝑑𝑡 =

𝑥

0

 

Therefore, according to section 3.2, we have the other components of the OADM for Eqn. (19a and 19b) as follows using the above recursive scheme: 

𝑢𝑛+1(𝑥) =
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0

(∑ 𝑢𝑚(𝑡)

𝑛−1

𝑚=1

) 𝑑𝑡 +
1

2!
∫ (𝑥 − 𝑡)2 (− (∑ 𝑢𝑚(𝑡)

𝑛−1

𝑚=1

)

2

+ (∑ 𝑣𝑚(𝑡)

𝑛−1

𝑚=1

)

2

) 𝑑𝑡
𝑥

0

− (∑ 𝑢𝑚(𝑡)

𝑛−1

𝑚=1

) 
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𝑣𝑛+1(𝑥) = −
𝑥3

6
+ ∫ (𝑥 − 𝑡)

𝑥

0

(∑ 𝑣𝑚(𝑡)

𝑛−1

𝑚=1

) 𝑑𝑡 +
1

2!
∫ (𝑥 − 𝑡)2 ((∑ 𝑢𝑚(𝑡)

𝑛−1

𝑚=1

)

2

− (∑ 𝑣𝑚(𝑡)

𝑛−1

𝑚=1

)

2

) 𝑑𝑡
𝑥

0

− (∑ 𝑣𝑚(𝑡)

𝑛−1

𝑚=1

) 

For 𝑛 ≥ 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The series solution is then obtain by summing the above iterations, 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥)+. .. 

𝑣(𝑥) = 𝑣0(𝑥) + 𝑣1(𝑥) + 𝑣2(𝑥) + 𝑣3(𝑥)+. .. 

           

. . . (21𝑎) 

 

             

 

 

. . . (21𝑏) 

 

 

Table 1: The comparison between exact solutions 𝑢(𝑥) and the approximate solution using OADM 

x EXACT OADM ABSOLUTE ERROR 

0 1 1 0 

0.1 1.0050042 1.0050042 2.32037E-13 

0.2 1.0200668 1.0200668 5.5405E-11 

0.3 1.0453385 1.0453385 1.32407E-09 

0.4 1.0810724 1.0810724 1.23247E-08 

0.5 1.127626 1.1276259 6.84604E-08 

0.6 1.1854652 1.1854649 2.7462E-07 

0.7 1.255169 1.2551681 8.81436E-07 

0.8 1.3374349 1.3374325 2.4088E-06 
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0.9 1.4330864 1.4330805 5.83985E-06 

1 1.5430806 1.5430677 1.29301E-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Graphs of the exact solution 𝑢(𝑥) and the approximate solution using OADM. 

Table 2: The comparison between exact solutions 𝑣(𝑥) and the approximate solution using OADM 

x EXACT (V(X)) OADM (V(X)) ABSOLUTE ERROR 

0 0 0 0 

0.1 0.10016675 0.10016675 1.90264E-14 

0.2 0.201336003 0.201336003 9.52666E-12 

0.3 0.304520293 0.304520293 3.59075E-10 

0.4 0.410752326 0.410752321 4.68166E-09 

0.5 0.521095305 0.521095271 3.4085E-08 

0.6 0.636653582 0.636653411 1.71485E-07 

0.7 0.758583702 0.758583034 6.6784E-07 

0.8 0.888105982 0.888103828 2.15398E-06 

0.9 1.026516726 1.026510717 6.00863E-06 

1 1.175201194 1.175186263 1.49301E-05 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Graphs of the exact solution 𝑣(𝑥) and the approximate solution using OADM. 

Example 2: 

Consider the system of nonlinear Fredholm integro-differential equation (Bakodah & Almuhalbedi, 2019) 
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𝑢″(𝑥) = 2 +
12

5
𝑥 − ∫ 𝑥(𝑢2(𝑡) + 𝑣2(𝑡))𝑑𝑡,

1

0
   𝑢(0) = 1,       𝑢′(0) = 0                                         . . . (22𝑎) 

𝑣″(𝑥) = −2 +
4

3
𝑥 − ∫ 𝑥(𝑢2(𝑡) − 𝑣2(𝑡))𝑑𝑡,

1

0
   𝑣(0) = 1,       𝑣 ′(0) = 0                                         . . . (22𝑏) 

With exact solution 

 (𝑢(𝑥), 𝑣(𝑥)) = (1 + 𝑥2, 1 − 𝑥2)   

Applying 𝐿−1(. ) = ∫ ∫ (. )𝑑𝑡𝑑𝑡
𝑥

0

𝑥

0
 to both sides of Eqn. (22a) and Eqn. (22b), we get  

𝑢(𝑥) = 1 + 𝑥2 +
12

30
𝑥3 −

1

3!
𝑥3 ∫ (𝑢2(𝑡) + 𝑣2(𝑡))𝑑𝑡,

1

0
                             . . . (23𝑎)  

𝑣(𝑥) = 1 − 𝑥2 +
4

18
𝑥3 −

1

3!
𝑥3 ∫ (𝑢2(𝑡) − 𝑣2(𝑡))𝑑𝑡,

1

0
                                                         . . . (23𝑏) 

Thus, to evaluate the above system of equation, we apply the recurrence relation as defined in section 3.2, 
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Therefore, according to section 3.2, we have the other components of the OADM for Eqn. (22a and 22b) as follows using the above recursive scheme: 
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For 1n  

 

 

 

 

 

 

 

 

 

 

 

                             ... 

The series solution is then obtain by summing the above iterations, 

𝑢(𝑥) = 𝑢0(𝑥) + 𝑢1(𝑥) + 𝑢2(𝑥) + 𝑢3(𝑥) + 𝑢4(𝑥)+. .. 

𝑣(𝑥) = 𝑣0(𝑥) + 𝑣1(𝑥) + 𝑣2(𝑥) + 𝑣3(𝑥) + 𝑣4(𝑥)+. .. 
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                                                                    . . . (24𝑎) 

 

                                                                            . . . (24𝑏) 

 

Table 3: The comparison between exact solutions 𝑢(𝑥) and the approximate solution using OADM 

x EXACT U(X) OADM U(X) ABSOLUTE ERROR 

0 1 1 0 

0.1 1.01 1.009999608 3.92251E-07 

0.2 1.04 1.039996862 3.13801E-06 

0.3 1.09 1.089989409 1.05908E-05 

0.4 1.16 1.159974896 2.51041E-05 

0.5 1.25 1.249950969 4.90314E-05 

0.6 1.36 1.359915274 8.47262E-05 

0.7 1.49 1.489865458 0.000134542 

0.8 1.64 1.639799168 0.000200832 

0.9 1.81 1.809714049 0.000285951 

1 2 1.999607749 0.000392251 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Graphs of the exact solution 𝑢(𝑥) and the approximate solution using OADM. 

Table 4: The comparison between exact solutions 𝑢(𝑥) , the approximate solution using OADM and DADM 

x EXACT  OADM (n=4) DADM (n=6) 

0 1 1 1 

0.1 1.01 1.009999608 1.009612278 

0.2 1.04 1.039996862 1.036898224 

0.3 1.09 1.089989409 1.079531505 

0.4 1.16 1.159974896 1.135185791 

0.5 1.25 1.249950969 1.201534748 

0.6 1.36 1.359915274 1.276252044 

0.7 1.49 1.489865458 1.357011347 

0.8 1.64 1.639799168 1.441486326 

0.9 1.81 1.809714049 1.527350647 

1 2 1.999607749 1.61227798 
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Figure 4: Graphs of the exact solution𝑢(𝑥), the approximate solution  Using OADM and DADM 

Table 5: The comparison between exact solutions 𝑣(𝑥) and the approximate solution using OADM 

x EXACT  OADM  ABSOLUTE ERROR 

0 1 1 0 

0.1 0.99 0.99 1.54688E-07 

0.2 0.96 0.959999 1.2375E-06 

0.3 0.91 0.909996 4.17658E-06 

0.4 0.84 0.83999 9.90004E-06 

0.5 0.75 0.749981 1.9336E-05 

0.6 0.64 0.639967 3.34126E-05 

0.7 0.51 0.509947 5.3058E-05 

0.8 0.36 0.359921 7.92003E-05 

0.9 0.19 0.189887 0.000112768 

1 0 -0.00015 0.000154688 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Graphs of the exact solution 𝑣(𝑥) and the approximate solution using OADM. 
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Table 6: The comparison between exact solutions 𝑣(𝑥) , the approximate solution using OADM and DADM 

x EXACT (V(X)) OADM (V(X)) DADM (V(X)) 

0 1 1 1 

0.1 0.99 0.989999845 0.990186726 

0.2 0.96 0.959998762 0.961493812 

0.3 0.91 0.909995823 0.915041615 

0.4 0.84 0.8399901 0.851950495 

0.5 0.75 0.749980664 0.773340811 

0.6 0.64 0.639966587 0.680332922 

0.7 0.51 0.509946942 0.574047186 

0.8 0.36 0.3599208 0.455603963 

0.9 0.19 0.189887232 0.326123611 

1 0 -0.00015469 0.18672649 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Graphs of the exact solution𝑣(𝑥), the approximate solution using OADM and DADM 

5.0 Conclusion 

In this work, a semi-analytical method based on the ADM and the inverse of the differential operator in the problem under consideration is introduced, 

then it is used to solve nonlinear integro-differential and systems of nonlinear IDEs. To support the analysis, two nonlinear systems of IDEs and one 

nonlinear IDE of Volterra form are solved. The obtained results reveal that this method is simpler and shorter in its computational procedures and time 

than the other methods. Therefore, this method is more suitable and convenient for solving nonlinear problems.  

REFERENCES 

Adomian, G. (1984). A New Approach to Nonlinear Partial Differential Equations. Journal of Mathematical Analysis and Applications., 102(2), 420–

434. 

Bakodah, H. O., & Almuhalbedi, S. O. (2019). Solving system of integro differential equations using discrete adomian decomposition method. Journal 

of Taibah University for Science, 13(1), 805–812. https://doi.org/10.1080/16583655.2019.1625189 

Hemeda, A. A. (2018). A Friendly Iterative Technique for Solving Nonlinear Integro-Differential and Systems of Nonlinear Integro-Differential 

Equations. International Journal of Computational Methods, 15(1), 1–15. https://doi.org/10.1142/S0219876218500160 

Manjak, N. H., Okai, J. O., & Rakiya, M. K. A. (2017). Solving Transformed Differential Equation Using Adomian Decomposition Method. IOSR 

Journal of Mathematics (IOSR-JM), 13(5), 65–69. https://doi.org/10.9790/5728-1305026569 

Neda Khodabakhshi, S. M., Vaezpour, & Baleanu, D. (2014). Numerical solutions of the initial value problem for fractional differential equations by 

modification of the Adomian decomposition method. An International Journal for Theory and Applications, 17(2), 1314–2224. 

https://doi.org/10.2478/s13540-014-0176-2 



International Journal of Research Publication and Reviews, Vol 4, no 1, pp 2209-2219 January 2023                                      2219 

 

 

Odibat, Z. (2019). An optimized decomposition method for nonlinear ordinary and partial differential equations. Physica A: Statistical Mechanics and Its 

Applications, 541(2020), 1–13. https://doi.org/10.1016/j.physa.2019.123323 

Okai, J .O, Kwami A.M, Abubakar M., M. (2020). On The Semi-Analytical Approach to Nonlinear Fredholm Integro-Differential Equations. Journal of 

the Nigeria Association of Mathematical Phyisics, 57(6), 21–28. https://doi.org/10.29322/IJSRP.10.06.2020.p10299 

Okai, J. O., Manjak, N. H., & Swem, S. T. (2017). The Modified Adomian Decomposition Method for the Solution of Third Order Ordinary Differential 

Equations. IOSR Journal of Mathematics, 13(6), 61–64. https://doi.org/10.9790/5728-1306046164 

Olayiwola, M. O., & Kareem, K. O. (2022). A New Decomposition Method for Integro-Differential Equations. Cumhuriyet Science Journal, 43(2), 283–

288. 

Tate, S., & Dinde, H. T. (2019). A New Modification of Adomian Decomposition Method for Nonlinear Fractional-Order Volterra Integro-Differential 

Equations. World Journal of Modelling and Simulation, 15(1), 33–41. 

Wazwaz. (2011). Linear and nonlinear Integral Equations. Methods and Applications. Springer. 

Wazwaz, A. (1999). A reliable modification of Adomian decomposition method. Applied Mathematics and Computation, 102(1999), 77–86. 

Wazwaz, A. (2000). A new algorithm for calculating adomian polynomials for nonlinear operators. Applied Mathematics and Computation, 111(13), 53–

69. 

Wazwaz, A. (2001). A new algorithm for solving di €  erential equations of Lane Emden type. Applied Mathematics and Computation, 118(2001), 287–

310. 

Wazwaz, A. (2005). Adomian decomposition method for a reliable treatment of the Emden – Fowler equation. Applied Mathematics and Computation, 

161(2005), 543–560. https://doi.org/10.1016/j.amc.2003.12.048 

 

 


