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A B S T R A C T 

Drought is a climatic phenomenon characterised by persistent and anomalous water scarcity caused by weather anomalies. Drought is a slowly evolving 

phenomenon and affects a wide range of areas. The drought indices are one of the ways to monitor and measure drought. Therefore, the Palmer drought severity 

index (PDSI) was used as an operational and a valid model. This study calculated Palmer Drought Severity Index (PDSI) on a 12-month time scale with 

meteorological data for the Ceyhan Basin between January 1989 and July 2020. The calculated PDSI values were modelled with Discrete Wavelet Transform 

(DWT) technique using Artificial Neural Network (ANN) and Support Vector Machine (SVM) methods at different training rates and drought forecasts were 

made. The forecasting success rate with the models created using machine learning methods was statistically evaluated. This study determined that machine 

learning methods could be applied in drought forecasting in drought monitoring and mitigation. 

Keywords: PDSI, Artificial Neural Network, Support Vector Machine, Hybrid Model, Drought, Discrete Wavelet Transform 

1. Introduction 

The protection and management of water resources have maintained their importance throughout human history. Nowadays, basin planning and 

drought prevention studies have gained more importance with the effect of global warming. This situation makes it indispensable to consider the status 

of our existing water resources. Drought is a natural disaster that seriously affecting a wide range of socio-economic life, especially agriculture, social 

life, and industry, where long-term lack of precipitation such as snow and sleet leads to water scarcity. There are many definitions of drought. Drought 

definitions in the literature are organized into six categories related to meteorology, climatology, atmosphere, agriculture, hydrology, and water 

management. All these views agree that drought is a situation in which a lack of precipitation over a while is caused by a lack of moisture 

(Bhalme&Mooley, 1980; Wilhite & Glantz, 1985). 

Drought indices allow us to comprehensively combine and analyse thousands of recorded data, such as precipitation and runoff, in a single large table. 

The drought index value is usually a single number and is much more useful for decision-making than raw data. This allows us to compare with 

drought classifications. Nowadays, indices e.g., Standardized Precipitation Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI) and 

Palmer Drought Severity Index (PDSI) are commonly used in drought analysis. 

The Palmer Drought Severity Index (PDSI) is the one of most outstanding meteorological drought index withinside the United States. Palmer (1965) 

developed PDSI to quantify the cumulative deviation in the supply and demand (relative to local average conditions) of atmospheric moisture at the 

surface. It incorporates previous rainfall, moisture supply and moisture demand into a hydrological calculation system based on the classic work of 

Thornthwaite(1948). Palmer used a two-layer bucket-type model for soil moisture calculations and, on the basis of limited data from the central United 

States, made some assumptions about the water-holding capacity of the field and moisture transfer between layers (Heim, 2002; Palmer, 1965). 

In line with the information in the Handbook of Drought Indicators and Indices(Svoboda & Fuchs, 2016) used for drought indices in Turkiye, 

Standardized Precipitation Index (SPI), Percent of Normal Index (PNI) and the Palmer Drought Severity Index (PDSI) are used. In addition to these 

methods, Turkish State Meteorological Service described the Aydeniz Drought Method on its official webpage (Turkish State Meteorological Service, 

n.d.). 

Huang et al. (2022) systematically analysed spatio-temporal variations in the characteristics of drought events at the sub-regional scale in the 

Mongolian Plateau using the Palmer drought theory. Wambua et al. (2017) analysed spatial and temporal drought variability in the Tana River basin 

using the Palmer Drought Severity Index (PDSI). Fung et al. (2019) performed meteorological drought forecasts using SPEI-based wavelet-boosting-

support vector regression, multi-input wavelet-fuzzy-support vector regression, and weighted wavelet-fuzzy-support vector regression. Ozger et al. 

(2011) developed a model to forecast PDSI data using a wavelet-fuzzy logic model based on meteorological variables. Ashok et al. (2012) examined 

the relationship between meteorological variables and the PHDI using the Palmer hydrological drought index (PHDI) using a wavelet-Bayes regression 
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model that increases the modelling power of a simple Bayesian regression model. Belayneh A. et al. (2013) conducted drought forecasting with 

Standardized Precipitation Index (SPI) based Support Vector Regression (SVR), Artificial Neural Network (ANN) and Wavelet-Artificial Neural 

Network (W-ANN) machine learning methods. Shamshirband et al. (2020) developed a drought forecasting model using Standardized Runoff Index 

(SSI), Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI) indices with Gene Expression 

Programming (GEP), Support Vector Regression (SVR) and M5 model trees (MT). Mokhtarzad et al. (2017) conducted drought forecasts with 

Adaptive Neuro-Fuzzy Interface System (ANFIS), Support Vector Machine (SVM) and Artificial Neural Network (ANN) on the basis of Standardized 

Precipitation Index (SPI). Khan et al. (2020) made drought forecasts with k-Nearest Neighbour (KNN), Artificial Neural Network (ANN) and Support 

Vector Machine (SVM) machine learning methods based on Standardized Precipitation Evaporation Index (SPEI). 

In this study, aimed to assess the ability of hybrid machine learning models to forecast droughts represented by the PDSI index in the Ceyhan Basin. In 

order to forecast 12-month time scale PDSI values, hybrid models were created with Discrete Wavelet Transform Technique, Support Vector Machine 

and Artificial Neural Network. The hybrid models created at different training, test, and validation rates were statistically evaluated. 

2. Materials and Methods 

2.1 Study Area and Data 

The Ceyhan Basin lies between 36° 55′ and 38° 72′ north latitudes and 35° 45′ and 37° 81′ east longitudes in Eastern Mediterranean region of Turkiye. 

The basin constitutes nearly 2.73% of Turkiye with an area of 21,391 km2. The Ceyhan Basin extends from the Gulf of Iskenderun to the Southeastern 

Taurus Mountains, consists of steep mountainous terrain and vast alluvial lands (Republic of Turkiye Ministry of Agriculture and Forestry General 

Directorate of Water Management, 2019). The Mediterranean climate prevails in the basin, with hot, dry summers and mild, wet winters. Ceyhan Basin 

borders the Euphrates Basin to the east and northeast, the Seyhan Basin to the west and northwest, and the Asi Basin to the south (See to Fig. 1.). 

Drought analysis of the Ceyhan Basin was performed using meteorological data from the General Directorate of Meteorology between January 1989 

and July 2020 with various indices. The data were sourced from meteorological stations with the numbers defined by the Turkish State Meteorological 

Service namely 17355 Osmaniye, 17866 Goksun, 17868 Afsin, 17870 Elbistan, 17908 Kozan, 17960 Ceyhan and 17979 Yumurtalik, respectively. 

 

 

 

 

 

 

 

 

 

Fig. 1 - Spatial distribution of meteorological stations in Ceyhan Basin. 

2.2 The Palmer Drought Severity Index (PDSI) 

Palmer (1965) developed the Palmer drought severity index and it can be calculated monthly or weekly. Since this index is used to monitor 

meteorological drought, it is also called the meteorological drought index. Although the Palmer drought severity index is a meteorological index, it also 

responds to hydrological and agricultural drought due to the parameters in its algorithm (Akbas, 2014). Palmer, while expressing the drought measure 

of a place, takes into account which of the class ranges the calculated drought severity value falls within. These class intervals specified by Palmer are 

given in Table 1 (Karl, 1986). 

Table 1 - Classification of dry and wet periods according to PDSI. 

PDSI Classification 

≥ 4.00 Extremely Wet 

3.00 – 3.99 Very Wet 

1.50 – 2.99 Moderately Wet 

(-1.49) – (1.49) Near Normal Wet 

(-1.50) – (-2.99) Moderately Drought 

(-3.00) – (-3.99) Very Drought 

≤ – 4.00 Extremely Drought 



International Journal of Research Publication and Reviews, Vol 4, no 1, pp 2177-2185 January 20232179 

 

The first step in calculating PDSI is determining the climatic water balance using long-term monthly precipitation and temperature data as input. 

Palmer uses an empirical approach to describe the nature of moisture accumulation by separating the soil in two layers. This is the layer where rain 

falls, and evaporation occurs. Evaporation loss in the upper layer is presumed to occur at the potential level. As long as the moisture in the surface layer 

remains constantly saturated or evaporates completely, the substrate is not changed. In order to fulfil the water requirement, first potential 

evapotranspiration must occur, then the soil must be saturated, and as a result, surface runoff must occur. In this method, taking into account the 

potential evapotranspiration calculated with Thornthwaite, it derives coefficients from the ratios of the actual runoff to the potential values of the 

monthly averages of the evaporation and evapotranspiration losses occurring in the soil, derives the CAFEC (Climatically Appropriate For Existing 

Condition) precipitation from these coefficients, uses a series of empirical equations according to the difference of this precipitation from the actual 

precipitation and determines the severity of drought (Alley, 1984). 

In Palmer's method, in addition to precipitation, four surface water data, namely evapotranspiration (ET), soil water recharge (R), runoff (RO) and water 

loss to the soil layers (L), were considered. The complementary potential values of these values are potential evapotranspiration (PE), potential recharge 

(PR), potential runoff (PRO), and potential loss (PL), respectively (Dai, 2011; Wells et al., 2004). Palmer defined CAFEC values for each month j as 

follows: 

𝛼𝑗 =
𝐸𝑇𝑗

𝑃𝐸𝑗
,𝛽𝑗 =

𝑅𝑗

𝑃𝑅𝑗
, 𝛾𝑗 =

𝑅𝑂𝑗

𝑃𝑅𝑂𝑗
,𝛿𝑗 =

𝐿𝑗

𝑃𝐿𝑗
             (1) 

where the coefficients describe the ratio of long-term average values between a water flux and its potential value. The CAFEC precipitation (P̂), 

representing the amount of precipitation in order to maintain a normal soil moisture level over a given period, is then generated with the CAFEC 

potential values as follows (Dai, 2011; Wells et al., 2004): 

𝑃 = 𝛼𝑗 𝑃𝐸 + 𝛽𝑗 𝑃𝑅+ 𝛾𝑗𝑃𝑅𝑂 − 𝛿𝑗 𝑃𝐿     (2) 

2.3 Discrete Wavelet Transform (DWT) 

In time series analysis, it is very significant to acquire frequency information. The basis of the wavelet transform is a classical frequency analysis 

method called the Fourier transform. The Fourier transform technique allows time series to be represented by continuous sine waves and to reach 

frequency dimensions. Wavelet transforms have been developed over time to overcome the flaws of the Fourier transforms, such as their inability to 

represent dynamic sequences, their inability to analyse frequency and time information simultaneously, and the inability of the sine wave geometry to 

capture sudden jumps. The main principle of the wavelet transform is the shifting and scaling operations developed with the wavelet transform, which 

are also found in the windowing technique (Basakin et al., 2019). 

A wavelet is a function that processes the frequency information of a signal at a resolution mapping to its scale. The main idea of the wavelet transform 

is to analyse signals according to a specified scale (Serroukh et al., 2000). Thanks to their sharp geometry, compressibility, and finite energy properties, 

wavelet functions determine the changes in time series better than Fourier functions. Wavelet analysis is performed using the time-scale domain. The 

most important feature of wavelet analysis is its ability to perform local analysis. Compared to traditional methods, wavelet analysis can compress or 

decompress the signal without distorting the original signal. The Discrete Wavelet Transform technique is used in this study. The mother wavelet 

functions used in the wavelet transform technique can be calculated by means of the equation depending on the translation and scale parameters. The 

scale parameter 𝑎 matches the 1/frequency expression in the Fourier transform. Therefore, small-scale wavelets are useful in determining the detail 

components with high-frequency information, and large-scale wavelets with high temporal information are useful in determining the trend character of 

the series. Wavelets are defined as a set of 𝜓𝑎,𝑏(𝑡) functions obtained by scaling and translating the mother wavelet function 𝜓(𝑡) (Shao et al., 2000). 

𝜓𝑎 ,𝑏 𝑡 =
1

  𝑎 
 𝜓  

𝑡−𝑏

𝑎
 ,           𝑎  ≠ 0,           𝑎, 𝑏 ∈ 𝑅   (3) 

where 𝑎 is a scale parameter measures the degree of compression, and 𝑏 is a translation parameter that defines the position of the wavelet (Debnath & 

Shah, 2015). The wavelet transform is the projection of the function 𝑓(𝑡) on the wavelet, i.e., the inner product of the wavelet function 𝑓(𝑡) and 𝜓𝑎,𝑏(𝑡). 

In the Discrete Wavelet Transform (DWT) analysis technique, wavelet functions are used to decompose the original time series into sub-time series and 

the signals are analysed in both the time and frequency domains of their processes and relationships devoid of losing information about the moment of 

the analysed element occurrence (Daubechies, 1990). Labat et al. (2000) developed a mathematical overview of the wavelet transform and a review of 

its applications. Therefore, the Discrete Wavelet Transform is favoured in most of the estimation problems of water resources systems on account of its 

shorter computational time (Cannas et al., 2005). For practical applications, hydrologists can access a discrete-time signal instead of a continuous-time 

signal so that a discrete wavelet may be represented as (Addison et al., 2001): 

𝑔𝑖,𝑗  𝑡 =  
1

 𝑎0
𝑖
 𝑔  

 𝑡−𝑗𝑏0𝑎0
𝑖  

𝑎0
𝑖               (4) 

where 𝑖 and 𝑗 are integer values and 𝑏0 and 𝑎0 are the location parameter with the specified precise expansion step, respectively. The most common 

values for 𝑎0 and 𝑏0 are 2 and 1, respectively (Cohen & Kovacevic, 1996). 

2.4 Artificial Neural Network (ANN) 

Artificial Neural Networks (ANN) are an information processing approach similar to the structure and functioning of the brain. This approximation 

technique was developed by McCulloch and Pitts (1943) and then gradually advanced in calibration methodologies (Rumelhart et al., 1986). The 

relational capabilities of ANNs make them more robust to missing and erroneous data, as the knowledge of the relationships among variables is 
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dispersed over a large number of network connections (Wray et al., 1994). The ANN technique also has the advantage that the modeler does not need to 

precisely define the intermediate relationships (physical processes) between inputs and outputs (Anctil et al., 2004; Dawson et al., 2006). Thus, ANNs 

are suitable for analysing complex processes, such as drought forecasting, where the relationships between a large number of input and output variables 

need to be investigated. Neurons are organised into interconnected groups called layers, with the network structure shown in Figure 2. ANNs contain 

the following elements, respectively: 

The input layer is where data is presented to the network. 

Hidden layers are where the data is processed. 

The output layer is where the results are found. The given inputs are generated. A neuron calculates the output response on the basis of a weighted sum 

of all inputs in accordance with an activation function. 

 

 

 

 

 

 

 

 

Fig. 2 - Structure of Artificial Neural Network (Sairamya et al., 2019). 

The multilayer feed-forward ANN, referred to as Multilayer Perceptron (MLP), has been adopted in numerous applications and studies in water 

resources management and drought (Lange et al., 1997). An MLP comprises a single input layer, one or more hidden layers consisting of computational 

nodes and only one output layer. Expression equation for a single output neuron as follows (Kim & Valdés, 2003): 

𝑦 𝑘 = 𝑓𝑜  𝑤𝑘𝑗
𝑀
𝑗=1 ⋅ 𝑓𝑕   𝑤𝑗𝑖 𝑥𝑖

𝑁
𝑖=1 + 𝑤𝑗𝑜  + 𝑤𝑘𝑜        (5) 

wherefo is the activation function for the output layer neuron. fh is the activation function for the hidden layer neuron; N is the number of input layer 

variables. M is the number of hidden layer neurons. wjo connects from the degree of j to the neuron of the hidden layer. wji is the weight connecting the 

neuron of order i in the input layer and the neuron of order j in the hidden layer. wkj is the weight connecting the neuron of order j in the hidden layer. 

Output layer wko is the forecasted output layer neuron judgment at step ŷk of degree k. 

2.5 Support Vector Machine (SVM) 

Vapnik(1995) developed the Support Vector Machine (SVM) technique. Support Vector Machines are prominent as an effective learning technique for 

solving classification and regression problems in various fields such as finance, hydrology and computational biology categorisation in recent years. 

This is partially regards to the built-in mechanisms to ensure good generalisation leading to accuracy estimations, the capability to train relatively 

quickly on large datasets using new mathematical optimisation techniques, the use of kernel functions to model non-linear distributions, and most 

prominently the possibility of theoretical analysis using computational learning theory (Shah, 2007). The main purpose of the statistical learning 

methods is to find the definition of unknown dependencies between measurements and certain properties of objects. This method assumes that 

measurements, also known as input variables, can be observed across all relevant objects. Conversely, properties of objects or output variables are 

generally only available for a small subset of objects known as instances. The objective of estimating the dependence between the elements of the input 

and output variable is in order to determine the value of the output variable for any of the objects of interest. It is about trying to estimate the value of a 

function f: ℝN⟼ {±1} that can accurately categorise new instances on the basis of past observations in pattern recognition (Ertekin, 2009). After 

estimation of this function, a linear boundary line is used in the separation process and can draw numerous lines. It uses a range for the line that 

provides the best separation, called the margin. When drawing the margin range, the aim is to find the largest range. In order to find the maximum 

margin, the following equations must be solved. The structure of SVM is given in Figure 3. 

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑎𝑡𝑖𝑜𝑛:𝑚𝑖𝑛
1

2
 𝑤 2           (6) 

𝑦𝑖 𝑤 ⋅ 𝑥𝑖 + 𝑏 ≥ +1,  ∀𝑖          (7) 

where b is the bias, w is the weight vector and x is a point on the hyperplane. 

In solving Equation 6, a nonlinear optimisation problem technique is encountered, and this problem is solved using the Lagrange function. Since the 

problem is quadratic, the optimisation process always results in a global maximum. Then the maximal margin classifier as follows: 

𝑓 𝑥 = 𝑠𝑔𝑛  𝑦𝑖𝑎𝑖 𝑥𝑖𝑥 𝑙
𝑖=1 + 𝑏               (8) 
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Fig. 3 - Structure of Support Vector Machine (Zhou et al., 2021). 

In SVMs, kernel functions e.g., sigmoid, polynomial, radial basis function and linear are used to find the optimal boundary for estimations and 

solutions between variables with complex relationships. In this study, radial basis function (RBF) is utilised. It can be calculated as follows: 

 

𝐾 𝑥𝑖 ,𝑥𝑗  = 𝑒𝑥𝑝  −𝛾 𝑥𝑖 − 𝑥𝑗  
2
 ,𝛾 > 0     (9) 

where γ is the optimisation parameter related to the kernel width, xiand xj are vectors in the input space. Also, γ is corresponds to 1/2σ2, where σ 

designates the Gaussian noise level of the standard deviation (Gocic et al., 2015). 

2.6 Model Performance Assessment 

The statistical measures of mean absolute error (MAE) and the Pearson correlation coefficient (R) were used in the training, testing and validation 

phases to comprehensively assess the accuracy and performance of the drought forecasting models. 

𝑅 =
  𝑌𝑗−𝑌  𝑁

𝑗=1  𝑌𝑗−𝑌  

    𝑌𝑗−𝑌  
2𝑁

𝑗=1     𝑌𝑗−𝑌  𝑁
𝑗=1

2
 

         (10) 

MAE =
1

𝑁
  𝑌𝑗 − 𝑌  𝑁

𝑗=1             (11) 

where Ŷ is the estimated value of the main variable; Yj is the observed value in the validation and estimated sets, N indicates the number of samples. 

The Pearson correlation coefficient (R) can take a value between -1 to +1. If R is +1, the two variables have a purely positive linear relationship with 

each other; if R is -1, the two variables have a purely negative linear relationship. If the R value is between 0.5 to 1, it indicates a strong relationship 

between the variables, and if it is between 0 to 0.5, it indicates a weak relationship between the variables. R = 0 means that the two variables are not 

related to each other (Tasdemir, 2010; Zhou et al., 2017) 

MAE measures the standard deviation of the difference between estimated and observed values. The lower MAE values, the less deviation between 

estimations and observations (Feng et al., 2011). 

3. Results and Discussion 

The PDSI drought forecasts were conducted with the Discrete Wavelet Transform (DWT) technique and ANN, SVM methods in accordance with 

precipitation, minimum and maximum temperature values and 12-month time scale PDSI values obtained from 7 meteorological stations of the Ceyhan 

Basin between January 1989 and July 2020. The analyses of these methods are abbreviated as DWT-SVM, and DWT-ANN. Potential 

Evapotranspiration (PET) was calculated from minimum and maximum temperature values. Precipitation (P) and PET values were utilised as input. 

According to the 12-month PDSI analyses values, the skewness coefficient was 0.765, the standard deviation was 1.964, the median was -0.613 and the 

arithmetic mean was -0.113 determined. As a result of the analysis, the highest PDSI value determined as 4.62 and the lowest value determined as -

5.24. In line with these values, it is observed that the series does not have a symmetric distribution and is not a normally distributed series. 

Table 2 - MAE, R Results of DWT-ANN forecasting. 

Model Phase Ratio MAE R Set MAE R 

DWT-ANN-1 

Training %70 0,843 0,788 

%100 

 

0,810 

 

0,803 Test %10 0,763 0,832 

Validation %20 0,714 0,848 

DWT-ANN-2 

Training %70 0,843 0,740  

%100 

 

0,868 

 

0,756 Test %15 0,874 0,797 

Validation %15 0,973 0,771 

DWT-ANN-3 

Training %70 0,862 0,756  

%100 

 

0,839 

 

0,778 Test %20 0,781 0,851 

Validation %10 0,779 0,795 

DWT-ANN-4 Training %70 0,887 0,751 %100 0,872 0,753 
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Test %30 0,837 0,745 

DWT-ANN-5 

Training %80 0,796 0,810 

%100 0,814 0,809 Test %10 0,939 0,854 

Validation %10 0,970 0,750 

DWT-ANN-6 
Training %80 0,862 0,756 

%100 0,839 0,778 
Test %20 0,781 0,851 

The models were created with different training, testing and validation rates. In addition, sets of models without validation were also created. The test, 

validation and training series in the models are selected randomly within the whole series, not between specific years. Support Vector Machine models 

are built using the Radial Basis Function (RBF). Artificial Neural Network models are designed as Multi-Layer Perceptron (MLP). R values range 

between 0.753-0.905 in the models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4 - Temporal distributions of DWT-ANN drought forecast models. 

Table 2 demonstrates the estimation results of PDSI drought index values with DWT-ANN at 12-month time scale. Figure 4 demonstrates the annual 

drought plots of PDSI forecasts and DWT-ANN drought models on a 12-month time scale. MAE values range between 0.810-0.872 and R values range 

between 0.753-0.809. In the test phase of the DWT-ANN-6 model, the MAE value increased to 1.009 and caused the performance value of this model 

to be low. Accordingly, among the models considered in DWT-ANN, the DWT-ANN-5 model with an R value of 0.809 showed higher performance. It 

is concluded that DWT-ANN-4 has the lowest performance in the model group with an R value of 0.753. In the DWT-ANN-2 training process, the 

lowest performance R value was 0.740. 

Table 3 - MAE, R Results of DWT-SVM forecasting. 

Model Phase Ratio MAE R Set MAE R 

DWT- SVM -1 

Training %70 0,544 0,844 

%100 0,575 0,844 Test %10 0,673 0,843 

Validation %20 0,642 0,848 

DWT- SVM -2 

Training %70 0,558 0,839 

%100 

 

0,574 

 

0,836 Test %15 0,513 0,858 

Validation %15 0,685 0,810 

DWT- SVM -3 Training %70 0,636 0,828 %100 0,602 0,832 
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Test %20 0,570 0,810 

Validation %10 0,422 0,918 

DWT- SVM -4 
Training %70 0,652 0,822 

%100 0,607 0,830 
Test %30 0,511 0,849 

DWT- SVM -5 

Training %80 0,382 0,913 

%100 0,405 0,905 Test %10 0,527 0,885 

Validation %10 0,498 0,879 

DWT- SVM -6 
Training %80 0,474 0,870 

%100 0,447 0,878 
Test %20 0,324 0,916 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 - Temporal distributions of DWT-SVM drought forecast models. 

Table 3 demonstrates the estimation results of PDSI drought index values with DWT-SVM at 12-month scale. Figure 5 demonstrates the annual 

drought graphs of PDSI forecasts and DWT-SVM drought models for 12-month scale. MAE values range between 0.405-0.607 and R values range 

between 0.830-0.905. In DWT-SVM analyses, DWT-SVM-5 performed better with an R value of 0.905 among the models considered. It is concluded 

that DWT-SVM-4 shows low performance among the model group with an R value of 0.830. It is observed that DWT-SVM models have lower MAE 

values than DWT-ANN models in the training, testing and validation phases. DWT-SVM models were found to have higher correlation coefficient 

values than DWT-ANN models. 

4. Conclusion 

Drought forecasting models were created with DWT-ANN and DWT-SVM at the PDSI 12-month time scale in this study. This study shows the 

variation between the performance of drought hybrid prediction models using wavelet transform and machine learning methods. The models in the 

study were analysed in terms of performance criteria and it was concluded that the models can be used in drought forecasting. Among the models, it is 

observed that validated models have higher performance values than non-validated models. In drought analysis using Discrete Wavelet Transform 

method, SVM models were found to have higher performance and lower error rate than ANN models. In this study, DWT-SVM models gave better 

results in forecasting than DWT-ANN models. Among the drought forecasting models, the DWT-SVM-5 model has a high performance value with an 

R value of 0.905. Among all the models in the study, the DWT-ANN-4 model performed low performance with an R value of 0.753. 

It is very important to forecast drought in advance and to take the necessary measures to minimise the possible negative impacts of drought. In terms of 

drought management planning and functioning, future long-term drought forecasts should be considered as an important input parameter. It is thought 

that it would be useful to apply drought forecasts in other basins by using different drought indices in order to provide more comprehensive information 

within the scope of preliminary assessment and measures to be taken for drought. 
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