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ABSTRACT

The connecting rod is an important part of an internal combustion engine. It connects piston and crank shaft. So, it must be strong enough to transfer the force
exerted by the piston to crank shaft. Usually, connecting rods are manufactured by forging process with forged steel. In this work, the material of the connecting
rod has changed forged steel to Aluminium. The life of connecting rod at 50 kN load is 79,792 for Aluminium and for Steel it was just 33,279 cycles. Further, the
weight of the component was reduced to 0.77 from 2.22 kg i.e., weight was reduced by 185%.

1. INTRODUCTION

A connecting rod is crucial component in IC engine assembly, and it connects piston to crank shaft. It takes force from the piston and transfer it to
crankshaft. Therefore, it has to be designed at most care to sustain both in compression and tension. The cross-section has been chosen very carefully to
avoid buckling.

Lee et al. [1] established a FEM model of connecting rod involving pin and crankshaft to realize the contact conditions at the pin and crank ends of the
connecting rod. They employed this model to calculate the buckling stresses under compressive load of 64.7 kN. The authors used stress sensitivity to
the reduction of the cross area of the shank of a typical connecting rod to reach the weight reduction of the connecting rod while observing other criteria
including yield and fatigue. Vivek et al. [2] conducted experimental and numerical investigations to study the performance of connecting rod concerning
the aspects of rigidity and weight of test samples. They studied the effects of compression due to ignition in the combustion chamber and tensile stress
due to inertia caused by reciprocating motion of piston and related components on these variables. Production of connecting rods for most of the auto
applications are conducted by forging of wrought steel or powder material. However, the parts made of casting processes are likely to have blown holes
which are highly destructive in terms of durability and life span of connecting rods under dynamic loading conditions. In contrast, although the forging
process of wrought steel is economical, the secondary machining operations are required to bring the dimensions of manufactured connecting rods within
the specified tolerances [3]. Saharash et al. [4] applied the loading and boundary condition of experiments in a finite element model of the connecting
rod. The results showed that compression between the contact faces and stress at the junction of web and flange of the connecting rod are very high.
Modified design of connecting rod represented significant reduction of maximum stress in the results of finite element model and considerable increase
of the life span of this part of engine in laboratory tests. Gritza et al. [5] studied the relationship between the forces of big-end pin and progression of
fatigue cracks in the bolts of connecting rod, finite element modelling and analysis of fracture mechanics were carried out. The authors reported that the
failure of the engine was because of initiation and progression of cracks in the groves of shanks of the bolts. Shaari et al. [6] conducted topology
optimization process of a typical connecting rod to minimize the mass of this component of engine and cost of production while the robustness of
connecting rod under the applied loads is maintained. The tensile and buckling analysis were performed under the tensile and compression loads equal to
26.7 kN. Also, the authors conducted mesh refinement in FEM process to ensure the convergence and accuracy of the calculated results. Romani et al.
[7] analysed stress distribution in the connecting rod using ANSY'S finite element software. For this purpose, the forces due to the combustion and the
forces caused by inertia of piston, gudgeon pin and connecting rod in motion were calculated and applied in the ANSYS software. The results showed
that the maximum stresses develop between the contact faces of the gudgeon pin and the small-end of the connecting rod and between the crank pin and
the big-end of the connecting rod. The authors used the results of the stress analyses to modify the design of the connecting rod. He et al. [8] investigated
the effects of applied loads of connecting bolts on the mechanism of cracking caused by loading and fatigue through finite element simulation and
comparison of the results with microscopic observations. The microscopic images of fracture surfaces showed that cracks were initiated at the groves of
tooth of the contacting faces because of fatigue and propagation of these cracks perpendicular to the surface. Results of tensile tests of standard samples
prepared from the broken connecting rod revealed that low tensile strength of the connecting rod material was the main cause of the fracture under the
loading conditions
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2. DESIGN AND ANALYSIS
2.1 Problem statement

To design a connecting rod for an I.C. engine running at 1800 r.p.m. and developing a maximum pressure of 3.15 N/mm2. The diameter of the piston is
100 mm; mass of the reciprocating parts per cylinder 2.25 kg; length of connecting rod 380 mm; stroke of piston 190 mm and compression ratio 6:1.
Take length to diameter ratio for big end bearing as 1.3 and small end bearing as 2 and the corresponding bearing pressures as 10 N/mm?and 15 N/mm?2.
The density of material of the rod may be taken as 8000 kg/m? and the allowable stress in the bolts as 60 N/mm? and in cap as 80 N/mm?,

Table 1: Dimensions of Design

Parameters Values in mm
Thickness of the flange and web t 7

Width of the section B 28

Depth of the section H 35

Length of the connecting rod 380

Nominal diameter of bolt dj 12

2.1.1 Geometry import

According to the problem statement the design calculation has done, and | section has chosen for cross-section. The key design parameters are tabulated
in Table 1 and drawing has attached in Annex 1.

Figure 1: Geometry Model

Table 2: Material properties

Metal Youngs modulus Poisson ratio Yield Strength | Density
N/mm? N/mm? kg/mm?

Aluminium 7.10E+04 0.33 280 2.77E-06

Structural steel 2.00E+05 0.3 250 7.85E-06

2.1.2 Meshing and Boundary conditions

The geometry model of connecting rod had discretised by using tetrahedron 3-D elements. The tetrahedron has 4 vertices, 6 edges, and is bounded by 4

triangular faces. The solving time for simulation is low in case of tetrahedron compared with hexahedron.
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Figure 3: Boundary conditions
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4. RESULT AND DISCUSSION
4.1 Linear static analysis

4.1.1 Von-misses Stress

A: Steel
B: Aluminium Equivalent Stress
Equivaient Stress Type Equivalent (von- Mises) Stress
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Figure 4: Von-misses stress at 50kN load
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Figure 5: Von-misses stress at 60kN Load
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Figure 6: Load vs Von-misses plot
4.1.2 Deformation
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Figure 7: Deformation at 50kN load
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Figure 8: Deformation at 60kN load
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Figure 9: Deformation vs load plot
4.2 Durability analysis
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Figure 10: Fatigue life at 50 kN load
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Figure 11: Fatigue life at 60 kN load
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Figure 12: Load vs life plot
3.3 Modal analysis
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Figure 13: Mode shape 1
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Figure 14: Mode shape 2

B: Mol
Total Deformaton 3
Type * rivgtcn

Freguency &

re =m

Daforrration Scabe Factor 1D (Trae Scale)

245072 4N
59814 Max

. $)68

W s
mae

1323
u NS4
19938
. 2%
B8

Figure 15: Mode shape 3
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Figure 16: Mode shape 4
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Figure 18: Mode shape 6
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Figure 20: Mode vs deformation plot

3. CONCLUSION

After performing liner-static, durability and modal analysis on connected rod with two different materials at two loads following results are concluded.

e  The von-misses stress and deformation of connecting rod are within the design limits with proposed aluminium material.
e At 50kN load component manufactured with Aluminium has more design life than steel.

e Weight of the component was reduced to 0.77 from 2.22 kg i.e., the weight was reduced by 185%.
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