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Abstract 

This work proposed order and convergence of order seventh numerical scheme for integrating first order stiff initial value problem. All the necessary and sufficient 

condition for convergence of multistep method are satisfied; the order of the method was analysed, the stability properties are investigated, the scheme is found to 

be zero stable and consistent. Hence, the scheme is convergent. 
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Introduction 

Block backward differentiation formula is one of the reliable block numerical methods for obtaining solutions of stiff initial value problems. Backward 

differentiation formula was first discovered by Curtiss & Hirschfelder (1952), in his method integration of stiff equations, Cash (1980) extended the work 

of Curtiss, with integration of stiff system of ODEs using extended backward differentiation formula, Milner (1953) discovered block numerical solution 

of differential equation, Brugano (1998) with solving differential problem by multistep method, Chu and Hamilton (1987) with parallel solution of ODE’s 

by multistep method, Dalquish (1974) with problem related to numerical method, an order five implicit 3-step block method for solving ordinary 

differential equation (Yahaya et al., 2013), Implicit r-point block backward differentiation formula for solving first- order stiff ODEs (Ibrahim et al.,2007), 

a new variable step size block backward differentiation formula for solving stiff initial value problems (Suleiman et al., 2013), a new fifth order implicit 

block method for solving first order stiff ordinary differential equations by (Musa et al 2014), Musa et al (2016);  Diagonally implicit super class of block 

backward differentiation formula for solving Stiff IVPs, Sagir et al (2012, 2013, 2022); an accurate computation of block hybrid method for solving stiff 

ODEs, One-leg Multistep Method for first Order Differential Equations (Fatunla, 1984), Abdullahi et al (2021, 2021, 2022, 2022); Enhanced 3 point fully 

implicit super class of block backward differentiation formula for solving first order stiff initial value problems, Order and Convergence of the Enhanced 

3-Point Fully Implicit Super Class of Block Backward Differentiation Formula for Solving First Order Stiff Initial Value Problems among other 

researches. All the method highlighted above possesses different degree of accuracy in one way or the other. However, some numerical method have 

good accuracy but, no advantage whatsoever when it comes to the issue of computational time. Initial value problem found in engineering and sciences 

need a scheme that is not only convergent. But, converge faster within a minimum number of iteration. This research aimed at testing the required criteria 

for the convergence of a numerical scheme for the solution of the system of IVPs of ODEs.     

Material and Methods 

Consider the block backward differentiation formula of the form  

∑ αj
7
j=0 yn+j−3 = hβkfn+k−3

  𝑘 = 1,2,3,4            (1)  

The implicit four point method (1) is constructed using a linear operator𝐿𝑖.  To derive the four point, define the linear operator  Li associated with (1) as 

𝐿𝑖[𝑦(𝑥𝑛), ℎ)]: 𝛼0 𝑦𝑛−3 + 𝛼1 𝑦𝑛−2+𝛼2 𝑦𝑛−1 + 𝛼3 𝑦𝑛 + 𝛼4 𝑦𝑛+1 + 𝛼5 𝑦𝑛+2 + 𝛼6 𝑦𝑛+3 + 𝛼7 𝑦𝑛+4 − ℎ𝛽𝑘𝑓𝑛+𝑘−3 = 0       𝑘 = 𝑖 = 1,2,3,4   (2) 

To derive the first, second, third, and fourth points as 𝑦𝑛+1,  𝑦𝑛+2,  𝑦𝑛+3 𝑎𝑛𝑑  𝑦𝑛+4 respectively Using Taylor series expansion in (2) and normalizing 

𝛼3 = 1 ,   𝛼4 = 1 , 𝛼5 = 1and 𝛼6 = 1  as coefficient’s of the four points, 𝑘 = 1 , 𝑘 = 2, 𝑘 = 3 and  𝑘 = 4respectively.  To obtain 

𝑦𝑛+1 = −
1298881

341643939
 yn−3 +

341643939

569406565
yn−2 −

72003623

113881313
 yn−1 + 426060731

341643939
yn + 

6274637

16268759
yn+2 −   143998979

1708219695
yn+3 + 1847955

113881313
yn+4 − 9603792

113881313
fn−2 

𝑦𝑛+2 = − 79696

845265
 yn−3 + 41929759

9861425
yn−2 − 68414023

3944570
 yn−1 + 189894686

5916855 yn − 7210474

394457
yn+1 + 21582821

59168550yn+3 + 14016
1972285yn+4 + 19789614

1972285 fn−1     (3) 

 

𝑦𝑛+3 =
70450

1797393
 yn−3 −

1295843

1198262
yn−2 +

5593225

599131
 yn−1 + 676840

105729
yn − 

11495780

599131
yn+1 + 6496015

1198262
yn+2 + 42690

599131
yn+4 + 845710

46087
fn 

𝑦𝑛+4 = −
338687

348237
 yn−3 −

353855969

77076456
yn−2 +

2326014617

19269114
 yn−1 − 4938738481

115614684
yn +

1117145237

19269114
yn+1 − 11296250177

77076456
yn+2 + 495749336

28903671
yn+3 + 951570371

3211519
fn+1 
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Order of the Method  

In this section, we derive the order of the methods (3). The method can be written as  

∑ 𝐶𝑗
∗𝑌𝑚+𝑗−1 = ℎ ∑ 𝐷𝑗

∗𝑌𝑚+𝑗−1,
1
𝑗=0

1
𝑗=0                                                    (4) 

where 𝐶0
∗, 𝐶1

∗, 𝐷0
∗ and 𝐷1

∗ are block matrices defined by 

𝐶0
∗ = [𝐶0,𝐶1, 𝐶2, 𝐶3],  𝐶1

∗ = [𝐶4, 𝐶5, 𝐶6, 𝐶7],   𝐷0
∗ = [𝐷0, 𝐷1, 𝐷2, 𝐷3], D1

∗ = [𝐷4, 𝐷5, 𝐷6, , 𝐷7] 𝐶0
∗,  𝐶1

∗,  𝐷0
∗ and 𝐷1

∗ are square matrices 

and  Ym−1, Ym,Fm−1 and Fm are column vectors defined as 

 𝑌𝑚 = [

𝑦𝑛+1
𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛+4

] = [

𝑦3𝑚+1
𝑦3𝑚+2

𝑦3𝑚+3

𝑦3𝑚+4

] ,  𝑌𝑚−1 = [

𝑦𝑛−3
𝑦𝑛−2

𝑦𝑛−1

𝑦𝑛

] = [

𝑦3(𝑚−1)+1

𝑦3(𝑚−1)+2

𝑦3(𝑚−1)+3

𝑦3(𝑚−1)+4

] ,  𝐹𝑚−1 = [

𝑓𝑛−3

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

] =

[
 
 
 
 
𝑓3(𝑚−1)+1

𝑓3(𝑚−1)+2

𝑓3(𝑚−1)+3

𝑓3(𝑚−1)+4]
 
 
 
 

 

𝐹𝑚 = [

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

𝑓𝑛+4

] = [

𝑓3𝑚+1

𝑓3𝑚+2

𝑓3𝑚+3

𝑓3𝑚+4

]               (5) 

Thus, (3) can be rewritten as 



























−−−

−

−−

−−

115614684

49388481

19269114

2326014617

77076456

353855969

348237

338687
105729

676840

599131

5593225

1198262

1295843

1797393

70450
5916855

189894686

3944570

68414023

9861425

41929759

845265

79696
341643939

426060731

113881313

72003623

569406565

341643939

341643939

1298881

[

𝑦𝑛−3
𝑦𝑛−2

𝑦𝑛−1

𝑦𝑛

] + 



























−−

−−

−−

−−

1
28903671

495749336

77076456

71129625017

19269114

1117145237
599131

42690
1

1198262

6496015

599131

11495780
1972285

14016

59168550

21582821
1

394457

7210474
113881313

9603792

1708219695

143998979

16268759

6274637
1

[

𝑦𝑛+1
𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛+4

]  = ℎ

























0000
46087

845710
000

0
1972285

19789614
00

00
113881313

9603792
0

[

𝑓𝑛−3

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

] + ℎ





















000
3211519

951570371
0000

0000

0000

[

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

𝑓𝑛+4

]           (6) 

From the (6) we have 

𝐶0
∗ = 



























−−−

−

−−

−−

115614684

49388481

19269114

2326014617

77076456

353855969

348237

338687
105729

676840

599131

5593225

1198262

1295843

1797393

70450
5916855

189894686

3944570

68414023

9861425

41929759

845265

79696
341643939

426060731

113881313

72003623

569406565

341643939

341643939

1298881

                    

(7)

 
 

𝐶1
∗ = 



























−−

−−

−−

−−

1
28903671

495749336

77076456

71129625017

19269114

1117145237
599131

42690
1

1198262

6496015

599131

11495780
1972285

14016

59168550

21582821
1

394457

7210474
113881313

9603792

1708219695

143998979

16268759

6274637
1

                          

(8) 
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𝐷0
∗ = 

























0000
46087

845710
000

0
1972285

19789614
00

00
113881313

9603792
0

𝐷1
∗ = 





















000
3211519

951570371
0000

0000

0000

              

(9) 

 

Where 

𝐶0 =



























−

−

−

348237

338687
1797393

70450
845265

79696
341643939

1298881

𝐶1 =



























−

−

−

348237

353855969
1198262

1295843
9861425

41929759
569406565

341643939

𝐶2 =



























−

−

19269114

2326014617
599131

5593225
3944570

68414023
113881313

72003623

𝐶3 =



























−
115614684

49388481
105729

676840
5916855

1898894686
341643939

426060731

  

(10) 

 

𝐶4 =

























−
19269114

1117145237
599131

11495780
394457

7210474
1

𝐶5 =

























−

−

77076456

71129625017
1198262

6496015
1

16268759

6274637

𝐶6 =

























−

−

28903671

495749336
1

59168550

21582821
1708219695

143998979

𝐶7 =

























−

−

−

1
599131

42690
1972285

14016
113881313

9603792

 

(11) 

𝐷0 =



















0

0

0

0

𝐷1 =





















0

0

0
113881313

9603792

𝐷2 =





















0

0
1972285

19789614
0

𝐷3 =





















0
46087

845710
0

0

𝐷4 =





















3211519

951570371
0

0

0

               

(12) 

𝐷4 =





















3211519

951570371
0

0

0

𝐷5 =



















0

0

0

0

𝐷6 =



















0

0

0

0

𝐷7 =



















0

0

0

0

           

(13) 

Definition: (Order of the method) the order of the block method (3) and its associated linear operator are given by 

𝐿[y(x); h] = ∑ [Cjy(x + jh)] −7
j=0 h∑ [Dj𝑦

′(x + jh)]7
j=0                                             (14)  

where p is unique integer such that  

Eq = 0, q = 0,1, …  p  and Ep+1 ≠ 0,where the  Eq are constant matrix  

With  

𝐸0 = ∑ 𝐶𝐽
7
𝐽=0 = 0             (16) 

𝐸1 = ∑ [𝑗𝐶𝑗 − 2𝐷𝑗]
7
𝐽=0 = 0         (17) 

𝐸2 = ∑ [
1

2!
𝑗2𝐶𝑗 − 2𝑗𝐷𝑗] = 07

𝐽=0          (18) 

𝐸3 = ∑ [
1

3!
𝑗3𝐶𝑗 − 2

1

2!
𝑗2𝐷𝑗]

7
𝐽=0 = 0         (19) 

𝐸4 = ∑ [
1

4!
𝑗4𝐶𝑗 − 2

1

3!
𝑗3𝐷𝑗]

7
𝐽=0 = 0        (20) 

𝐸5 = ∑ [
1

5!
𝑗5𝐶𝑗 − 2

1

4!
𝑗4𝐷𝑗]

7
𝐽=0 = 0        (21) 

𝐸6 = ∑ [
1

6!
𝑗6𝐶𝑗 − 2

1

5!
𝑗5𝐷𝑗]

7
𝐽=0 = 0        (22) 

𝐸7 = ∑ [
1

6!
𝑗6𝐶𝑗 − 2

1

5!
𝑗5𝐷𝑗]

7
𝐽=0 = 0          (23) 

𝐸8 = ∑ [
1

7!
𝑗7𝐶𝑗 − 2

1

6!
𝑗6𝐷𝑗] ≠ 07

𝐽=0          (23) 
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Therefore, the method (3) is of order 7, with error constant as:E8 =



























−

−

5947583

563
6926402

981
3184255

324
8293585

210

   

Convergence of the Method 

In this section, we apply the theorem on convergence by Henrici (1962) to analysed the convergence of the method (3) 

Theorem (1): Henrici (1962) stated the following conditions for convergence of Linear Multi-Step Method (LMM): 

1.  A necessary condition for convergence of the Linear Multi-step Method (3) is that the modulus of none of the root of the associated polynomial 𝜌(𝜉) 

exceeds one, and that the roots of modulus one is simple. The condition, thus imposed on 𝜌(𝜉) is called the condition of zero stability. 

2.  A necessary condition for convergence of the Linear Multi-step Method (3) is that the order of the associated difference operator be at least one. The 

condition that the order𝜌 ≥ 1, is called the condition of consistency.   

To investigate the convergence of (3), the method need to meet conditions (1) and (2) in the stated theorem.   

Zero Stability of the Method 

Definition: (Zero-Stable) A linear multistep method is said to be zero stable if no root of its first characteristics polynomial has modulus greater than one 

and that any root with modulus one, is simple. 

The method (3) is converted into matrix form as: 



























−−

−−

−−

−−

1
28903671

495749336

77076456

71129625017

19269114

1117145237
599131

42690
1

1198262

6496015

599131

11495780
1972285

14016

59168550

21582821
1

394457

7210474
113881313

9603792

1708219695

143998979

16268759

6274637
1

[

𝑦𝑛+1
𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛+4

] =  ℎ



























−

−−−

−−

−−

115614684

49388481

19269114

2326014617

77076456

353855969

348237

338687
105729

676840

599131

5593225

1198262

1295843

1797393

70450
5916855

189894686

3944570

68414023

9861425

41929759

845265

79696
341643939

426060731

113881313

72003623

569406565

341643939

341643939

1298881

[

𝑦𝑛−3
𝑦𝑛−2

𝑦𝑛−1

𝑦𝑛

] + ℎ

























0000
46087

845710
000

0
1972285

19789614
00

00
113881313

9603792
0

[

𝑓𝑛−3

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

] + ℎ  





















000
3211519

951570371
0000

0000

0000

[

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

𝑓𝑛+4

]               (24) 

 (24) can be transform into matrix form   

𝐴0𝑌𝑚=𝐴1𝑌𝑚−1 + ℎ(𝐵0𝐹𝑚−1 + 𝐵1𝐹𝑚)                                                                                   (25) 

Where  

A0 = 



























−−

−−

−−

−−

1
28903671

495749336

77076456

71129625017

19269114

1117145237
599131

42690
1

1198262

6496015

599131

11495780
1972285

14016

59168550

21582821
1

394457

7210474
113881313

9603792

1708219695

143998979

16268759

6274637
1

,      

(26)
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A1 =



























−

−−−

−−

−−

115614684

49388481

19269114

2326014617

77076456

353855969

348237

338687
105729

676840

599131

5593225

1198262

1295843

1797393

70450
5916855

189894686

3944570

68414023

9861425

41929759

845265

79696
341643939

426060731

113881313

72003623

569406565

341643939

341643939

1298881

    

(27)

 
 

B0 =

























0000
46087

845710
000

0
1972285

19789614
00

00
113881313

9603792
0

, B1 =  





















000
3211519

951570371
0000

0000

0000

       

28) 

 𝑌𝑚−1  ,  𝑌𝑚  ,   𝐹𝑚−1   and   𝐹𝑚 are column vectors defined as  

 𝑌𝑚 = [

𝑦𝑛+1
𝑦𝑛+2

𝑦𝑛+3

𝑦𝑛+4

] = [

𝑦3𝑚+1
𝑦3𝑚+2

𝑦3𝑚+3

𝑦3𝑚+4

] ,  𝑌𝑚−1 = [

𝑦𝑛−3
𝑦𝑛−2

𝑦𝑛−1

𝑦𝑛

] = [

𝑦3(𝑚−1)+1

𝑦3(𝑚−1)+2

𝑦3(𝑚−1)+3

𝑦3(𝑚−1)+4

] ,  𝐹𝑚−1 = [

𝑓𝑛−3

𝑓𝑛−2

𝑓𝑛−1

𝑓𝑛

] =

[
 
 
 
 
𝑓3(𝑚−1)+1

𝑓3(𝑚−1)+2

𝑓3(𝑚−1)+3

𝑓3(𝑚−1)+4]
 
 
 
 

   (29) 

  𝐹𝑚 = [

𝑓𝑛+1

𝑓𝑛+2

𝑓𝑛+3

𝑓𝑛+4

] = [

𝑓3𝑚+1

𝑓3𝑚+2

𝑓3𝑚+3

𝑓3𝑚+4

]         (30)   

Substituting scalar test equation y′ =λy (λ < 0, λ complex) into (25) and using λh = h̅ gives 

A0Ym=A1Ym−1 + ℎ̅(B0Ym−1 + B1Ym)                                                                                  (31) 

The stability polynomial of (3) is obtained by evaluating  

det[(A0 − ℎ̅B1)𝑡 − (A1 + ℎ̅B0)] = 0    using maple software                     (32)                                                                    

To get 

𝑅(ℎ̅, 𝑡) =  
9960903168075475594351033033

132975325936366820357365460
ℎ −

446737709680296868675844731429

106380260749093456285892368
𝑡 −

2678968322985075820857255249

6648766296818341017868273
 𝑡4ℎ − 

193733184956304804387420096

6648766296818341017868273
 𝑡3ℎ2 −

 
25608169462430881261642608

6648766296818341017868273
 ℎ2  + 

638171663697310966422440976921

106380260749093456285892368
 𝑡2 − 

1213264202117730393567153127537

199462988904550230536048190
 𝑡ℎ − 

5676300825071886605672385159541

398925977809100461072096380
 𝑡2ℎ −

 
1567043388639268347778339112886

33243831484091705089341365
 𝑡3ℎ + 

6367613571247823503023834144

511443561293718539836021
 𝑡2ℎ2 − 

2832643875122663279618351136

6648766296818341017868273
 𝑡ℎ2  + 

30595712343518318988667155247

531901303745467281429461840
 −

 
92156513088949372852808209

5114435612937185398360210
 𝑡4 − 

1535606287389855687511705383

835009895989744554834320
 𝑡3        (33) 

By putting  ℎ̅ = 0 in (33), we obtain the first characteristic polynomial as 

𝑅(0, 𝑡) =  −
446737709680296868675844731429

106380260749093456285892368
𝑡 + 

638171663697310966422440976921

106380260749093456285892368
 𝑡2  − 

1535606287389855687511705383

835009895989744554834320
 𝑡3  − 

92156513088949372852808209

5114435612937185398360210
 𝑡4   +

 
30595712343518318988667155247

531901303745467281429461840
       (34)      

Since, the roots of (34) are 𝑡1 = 1 𝑎𝑛𝑑 𝑡2, 𝑡3, 𝑡4 ≤ 0                                                              

Therefore, the method (3) is zero Stable. 

Consistency Conditions 

Definition 3: A Linear Multi-Step Method is said to be consistent if its order p is greater than or equal to one. It also follows that a LMM is consistent if 

and only if: 

∑ 𝐶𝑗 = 0𝐾
𝑗=0        (35) 

and  

∑ 𝑗𝐶𝑗 =𝐾
𝑗=0 ∑ 𝐷𝑗

𝐾
𝑗=0        (36) 

Where 𝐶𝑗 and 𝐷𝑗 are constant coefficient matrices. It follows that (3) it is consistent if and only if 𝜌(1) = 0 and  𝜌(1) = 𝜎(1). Where 𝜌 and 𝜎 are the 1st  

and 2nd  characteristic polynomial respectively. 

Obviously (3) has order greater than 1, that is order  𝑝 ≥ 1. 
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Thus, conditions (35) and (36) are met. 

∑Cj

7

j=0

=  C0 + C1 + C2 + C3+C4 + C5+C6 + C7 



























−

−

−

348237

338687
1797393

70450
845265

79696
341643939

1298881

+



























−

−

−

348237

353855969
1198262

1295843
9861425

41929759
569406565

341643939

+



























−

−

19269114

2326014617
599131

5593225
3944570

68414023
113881313

72003623

+



























−
115614684

49388481
105729

676840
5916855

1898894686
341643939

426060731

+

























−
19269114

1117145237
599131

11495780
394457

7210474
1

+

























−

−

77076456

71129625017
1198262

6496015
1

16268759

6274637

+

























−

−

28903671

495749336
1

59168550

21582821
1708219695

143998979

+

 
























−

−

−

1
599131

42690
1972285

14016
113881313

9603792

=



















0

0

0

0

                                                     

(37) 

Therefore, the condition (35) is satisfied. Also 

∑𝑗𝐶𝑗 = 0

7

𝑗=0

⋅ 𝐶0 + 1 ⋅ 𝐶1 + 2 ⋅ 𝐶2 + 3 ⋅ 𝐶3 + 4 ⋅ 𝐶4 + 5 ⋅ 𝐶5 + 6 ⋅ 𝐶6 + 7 ⋅ 𝐶7 

0 ⋅



























−

−

−

348237

338687
1797393

70450
845265

79696
341643939

1298881

+1 ⋅



























−

−

−

348237

353855969
1198262

1295843
9861425

41929759
569406565

341643939

+2 ⋅



























−

−

19269114

2326014617
599131

5593225
3944570

68414023
113881313

72003623

+3 ⋅



























−
115614684

49388481
105729

676840
5916855

1898894686
341643939

426060731

+4 ⋅

























−
19269114

1117145237
599131

11495780
394457

7210474
1

+5 ⋅

























−

−

77076456

71129625017
1198262

6496015
1

16268759

6274637

+6 ⋅

























−

−

28903671

495749336
1

59168550

21582821
1708219695

143998979

+7 ⋅

























−

−

−

1
599131

42690
1972285

14016
113881313

9603792

=



























3211519

951570371
46087

845710
1972285

19789614
113881313

9603792

         (38) 

And 

∑𝐷𝑗

7

𝑗=0

= 𝐷0 + 𝐷1 + 𝐷2 + 𝐷3 + 𝐷4 + 𝐷5 + 𝐷6 + 𝐷7 

= 



















0

0

0

0

+ 





















0

0

0
113881313

9603792

 + 





















0

0
1972285

19789614
0

 +





















0
46087

845710
0

0

+ 





















3211519

951570371
0

0

0

+ 



















0

0

0

0

+



















0

0

0

0

+



















0

0

0

0

= 



























3211519

951570371
46087

845710
1972285

19789614
113881313

9603792

  

 (39) 

Therefore,   ∑ 𝑗𝐶𝑗
7
𝑗=0 = ∑ 𝐷𝑗

7
𝑗=0  .Thus, condition in (24) is also met; the method (3) is consistent.  

Hence, the method (3) is Convergent in accordance with the theorem (1)  
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Conclusion 

 The necessary and sufficient conditions for the convergence of a linear multistep method highlighted in theorem (1) are satisfied by the proposed method. 

The proposed scheme found to be of order 7, zero stable and consistent. The convergent method is recommended for the solution of first order system of 

initial value problem of ordinary differential equations.  
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