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Abstract: 

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the homogeneous quadratic Diophantine equation with three unknowns 

given by 2 (x2 + y2) – 3xy = 32z2.Various sets of integer solutions are obtained. A few interesting properties among the solutions are given. 
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INTRODUCTION 

The ternary quadratic Diophantine equation offers an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-19] for quadratic 

equations with two and three unknowns. This communication concerns with yet another interesting ternary quadratic equation 2 (x2 + y2) – 3xy = 32z2  is 

analysed for its non-zero distinct integer solutions through different methods. 

METHODS OF ANALYSIS 

The ternary quadratic Diophantine equation to be solved for -zero distinct integral solution is  

( ) 222 3232 zxyyx =−+
                                                                             (1)                                                                              

Introduction of the linear transformations 

0,, −=+= vuvuyvux
                                                       (2)                                                                                                                           

in (1) leads to  

222 327 zvu =+                                                                                                     (3)                                                           

The above equation is solved for u, v and z through different methods and using (2), the values of  x and ysatisfying (1), are obtained which are illustrated 

below 

Method I:  

Write (3) in the form of ratio as 
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which is equivalent to the system of double equations    

                             

 

           

 

Solving the above system of double equations and using (2), the corresponding integer solutions to (1) are found to be  
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Note 1: 

It is noted that (3) may also be written in the form of ratios as below 
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 For each of the above ratios, the corresponding integer solutions to (1)  are exhibited below 

Solutions obtained through (i)  
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   Solutions obtained through (ii) 
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 Solutions obtained through (iii) 
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 Solution obtained through (iv) 
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Method II: 

Introducing the linear transformations 

     
PuTXvTXZ 5,32,7 =+=+=

                                                         (5)  

in (3), it gives  

                           
222 224 PTX +=                                                                                          (6)                                                                                                                     

which is satisfied by 
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From (7), (5) & (2), we obtain the integer solutions to (1) as given below 
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It is to be noted that (6) may be represented as the system of double equation as shown in Table: 1 

Table: 1 System of double equations 

System 1 2 3 4 5 

PX +  
2T  7

2T  
22T  4

2T  8
2T  

PX −  
224 32 112 56 28 

 

  

 

 

 

 

System 11 12 13 14 15 

PX +  32T  224T  T  2T  14T  

PX −  7T  T  224T  112T  16T  

 

Solving each of the system of double equations in Table: 1, the values of X, P & T are obtained, from (5) & (2), the corresponding solutions to (1) are 

found and they are exhibited below 

Solutions from system 1 
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Solutions from system 2 
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Solutions from system 3 
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Solutions from system 4 
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Solutions from system 5 
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Solutions from system 6 
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Solutions from system 7    

System 6 7 8 9 10 

PX +  
216T  14

2T  28
2T  56

2T  112
2T  

PX −  
14 16 8 4 2 
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Solutions from system 8 
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Solutions from system 9 
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Solutions from system 10 

114224

664896

4641344

2

2

2

++=

−−=

−+=

kkz

kky

kkx

 

Solutions from system 11  
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Solutions from system 12 

 

 

 

 

Solutions from system 13 
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Solutions from system 14 

     kz

ky

kx

128

728

372

=

−=

−=

 

Solutions from system 15 
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Method III: 

  Assume  

22 baz +=                                                                                                       (8)                                

Case (i): 

Write 32 as 

)75()75(32 ii −+=
                                                                                               (9)                                                        

Using (8) and (9) in (3) and employing the method of factorization, define 
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Equating the real and imaginary parts, we get  
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in view of (2), we obtain 
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Thus (8) and (10) represent the integer solution to (1). 

Case (ii): 

One can write 32 as 
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Using (8) and (11) in (3) and applying the method of factorization, define  
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Equating the real and imaginary parts, we get  
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in view of (2), we obtain 
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To obtain the integer solutions, replacing a by 2A and b by 2B in (8) & (12), the corresponding integer solutions of (1) are given by  
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Method IV: 

Equation (3) can be written as  

1*327 222 zvu =+                                                                                                      (14)                                              

Write 1 on the R.H.S. of (14) as  
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Using (8), (9) & (15) in (14) and utilizing the method of factorization, define 
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Equating the real and imaginary parts, the values of u and v are obtained as  
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Proceeding as in case (ii), we get  
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Thus (16) represent the non-zero distinct solution of (1) 

Note 2:   

It is seen that 1 is also represented as follows 
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Following the above procedure, the solutions of (1) are obtained. 

Method V: 

Consider (3) as 

1*732 222 uvz =−                                                                                                      (17) 

Let 

22 732 bau −=                                                                                                            (18) 

Consider 1 as 
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1
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                                                                                         (19) 

Using (18) & (19) in (17) and employing the method of factorization, consider 
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Equating the coefficients of corresponding terms, we have 
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Replacing a by 5A, b by 5B in (18) & (20) the corresponding integer solutions to (17) are given by 
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          ABBAz 7035160 22 ++=                                                                                            (22)                                                                        

            Substituting (21) in (2), we have 
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Then (22) & (23) give the integer solution to (1). 

Method VI: 

Consider (3) as 

222 732 vuz =−                                                                                                          (24) 

Let 

2232 bav −=                                                                                                              (25) 

Write 7 as 
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( )( )5325327 −+=                                                                                                 (26) 

Using (25) & (26) in (24) and employing the method of factorization, consider 

( ) ( )( )23253232 bauz ++=+
                                                                              (27) 

Equating the coefficients of corresponding terms, we have 

abbaz 1032 22 ++=                                                                                                  (28) 

abbau 645160 22 ++=                                                                                              (29) 

From (25) & (29) in (2), we have 
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Then, (28) & (30) gives the integer solution of (1). 

Generation of Integer Solutions 

Let 
( ),, 000 zvu

be any given integer solution to (3). We illustrate below the  method of obtaining a general formula for generating sequence of 

integer  solutions based on the given solution.  

Case (i)  

Let  
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be the second solution of (3). Substituting (31) in (3) & performing a few calculations, we have  

              00 163 zuh +=
 

and then  
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This is written in the form of matrix as  
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Repeating the above process, the general solution 
),( nn zu

to (3) is given by  
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To find 
nM , the eigen values of M are 

.21217,21217 −=+= 
 

We know that  ( )
( )

( )
( )IMIMM

nn
n 









−

−
+−

−
=

 

Using the above formula, we have 
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Thus the general solution 
( )nnn zvu ,,

 to (3) is given by  
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Thus the general solution 
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 to (1) is given by 

Case (ii) 

Let  
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Repeating the process as in the case (i) the corresponding general solution
( )nnn zyx ,,

 to (1) is given by  

Case (iii) 

Let  
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Repeating the process as in the case (i) the corresponding general solution
( )nnn zyx ,,

 to (1) is given by  

CONCLUSION: 

In this paper, we have presented four different methods of obtaining infinitely many non-zero distinct integer solutions of the homogeneous cone  

given by 2(X2+Y2) – 3XY = 32Z2. To conclude, one may search for other patterns of solutions and their corresponding properties.  
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