

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

On Finding Integer Solutions to the Homogeneous Ternary Quadratic Diophantine Equation $2 (X^2 + Y^2) - 3XY = 32Z^2$

J. Shanthi¹, M. Parkavi²

¹Assistant Professor, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

²PG Scholar, Department of Mathematics, Shrimati Indira Gandhi College, Affiliated to Bharathidasan University, Trichy-620 002, Tamil Nadu, India.

Abstract:

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the homogeneous quadratic Diophantine equation with three unknowns given by $2(x^2 + y^2) - 3xy = 32z^2$. Various sets of integer solutions are obtained. A few interesting properties among the solutions are given.

Keywords: Ternary quadratic, Homogeneous quadratic, Integer solutions, Legendre equation

2010 Mathematics Subject Classification: 11D09

INTRODUCTION

The ternary quadratic Diophantine equation offers an unlimited field for research due to their variety [1-3]. In particular, one may refer [4-19] for quadratic equations with two and three unknowns. This communication concerns with yet another interesting ternary quadratic equation $2(x^2 + y^2) - 3xy = 32z^2$ is analysed for its non-zero distinct integer solutions through different methods.

METHODS OF ANALYSIS

The ternary quadratic Diophantine equation to be solved for -zero distinct integral solution is

$$2(x^2 + y^2) - 3xy = 32z^2$$
(1)

Introduction of the linear transformations

 $x = u + v, \quad y = u - v, \quad u \neq v \neq 0$

in (1) leads to

 $u^2 + 7v^2 = 32z^2 \tag{3}$

The above equation is solved for u, v and z through different methods and using (2), the values of x and ysatisfying (1), are obtained which are illustrated below

(2)

Method I:

Write (3) in the form of ratio as

$$\frac{u+5z}{z+v} = \frac{7(z-v)}{u-5z} = \frac{\alpha}{\beta}, \quad \beta \neq 0$$
(4)

which is equivalent to the system of double equations

$$\beta u - \alpha v + (5\beta - \alpha)z = 0$$
$$-\alpha u - 7\beta v + (7\beta + 5\alpha)z = 0$$

Solving the above system of double equations and using (2), the corresponding integer solutions to (1) are found to be

$$x = 4\alpha^{2} - 28\beta^{2} + 24\alpha\beta$$
$$y = 6\alpha^{2} - 42\beta^{2} + 4\alpha\beta$$
$$z = \alpha^{2} + 7\beta^{2}$$

Note 1:

It is noted that (3) may also be written in the form of ratios as below

(i)

$$\frac{u+5z}{7(z-v)} = \frac{z+v}{u-5z} = \frac{\alpha}{\beta}$$
(ii)

$$\frac{u-5z}{z+v} = \frac{7(z-v)}{u+5z} = \frac{\alpha}{\beta}$$
(iii)

$$\frac{u-5z}{7(z-v)} = \frac{z+v}{u+5v} = \frac{\alpha}{\beta}$$
(iv)

$$\frac{u-5z}{z-v} = \frac{7(z+v)}{u+5z} = \frac{\alpha}{\beta}$$

For each of the above ratios, the corresponding integer solutions to (1) are exhibited below

Solutions obtained through (i)

$$x = 42\alpha^{2} + 6\beta^{2} - 4\alpha\beta$$
$$y = 28\alpha^{2} + 4\beta^{2} - 24\alpha\beta$$
$$z = -7\alpha^{2} - \beta^{2}$$
Solutions obtained through (ii)

$$x = -6\alpha^{2} + 42\beta^{2} + 4\alpha\beta$$
$$y = -4\alpha^{2} + 28\beta^{2} + 24\alpha\beta$$

$$z = \alpha^2 - 7\beta^2$$

Solutions obtained through (iii)

$$x = 28\alpha^{2} - 4\beta^{2} - 24\alpha\beta$$
$$y = 42\alpha^{2} - 6\beta^{2} - 4\alpha\beta$$
$$z = -7\alpha^{2} - \beta^{2}$$

Solution obtained through (iv)

$$x = 4\alpha^{2} - 28\beta^{2} - 24\alpha\beta$$
$$y = 6\alpha^{2} - 42\beta^{2} - 4\alpha\beta$$
$$z = -\alpha^{2} - 7\beta^{2}$$

Method II:

Introducing the linear transformations

 $Z = X + 7T, \quad v = X + 32T, \quad u = 5P$ in (3), it gives $X^{2} = 224T^{2} + P^{2}$ (5)

T = 2rs

$$T = 2rs$$

$$P = 224r^{2} - s^{2}$$

$$X = 224r^{2} + s^{2}$$
(7)

(6)

From (7), (5) & (2), we obtain the integer solutions to (1) as given below

$$x = 1344r^{2} - 4s^{2} + 64rs$$
$$y = 896r^{2} - 6s^{2} - 64rs$$
$$z = 224r^{2} + s^{2} + 14rs$$

It is to be noted that (6) may be represented as the system of double equation as shown in Table: 1

Table: 1 System of double equations

System	1	2	3	4	5
X + P	T^2	$_7T^2$	$2T^2$	$4T^2$	$8T^2$
X - P	224	32	112	56	28
System	6	7	8	9	10
X + P	$16T^{2}$	$_{14}T^2$	$_{28}T^2$	$_{56}T^2$	$_{112}T^{2}$
X - P	14	16	8	4	2
System	11	12	13	14	15
X + P	$_{32}T$	224 T	Т	$_2T$	$_{14}T$
X - P	$_7T$	Т	$_{224}T$	$_{112}T$	$_{16}T$

Solving each of the system of double equations in Table: 1, the values of X, P & T are obtained, from (5) & (2), the corresponding solutions to (1) are found and they are exhibited below

Solutions from system 1

 $x = 12k^2 + 64k - 448$ $y = 8k^2 - 64k - 672$ $z = 2k^2 + 14k + 112$ Solutions from system 2 $x = 84k^2 + 64k - 64$ $y = 56k^2 - 64k - 96$ $z = 14k^2 + 14k + 16$ Solutions from system 3 $x = 24k^2 + 64k - 224$ $y = 16k^2 - 64k - 336$ $z = 4k^2 + 14k + 56$ Solutions from system 4 $x = 48k^2 + 64k - 112$ $y = 32k^2 - 64k - 168$ $z = 8k^2 + 14k + 28$ Solutions from system 5 $x = 96k^2 + 64k - 56$ $y = 64k^2 - 64k - 84$ $z = 16k^2 + 14k + 14$ Solutions from system 6 $x = 192k^2 + 64k - 28$ $v = 128k^2 - 64k - 42$ $z = 32k^2 + 14k + 7$ Solutions from system 7

 $x = 168k^2 + 64k - 32$ $v = 112k^2 - 64k - 48$ $z = 28k^2 + 14k + 8$ Solutions from system 8 $x = 336k^2 + 64k - 16$ $y = 224k^2 - 64k - 24$ $z = 56k^2 + 14k + 4$ Solutions from system 9 $x = 672k^2 + 64k - 8$ $y = 448k^2 - 64k - 12$ $z = 112k^2 + 14k + 2$ Solutions from system 10 $x = 1344k^2 + 64k - 4$ $y = 896k^2 - 64k - 6$ $z = 224k^2 + 14k + 1$ Solutions from system 11 x = 228ky = 22kz = 53kSolutions from system 12 x = 1404ky = 826kz = 239kSolutions from system 13 x = -826ky = -1404kz = 239kSolutions from system 14

x = -372ky = -728kz = 128kSolutions from system 15

$$x = 84k$$
$$y = -104k$$
$$z = 44k$$

Method III:

Assume

 $z = a^2 + b^2$ Case (i):

Write 32 as

$$32 = (5 + i\sqrt{7})(5 - i\sqrt{7})$$

Using (8) and (9) in (3) and employing the method of factorization, define

(8)

(9)

$$(u+i\sqrt{7}v) = (5+i\sqrt{7})(a+i\sqrt{7}b)^2$$

Equating the real and imaginary parts, we get

u = 5a² - 35b² - 14abv = a² - 7b² + 10abin view of (2), we obtain

$$x = 6a^{2} - 42b^{2} - 4ab y = 4a^{2} - 28b^{2} - 24ab$$
 (10)

Thus (8) and (10) represent the integer solution to (1).

Case (ii):

One can write 32 as

$$32 = \frac{(13 + i7\sqrt{7})(13 - i7\sqrt{7})}{4^2} \tag{11}$$

Using (8) and (11) in (3) and applying the method of factorization, define

$$(u+i\sqrt{7}v) = \frac{(13+i7\sqrt{7})}{4}(a+i\sqrt{7}b)^2$$

Equating the real and imaginary parts, we get

$$u = \frac{13a^2 - 91b^2 - 98ab}{4}$$
$$v = \frac{7a^2 - 49b^2 + 26ab}{4}$$

in view of (2), we obtain

$$x = \frac{20a^2 - 140b^2 - 72ab}{4}$$
$$y = \frac{6a^2 - 42b^2 - 124ab}{4}$$

(12)

(15)

To obtain the integer solutions, replacing a by 2A and b by 2B in (8) & (12), the corresponding integer solutions of (1) are given by

$$x = 20A^{2} - 140B^{2} - 72AB y = 6A^{2} - 42B^{2} - 124AB z = 4A^{2} + 28B^{2}$$
(13)

Method IV:

Equation (3) can be written as

$$u^{2} + 7v^{2} = 32z^{2} *1$$
 (14)
Write 1 on the R.H.S. of (14) as

$$1 = \frac{(1+i3\sqrt{7})(1-i3\sqrt{7})}{8^2}$$

Using (8), (9) & (15) in (14) and utilizing the method of factorization, define

$$(u+i\sqrt{7}v) = (5+i\sqrt{7})(a+i\sqrt{7}b)^2 \left[\frac{(1+i3\sqrt{7})}{8}\right]$$

Equating the real and imaginary parts, the values of u and v are obtained as

$$u = \frac{-16a^2 + 112b^2 - 224ab}{8}$$
$$v = \frac{16a^2 - 112b^2 - 32ab}{8}$$

Proceeding as in case (ii), we get

x = -128AB $y = -16A^2 + 112B^2 - 96AB$ $Z = 4A^2 + 28B^2$

Thus (16) represent the non-zero distinct solution of (1)

Note 2:

It is seen that 1 is also represented as follows

(v)
$$1 = \frac{(3+i\sqrt{7})(3-i\sqrt{7})}{4^2}$$

(vi)
$$1 = \frac{(3+i4\sqrt{7})(3-i4\sqrt{7})}{11^2}$$

(vii)
$$1 = \frac{(7r^2 - s^2 + i\sqrt{7}2rs)(7r^2 - s^2 - i\sqrt{7}2rs)}{(7r^2 + s^2)^2}$$

Following the above procedure, the solutions of (1) are obtained.

Method V:

Consider (3) as

$$32z^{2} - 7v^{2} = u^{2} * 1$$
(17)
Let
$$u = 32a^{2} - 7b^{2}$$
(18)
Consider 1 as
$$\left(\sqrt{32} + \sqrt{7}\right)\left(\sqrt{32} - \sqrt{7}\right)$$

$$1 = \frac{\sqrt{32 + \sqrt{1}}\sqrt{32 - \sqrt{1}}}{25}$$
Using (18) & (19) in (17) and employing the method of factorization, consid

Using (18) & (19) in (17) and employing the method of factorization, consider

$$\sqrt{32}z + \sqrt{7}v = \frac{1}{5}(\sqrt{32} + \sqrt{7})(\sqrt{32}a + \sqrt{7}b)^2$$

Equating the coefficients of corresponding terms, we have

$$z = \frac{1}{5} (32a^2 + 7b^2 + 14ab)$$
$$v = \frac{1}{5} (32a^2 + 7b^2 + 64ab)$$

Write 7 as

(20)

Replacing a by 5A, b by 5B in (18) & (20) the corresponding integer solutions to (17) are given by

$u = 800A^{2} - 175B^{2}$ $v = 160A^{2} + 35B^{2} + 320AB$ $z = 160A^{2} + 35B^{2} + 70AB$ Substituting (21) in (2), we have	}	(21)
$x = 960A^{2} - 140B^{2} + 320AB$ y = 640A ² - 210B ² - 320AB Then (22) & (23) give the integer solution to (1). Method VI:	(23)	
Consider (3) as $32z^2 - u^2 = 7v^2$ Let	(24)	
$v = 32a^2 - b^2$	(25)	

(16)

(19)

$7 = \left(\sqrt{32} + 5\right)\left(\sqrt{32} - 5\right)$	(26)
Using (25) & (26) in (24) and employing the method of factorization, consider	
$\left(\sqrt{32}z+u\right) = \left(\sqrt{32}+5\right)\left(\sqrt{32}a+b\right)^2$	(27)
Equating the coefficients of corresponding terms, we have	
$z = 32a^2 + b^2 + 10ab$	(28)
$u = 160a^2 + 5b^2 + 64ab$	(29)
From (25) & (29) in (2), we have	
$x = 192a^{2} + 4b^{2} + 64ab$ y = 128a^{2} + 6b^{2} + 64ab Then, (28) & (30) gives the integer solution of (1).	(30)

Generation of Integer Solutions

Let (u_0, v_0, z_0) be any given integer solution to (3). We illustrate below the method of obtaining a general formula for generating sequence of integer solutions based on the given solution.

Case (i)

Let

$$u_{1} = -u_{0} + 6h$$

$$v_{1} = v_{0} h \neq 0$$

$$z_{1} = z_{0} + h$$
(31)

be the second solution of (3). Substituting (31) in (3) & performing a few calculations, we have

 $h = 3u_0 + 16z_0$

and then

$$u_1 = 17u_0 + 96z_0$$
$$z_1 = 3u_0 + 17z_0$$

This is written in the form of matrix as

$$\begin{pmatrix} u_1 \\ z_1 \end{pmatrix} = M \begin{pmatrix} u_0 \\ z_0 \end{pmatrix}$$

$$M = \begin{pmatrix} 17 & 96 \\ 3 & 17 \end{pmatrix}$$
(32)

where

Repeating the above process, the general solution (u_n, z_n) to (3) is given by

$$\begin{pmatrix} u_n \\ z_n \end{pmatrix} = M^n \begin{pmatrix} u_0 \\ z_0 \end{pmatrix}$$

To find M^n , the eigen values of $M_{\text{are}} \alpha = 17 + 12\sqrt{2}$, $\beta = 17 - 12\sqrt{2}$.

$$M^{n} = \frac{\alpha^{n}}{(\alpha - \beta)} (M - \beta I) + \frac{\beta^{n}}{(\beta - \alpha)} (M - \alpha I)$$

We know that

Using the above formula, we have

$$M^{n} = \begin{pmatrix} \frac{\alpha^{n} + \beta^{n}}{2} & \frac{\sqrt{23}(\alpha^{n} - \beta^{n})}{2} \\ \frac{\alpha^{n} - \beta^{n}}{2\sqrt{23}} & \frac{\alpha^{n} + \beta^{n}}{2} \end{pmatrix}$$

Thus the general solution (u_n, v_n, z_n) to (3) is given by

$$v_n = v_0$$

$$z_n = \begin{bmatrix} t_0 \\ \frac{\alpha_n - \beta_1^n}{8\sqrt{2}} \end{bmatrix} = \begin{bmatrix} t_0 \\ \frac{\alpha_n - \beta_1^n}{8\sqrt{2}} \end{bmatrix} = \begin{bmatrix} t_0 \\ \frac{\alpha_n - \beta_1^n}{2} \end{bmatrix} = \begin{bmatrix} t_0 \\$$

From (2) we have,

Thus the general solution (x_n, y_n, z_n) to (1) is given by

Case (ii)

Let

$$u_1 = u_0$$

$$v_1 = v_0 + 2h$$

$$z_1 = -z_0 + h \quad h \neq 0$$

Repeating the process as in the case (i) the corresponding general solution (x_n, y_n, z_n) to (1) is given by

Case (iii)

Let

$$u_1 = -8u_0 + h$$

$$v_1 = -8v_0 + h$$

$$z_1 = 8z_0 , h \neq 0$$

Repeating the process as in the case (i) the corresponding general solution (x_n, y_n, z_n) to (1) is given by

CONCLUSION:

In this paper, we have presented four different methods of obtaining infinitely many non-zero distinct integer solutions of the homogeneous cone

given by $2(X^2+Y^2) - 3XY = 32Z^2$. To conclude, one may search for other patterns of solutions and their corresponding properties.

REFERENCES:

[1]. L.E. Dickson, History of Theory of Numbers, vol 2, Chelsea publishing company, New York, (1952).

[2]. L.J. Mordell, Diophantine Equations, Academic press, London, (1969).

[3]. R.D. Carmichael, The theory of numbers and Diophantine analysis, New York, Dover, (1959).

[4]. M.A. Gopalan, S. Vidhyalakshmi, A. Kavitha and D. Marymadona, On the Ternary Quadratic Diophantine equation $3(x^2 + y^2) - 2xy = 4z^2$, International Journal of Engineering science and Management, 5(2) (2015) 11-18.

[5]. K. Meena, S. Vidhyalakshmi, E. Bhuvaneshwari and R. Presenna, On ternary quadratic Diophantine equation $5(X^2 + Y^2) - 6XY = 20Z^2$. International Journal of Advanced Scientific Research, 1(2) (2016) 59-61.

[6]. S. Devibala and M.A. Gopalan, On the ternary quadratic Diophantine Equation $7x^2 + y^2 = z^2$, International Journal of Emerging Technologies in Engineering Research, 4(9) (2016).

[7] N. Bharathi, S. Vidhyalakshmi, Observation on the Non-Homogeneous Ternary Quadratic Equation $x^2 - xy + y^2 + 2(x + y) + 4 = 12z^2$, Journal of mathematics and informatics, vol.10, 2017, 135-140.

[8] A. Priya, S. Vidhyalakshmi, On the Non-Homogeneous Ternary Quadratic Equation $2(x^2 + y^2) - 3xy + (x + y) + 1 = z^2$, Journal of mathematics and informatics, vol. 10, 2017, 49-55.

[9] M.A. Gopalan, S. Vidhyalakshmi and U.K. Rajalakshmi, On ternary quadratic Diophantine equation $5(x^2 + y^2) - 6xy = 196z^2$, Journal of mathematics, 3(5) (2017) 1-10.

[10] M.A. Gopalan, S. Vidhyalakshmi and S. Aarthy Thangam, On ternary quadratic Equation x(x + y) = z + 20, IJIRSET, 6(8) (2017) 15739-15741. [11] M.A. Gopalan and Sharadha Kumar, "On the Hyperbola $2x^2 - 3y^2 = 23$,", Journal of Mathematics and Informatics, vol-10, Dec (2017), 1-9.

[12] T.R. Usha Rani and K.Ambika, Observation on the Non-Homogeneous Binary Quadratic Diophantine Equation $5x^2-6y^2=5$, Journal of

Mathematics and Informatics, vol-10, Dec(2017), 67-74. [13] T.R. Usha Rani, V. Bahavathi, S. Sridevi, "Observations on the Non-homogeneous binary Quadratic Equation $8x^2 - 3y^2 = 20$ ", IRJET, volume:

(15) 1.K. Usha Kani, V. Bahavatin, S. Sridevi, Observations on the Non-nomogeneous binary Quadratic Equation , iKJE 1, volume: 06, Issue: 03, 2019, 2375-2382.

[14] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan, A study on the Non-Homogeneous Ternary Quadratic Diophantine Equation $4(x^2+y^2)$ -7xy $+x+y+1 = 31Z^2$, International journal of Advance in Engineering and Management (IJAEM), vol 2, Issue: 01, June (2020), 55-58.

[15] S. Vidhyalakshmi, T. Mahalakshmi, M.A. Gopalan and S. Shanthia, Observations On The Homogeneous Ternary Quadratic Diophantine Equation

With Three Unknowns $y^2 + 5x^2 = 21z^2$, Journal of Information and computational science, vol 10, Issue: 3, March (2020), 822-831 [16] M.A. Gopalan, S. Vidhyalakshmi, J. Shanthi, V. Anbuvalli, On Finding the integer Solutions of Ternary Quadratic Diophantine Equation $3(x^2 + y^2) - 5xy = 36z^2$, International journal of Precious Engineering Research and Applications (IJPERA), ol 7, Issue: 1, May (2022), 34-38.

[17] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^2 + y^2 = z^2 - 5$, Purakala UGC Care Approved Journal, vol 31, Issue: 2, May (2022), 920-926.

[18] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^2 + y^2 = z^2 - 12$, International Journal of Research Publication and Reviews, vol 3, Issue: 8, August (2022), 2146-2155.

[19] S. Vidhyalakshmi, M.A. Gopalan, On Finding Integer Solutions of Ternary Quadratic Equation $x^2 + y^2 = z^2 - 10$, International Journal of Progressive Research in Engineering Management and Science (IJPREMS), vol 02, Issue: 09, September (2022), 58-60.