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A B S T R A C T 

The motivation for this research paper is to analyze second law analysis of passive control MHD flow in the presence of Arrhenius Chemical reactions with Heat 

Generation Absorption. In this paper, a mathematical model for second law analysis of passive control MHD flow in the presence of Arrhenius Chemical 

reactions with Heat Generation Absorption was formulated. The momentum, energy, magnetic, and species equations were non-dimensionalized to arrive at 

dimensionless equations. The dimensionless equations were solved analytically with the use of asymptotic expansions defined about activation energy parameter 

𝜖 . With graphical representation, the effect of various important physical parameters on entropy generation, velocity, energy, concentration and chemical species 

for reactivity parameter, convective heat transfer, heat generation, thermal buoyancy, soret number, Eckert number, mass buoyance, thermal buoyance, Hartman 

number, velocity slip factor, Frank-Kamenestkii and Prandtl number were investigated. A table is also given that provides the results of different parameters on 

Entropy, Velocity, Temperature and Concentration. The total entropy generation is reduced to the entropy generation due to heat transfer for tiny thermal Grashof 

numbers because there is virtually no or very little convection and zero entropy creation due to fluid friction. At larger Grashof numbers, convectional heat 

transfer starts to have a major impact on flow velocity and, as a result, entropy formation due to viscous effects. Additionally, the deformed isotherms increase the 

temperature gradient, which in turn causes a heat-induced entropy formation. 
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Introduction  

The boundary layer along material handling conveyors, the cooling of an infinite metallic plate in a cooling bath, glass blowing, continuous casting, and 

fiber spinning are just a few manufacturing processes in industry that involve the flow caused by a stretching surface. The study of flow and, heat and 

mass transfer in the boundary layer induced by a surface moving with a uniform or non-uniform velocity in a quiescent ambient fluid is important in 

these processes.Numerous academics are interested in the study of boundary-layer behavior on continuously moving solid surfaces. Numerous 

processes, including the aerodynamic extrusion of plastic sheets and the boundary layer along a liquid film in condensation processes, Chamka [1], 

make use of the analysis of magneto-hydrodynamic (MHD) flows of electrically conducting fluid. According to Sajid & Hayat [2], the Prandtl number 

and radiation parameter have differing effects on the fluid's temperature on an exponentially stretched sheet.The temperature of the fluid fell as the 

radiation parameter and Prandtl number grew, according to research by Aliakbar et al. [3] on the effect of thermal radiation on the MHD flow of a 

Maxwellian fluid. Furthermore, it was discovered that the temperature of the fluid increased as the Eckert number 

increased.Siddheshwar&Mahabaleswar's inquiry [4] examined the effects of radiation and heat sources on the MHD flow of viscoelastic fluid over a 

stretching sheet. Makinde and Sibanda took into account MHD mixed-convective flow and heat transfer past a vertical plate in a porous medium with 

constant wall suction in their work [5]. 

Nomenclature 

𝑦 flow axis  Dimensionless group 

𝑢, 𝑣 Velocity component along x and y-axis  𝑩𝒊 Convective heat transfer 

𝑇 Temperature field  𝜽 dimensionless temperature 

𝐶 Species concentration field  𝝓 dimensionless concentration 

𝑔 gravitational acceleration  𝑮𝒓𝒄 Mass Grashof number  

𝐵0 Magnetic field of uniform strength  𝑮𝒓𝒕 Thermal Grashof number 

𝑇𝑤  surface temperature  N buoyancy ratio  

𝑇∞  ambient temperature  𝜆 Chemical reaction parameter 

https://doi.org/10.55248/gengpi.2023.4109


International Journal of Research Publication and Reviews, Vol 4, no 1, pp 512-522, January 2023513 

 

 

𝐶𝑤  surface concentration   𝜶 heat generation parameter 

𝐶∞  ambient concentration  M Magnetic parameter 

𝛽𝑡 Volumetric coefficient of thermal expansion  𝑵𝒖 Nusselt number 

𝛽𝑐  Volumetric coefficient of mass expansion  𝑺𝒉 Sherwood number 

𝑘 thermal conductivity  𝐻 Hartmann number 

𝑐𝑝  specific heat capacity at constant pressure  𝑆𝑟 Soret number 

𝐷 Molecular diffusivity  𝐸𝑐 Eckert Number 

𝐷𝑇  Thermophoretic Diffusion Coefficient  𝜆 Reactivity parameter 

𝑈∞  ambient velocity  𝛽 Heat generation parameter 

𝑄 Heat source/sink parameter  𝐷𝐵 Brownian Diffusion Coefficient,  

𝐿1 Slip velocity  ℎ plate heat transfer coefficient 

𝑘𝑟  Binary chemical reaction parameter  𝑷𝒓 Prandtl number 

𝑅𝐺 Universal gas constant  𝑺𝒄 Schmidt number 

𝐸𝑎 Activation Energy  Subscript 

Greek Symbol  ∞ ambient condition 

𝜌 fluid density  𝒘 wall condition 

σ Electrical conductivity   

𝜇 Fluid viscosity  0 < 𝜖 ≪ 1 

In their study [6], Chamkha& Aly focused on the MHD free convection flow of a nanofluid via a vertical permeable plate in the presence of a heat 

source or sink, while Aziz & Khan [7] examined the flow of nanofluid over a vertical plate that had been convectively heated in a natural convective 

boundary layer.In their examination of MHD free convective boundary layer flow across a flat vertical plate under Newtonian heating boundary 

conditions, Uddin et al. [8] investigated a nanofluid. Samad & Mansur-study Rahman's [9] examined how thermal radiation and unsteady MHD flow 

interacted as they passed by a vertical porous plate.The plate was immersed in a porous substance. Makinde& Sibanda [5] concentrated on MHD mixed 

convective flow and heat transfer past a vertical plate dipped in a porous medium with constant wall suction, while Md. Anwar Hossain & Munir [10] 

provided analysis of a 2-D mixed convection flow of viscous incompressible temperature dependent viscous fluid past a vertical plate.Fang [11] 

investigated how changes in fluid properties affect the boundary layers of a stretching surface, while Mahmoud [12] showed how changes in viscosity 

affect the flow of a hydromagnetic boundary layer along a continuously rotating vertical plate sensitive to radiation.M. Anwar Hossain et al study's [13] 

found that radiation affects the free convection flow of a fluid with varying viscosity on a porous vertical plate.Using a non-linear stretching sheet, 

Poornima & Reddy [14] generated sustained free convective boundary layer flow of a radiating nanofluid in the presence of a transverse magnetic 

field.Kandasamy et al. [15] looked at how thermal stratification caused by solar radiation, Brownian motion, and thermophoresis affected the MHD 

boundary layer flow of nanofluid. For every heat absorption situation and a limited heat generation condition, Chamkha [16] found answers. The effects 

of a magnetic field are consistent with those previously reported in the literature when there is no heat creation or absorption.Makinde, [17] investigates 

the steady-state solutions for the substantially exothermic decomposition of a combustible substance uniformly distributed between symmetrically 

heated parallel plates under bimolecular, Arrhenius, and sensitized reaction rates, ignoring the material consumption. Using perturbation technique and 

a particular kind of Hermite-Padé approximants, analytical solutions are created for the governing nonlinear boundary-value problem. Makinde et 

al.[18] explored the rate of entropy production in a laminar flow across a saturated porous media channel. To calculate the entropy generation number 

and the irreversibility ratio for the big Darcy number (Da) and group parameter (BrΩ
−1), the velocity and temperature profiles are acquired. The 

outcome demonstrates that heat transfer irreversibility outweighs fluid friction irreversibility (i.e., 0 ≤ φ < 1) and that viscous dissipation has no impact 

on the rate of entropy development at the channel centreline. 

Governing equations 

In light of many physical issues, such as fluid experiencing exothermic or endothermic chemical reactions, it is crucial to study the effects of heat 

generation or absorption in moving fluids. In many chemical engineering processes, a foreign mass and the working fluid move as a result of stretching 

a surface, which causes chemical reactions to occur. The chemical reaction's sequence is determined by a number of variables. One of the most basic 

chemical reactions is a first-order reaction, in which the rate of reaction is inversely proportional to the species concentration. This steady-state 

examination of the convection problem gave us the idea that adding in the magnetic field and the Arrhenius reaction would be intriguing and practical 

for applications. 

The surface is kept at a constant temperature, the flow is considered to be laminar, two-dimensional, and stable, and the concentration of the species is 

supposed to be indefinitely long. Furthermore, it is believed that the applied transverse magnetic Reynolds number is low enough to ignore the induced 

magnetic field. Apart from the density in the buoyancy components of the momentum equation, which is approximated using the Boussinesq 

approximation, there is no applied electric field, and all of the Hall effect, viscous dissipation, and Joule heating are omitted. 

The steady equations that explain the physical condition are given as follows under these assumptions: 

𝜕𝑣

𝜕𝑦
= 0                                                                                                                                                                                    1  

𝑣
𝜕𝑢

𝜕𝑦
= 𝜈

𝜕2𝑢

𝜕𝑦2
+ 𝑔𝛽𝑡 𝑇 − 𝑇∞ + 𝑔𝛽𝑐 𝐶 − 𝐶∞ −

𝜎𝐵0
2𝑢

𝜌
 2  
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𝜌𝑐𝑝𝑣
𝜕𝑇

𝜕𝑦
= 𝑘

𝜕2𝑇

𝜕𝑦2
+ 𝑄 𝑇 − 𝑇∞ +  𝜇  

𝜕𝑢

𝜕𝑦
 

2

 3  

𝜌𝑣
𝜕𝐶

𝜕𝑦
= 𝐷

𝜕2𝐶

𝜕𝑦2
+ 𝑘𝑟

2 𝑇 − 𝑇∞ 𝑟 exp  −
𝐸𝑎

𝑅𝐺𝑇
 (𝐶 − 𝐶∞)                                                                                             4  

where 𝑦 is the horizontal or transverse coordinate, it is the axial velocity, 𝑣is the transverse velocity, 𝑇 is the fluid temperature, 𝐶 is the concentration, 

𝑇 is the ambient temperature 𝐶 is the ambient concentration, and , 𝑔, 𝐵𝑇 , 𝑐 𝑣 , 𝐵𝑐, 𝑄, 𝐷 and 𝑟 are the density, gravitational acceleration, coefficient 

of thermal expansion, coefficient of concentration expansion, kinematics viscosity, fluid electrical conductivity, magnetic induction, heat 

generation/coefficient and the chemical reaction parameter and  real number respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: The channel of flow. 

With the physical boundary conditions 

𝑢 0 = 𝑢𝑤 , 𝑣 0 = −𝑣0 , 𝑇 0 = 𝑇𝑤 , 𝐶 0 = 𝐶𝑤

𝑢 → ∞, 𝑇 → ∞, 𝐶 → ∞,                          as 𝑦 → ∞
                                                                                                            (5) 

where 𝑢𝑤 , 𝑣0 > 0, 𝑇𝑤  and 𝐶𝑤  are surface velocity, suction velocity, surface temperature and concentration respectively. 

2.2Non – Dimensionalisation 

From the continuity equation (1) 

𝜕𝑣

𝜕𝑦
= 0, 𝑣 0 = −𝑣0 

Integrating we have the solution   

  
𝑣 𝑦 = −𝑣0                                                                                                                                                            (6) 

Using the solution (6), the momentum, energy, magnetic and species equations (2-4) can be non – dimensionalised using the following non – 

dimensional variables.   

𝑦′ = 𝑦 
𝑣𝑤

𝜈
, 𝑢′ =

𝑢

𝑢𝑤

, 𝑣′ =
𝑣

𝑣𝑤

, 𝑇 − 𝑇∞ =
𝑅𝑔𝑇∞

2

𝐸𝑎

𝜃, 𝐶 − 𝐶∞ =  𝐶𝑤 − 𝐶∞ 𝜙                                                                                                   (7) 

After dropping primes (‘), we have 

𝑑2𝑢

𝑑𝑦2
+ 𝑣0

𝑑𝑢

𝑑𝑦
+ 𝐺𝑟𝑡𝜃 + 𝐺𝑟𝑐𝜙 − 𝐻𝑢 = 0                                                                                                                                                   (8) 

𝑑2𝜃

𝑑𝑦2
+ Pr𝑣0

𝑑𝜃

𝑑𝑦
+ Pr 𝛽𝜃 + 𝜖𝛿  

𝜕𝑢

𝜕𝑦
 

2

= 0                                                                                                                                                   (9) 

𝑑2𝜙

𝑑𝑦2
+ 𝑆𝑐 𝑣0

𝑑𝜙

𝑑𝑦
+ 𝜖𝜆𝜃𝑟𝑒

𝜃

1+𝜖𝜃 𝜙 = 0                                                                                                                                                 (10) 

The dimensionless boundary conditions are 

𝑢 0 = 1, 𝜃 0 = 1, 𝜙 0 = 1
𝑢 → 0, 𝜃 → 0, 𝜙 → 0, 𝑎𝑠 𝑦 → ∞

                                                                                                                                 (11) 

Where 

𝜇𝑐𝑝

𝑘
= 𝑃𝑟,

𝜇

𝐷
= 𝑆𝑐, 𝑔𝛽𝑡

𝑅𝑔𝑇∞
2 𝜈

𝑣𝑤
2 𝑢𝑤𝐸𝑎

= 𝐺𝑟𝑡,
𝑔𝛽𝑐 𝐶𝑤 − 𝐶∞ 𝜈

𝑣𝑤
2 𝑢𝑤

𝐺𝑟𝑐,          

𝜎𝐵0
2𝜈

𝑣𝑤
2 𝜌

= 𝐻,
𝑄𝜈2

𝑣𝑤𝑘
= Pr 𝛽,

𝐸𝑎
2

𝑅𝑔
2𝑇∞

3

𝜇

𝑘
𝑢𝑤

2 = 𝛿,
𝑘𝑟

2

𝐷

𝜈2

𝑣𝑤
2

𝜖𝑟−1𝑇∞
𝑟

 𝐶𝑤 − 𝐶∞ 
𝑒−

1

𝜖 = 𝜆

                                                                                            (12) 

We assume exponential approximation similar to the one in Ayeni et. al [19], the polynomial approximation of the exponential term  
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exp  
𝜃

1 + 𝜖𝜃
 ≈ 1 + 𝜃 +  

1

2
− 𝜖 𝜃2 

Then the equation (10) becomes  

𝑑2𝜙

𝑑𝑦2
+ 𝑆𝑐 𝑣0

𝑑𝜙

𝑑𝑦
+ 𝜖𝜆𝜃𝑟  1 + 𝜃 +  

1

2
− 𝜖 𝜃2 𝜙 = 0                                                                                                      (13) 

which has a quadratic temperature field. 

The equivalent of the boundary condition becomes 

𝑢 0 = 𝐿0
 𝜕𝑢 𝑦 

𝜕𝑦
 
𝑦=0

,  
𝜕𝜃 𝑦 

𝜕𝑦
 
𝑦=0

=  𝐵𝑖 𝜃 𝑦 − 1  𝑦=0 ,  
𝜕𝜙 𝑦 

𝜕𝑦
+ 𝑆𝑟 

𝜕𝜃 𝑦 

𝜕𝑦
 
𝑦=0

= 0,

                                                                              𝑢 → 0, 𝜃 → 0, 𝜙 → 0, as 𝑦 → ∞

 14  

Entropy generation rate 

In convective heat and mass transfer and MHD flows, irreversibility arises due to viscous, heat and mass transfer effects. The entropy generation rate is 

expressed as the sum of contributions due to viscus, thermal and diffusive effects, and thus it depends functionally on the local values of temperature, 

velocity and concentration in the domain of interest. 

According to Bejan. [20], the characteristics entropy transfer rate is given by 

𝚪𝟎 = 𝒌 
𝚫𝑻

𝑳𝑻𝟎

                            (𝟏𝟓) 

Where 𝒌, 𝑳, 𝑻𝟎 and 𝚫𝑻 are respectively, the thermal conductivity, the characteristics length of the enclosure, a reference temperature and a reference 

temperature difference. 

Magherbi Mourad et al [21], give two-dimensional entropy generation rate as 

𝚪 =
𝝁

𝑻𝟎

 𝟐  
𝝏𝒖

𝝏𝒙
 

𝟐

+ 𝟐 
𝝏𝒗

𝝏𝒙
 

𝟐

+  
𝝏𝒗

𝝏𝒙
+

𝝏𝒖

𝝏𝒚
 

𝟐

 +
𝒌

𝑻𝟎
𝟐   

𝝏𝑻

𝝏𝒙
 

𝟐

+  
𝝏𝑻

𝝏𝒚
 

𝟐

 

                 +
𝑹𝑫

𝑪𝟎

  
𝝏𝑪

𝝏𝒙
 

𝟐

+  
𝝏𝑪

𝝏𝒚
 

𝟐

 +
𝑹𝑫

𝑻𝟎

  
𝝏𝑻

𝝏𝒙
  

𝝏𝑪

𝝏𝒙
 +  

𝝏𝑻

𝝏𝒚
  

𝝏𝑪

𝝏𝒚
  

               (𝟏𝟔) 

Where 𝑪𝟎and 𝑻𝟎are respectively the reference concentration and temperature, which are in our case, the bulk concentration and the bulk temperature.  

Also, we note that the flow is in y – direction only, hence all derivatives with respect to x vanishes. 

Thus, the dimensionless form of local entropy generation rate can be obtained in using the system of the dimensionless variables defined in (7). 

𝚪𝐧,𝛉 =  
𝝏𝜽

𝝏𝒚
 

𝟐

, 𝚪𝐧,𝐮 = 𝜹𝟏  
𝝏𝒖

𝝏𝒚
 

𝟐

, 𝚪𝐧,𝛟 = 𝜹𝟐  
𝝏𝝓

𝝏𝒚
 

𝟐

, 𝚪𝐧,𝛕 = 𝜹𝟑  
𝝏𝜽

𝝏𝒚
  

𝝏𝝓

𝝏𝒚
        (𝟏𝟕) 

Dimensionless terms denoted 𝜹𝒊,  𝟏 ≤ 𝒊 ≤ 𝟑 , and called irreversibility distribution ratios, are given by: 

𝜹𝟏 =
𝒖𝒘

𝟐 𝑻𝟎𝝁

𝒌
 

𝑬𝒂

𝑹𝒈𝑻∞
𝟐

 

𝟐

, 𝜹𝟐 =
𝑹𝑫𝑻𝟎

𝟐

𝒌𝑪𝟎

 
𝑬𝒂𝚫𝑪

𝑹𝒈𝑻∞
𝟐

 

𝟐

, 𝜹𝟑 =
𝑻𝟎𝑹𝑫

𝒌

𝑬𝒂𝚫𝑪

𝑹𝒈𝑻∞
𝟐

           (𝟏𝟖) 

The dimensionless total entropy generation is the integral over the system volume of the dimensionless local entropy generation. In our case here total 

entropy is given by summation of all local entropy stated as 

𝑬𝑮 =  
𝝏𝜽

𝝏𝒚
 

𝟐

   
𝐓𝐡𝐞𝐫𝐦𝐚𝐥 𝐢𝐫𝐫𝐞𝐯𝐞𝐫𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐲

+ 𝜹𝟏  
𝝏𝒖

𝝏𝒚
 

𝟐

       
𝐕𝐢𝐬𝐜𝐨𝐮𝐬 𝐢𝐫𝐫𝐞𝐯𝐞𝐫𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐲

+ 𝜹𝟐  
𝝏𝝓

𝝏𝒚
 

𝟐

+ 𝜹𝟑  
𝝏𝜽

𝝏𝒚
  

𝝏𝝓

𝝏𝒚
 

                 
𝐃𝐢𝐟𝐟𝐮𝐬𝐢𝐯𝐞 𝐢𝐫𝐫𝐞𝐯𝐞𝐫𝐬𝐢𝐛𝐢𝐥𝐢𝐭𝐲

   (𝟏𝟗) 

The set of the dimensionless equations (8, 9 and 13), show that the problem is governed by the thermal and mass Grashof number Hartmann number, 

𝜷, 𝜹, 𝝀. 

4. Method of solution 

Now, we consider the dimensionless equations (8), (9) and (13) with the boundary conditions (14).  Using the asymptotic expansions defined about 

activation energy parameter 𝜖, as  

 
𝑢 ≅ 𝑢0 + 𝜖𝑢1

𝜃 ≅ 𝜃0 + 𝜖𝜃1

𝜙 ≅ 𝜙0 + 𝜖𝜙1

                                                                                                                                            (20) 

The solutions approximated by (20) are obtained using method of undetermined coefficient and the result for zero order 𝜖0 are: 

 

𝑑2

𝑑𝑦2
𝑢0 𝑦 + 𝑣0

𝑑

𝑑𝑦
𝑢0 𝑦 +  𝐺𝑟𝑐𝜙0 𝑦 + 𝐺𝑟𝑡𝜃0 𝑦 − 𝐻𝑎𝑢0 𝑦 = 0,

𝑑2

𝑑𝑦2
𝜃0 𝑦 + 𝑃𝑟𝑣0

𝑑

𝑑𝑦
𝜃0 𝑦 + 𝑃𝑟𝜷𝜃0 𝑦 = 0,

𝑑2

𝑑𝑦2
𝜙0 𝑦 + 𝑆𝑐𝑣0

𝑑

𝑑𝑦
𝜙0 𝑦 = 0.

 
  
 

  
 

                                                                                          (21) 
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𝑢0 = 𝐿0

𝜕𝑢0

𝜕𝑦
,
𝜕𝜃0

𝜕𝑦
= 𝐵𝑖 𝜃0 − 1 ,

𝜕𝜙0

𝜕𝑦
+ 𝑆𝑟 

𝜕𝜃0

𝜕𝑦
= 0, 𝑢0 → 𝐴, 𝜃0 → 0, 𝜙0 → 0, as 𝑦 → ∞                                                                               22  

and for first order 𝜖1 

 

𝑑2

𝑑𝑦2
𝑢1 𝑦 + 𝑣0

𝑑

𝑑𝑦
𝑢1 𝑦 +  𝐺𝑟𝑐𝜙1 𝑦 + 𝐺𝑟𝑡𝜃1 𝑦 − 𝐻𝑎𝑢1 𝑦 = 0,

                      𝑃𝑟𝑣0

𝑑

𝑑𝑦
𝜃1 𝑦 + 𝑃𝑟𝜷𝜃1 𝑦 +

𝑑2

𝑑𝑦2
𝜃1 𝑦 + 𝐸𝑐  

𝑑

𝑑𝑦
𝑢0 𝑦  

2

= 0

𝑑2

𝑑𝑦2
𝜙1 𝑦 + 𝑆𝑐𝑣0

𝑑

𝑑𝑦
𝜙1 𝑦 + 𝜆𝜃0 𝑦 𝑟  1 + 𝜃0 𝑦 +

1

2
𝜃0 𝑦 2 𝜙0 𝑦 = 0.

 
 
 
 

 
 
 

                                                                                 (23) 

𝑢1 = 𝐿0

𝜕𝑢1

𝜕𝑦
,
𝜕𝜃1

𝜕𝑦
=  𝐵𝑖𝜃1,

𝜕𝜙1

𝜕𝑦
+ 𝑆𝑟

𝜕𝜃1

𝜕𝑦
= 0, 𝑢1 → 0, 𝜃1 → 0, 𝜙1 → 0,    as 𝑦 → ∞                                                                                  24  

The solutions approximated by equations (21) – (24) are obtained using method of undetermined coefficient and the result for zero order 𝜖0 are: 

 
𝜃0 𝑦 = 𝑎1𝑒

−𝑚𝑦

𝜙0 𝑦 = 𝑎2𝑒
−𝑣0𝑆𝑐𝑦 ,                                       

𝑢0 𝑦 = 𝑎3𝑒
−𝑚𝑦 + 𝑎4𝑒

−𝑣0𝑆𝑐𝑦 + 𝑎5𝑒
−𝑛𝑦

                                                                                                                                       (25) 

While the first order solutions are: 

𝜙0 𝑦 < 0 destructive chemical reaction 

 

𝜃1 𝑦 = 𝑎6𝑒
−𝑚𝑦 + 𝑎7𝑒

−2𝑚𝑦 + 𝑎8𝑒
−(𝑆𝑐𝑣0+𝑚)𝑦 + 𝑎9𝑒

−(𝑛+𝑚)𝑦

+ 𝑎10 + 𝑎12 𝑒−2𝑆𝑐𝑣0𝑦 + 𝑎11𝑒− 𝑆𝑐𝑣0+𝑛 𝑦

𝜙1 𝑦 = 𝑎14𝑒− 𝑣0𝑆𝑐+𝑚 𝑟+2  𝑦 + 𝑎15𝑒− 𝑣0𝑆𝑐+𝑚 𝑟+1  𝑦 + 𝑎16𝑒− 𝑣0𝑆𝑐+𝑚𝑟  𝑦

+𝑎17𝑒−𝑣0𝑆𝑐𝑦

𝑢1 𝑦 = 𝑎18𝑒−𝑛𝑦 + 𝑎19𝑒
−𝑚𝑦 + 𝑎20𝑒−2𝑚𝑦 + 𝑎21𝑒− 𝑆𝑐𝑣0+𝑚 𝑦 + 𝑎22𝑒− 𝑛+𝑚 𝑦

+𝑎23𝑒−2𝑣0𝑆𝑐𝑦 + 𝑎24𝑒− 𝑆𝑐𝑣0+𝑛 𝑦 + 𝑎26𝑒− 𝑆𝑐𝑣0+𝑚(𝑟+2) 𝑦

           +𝑎27𝑒− 𝑆𝑐𝑣0+𝑚(𝑟+1) 𝑦 + 𝑎28𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦 + 𝑎28𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦  
 
 
 
 

 
 
 
 

                                                                             (26) 

Solution for order of 𝜖𝑖 , 𝑖 ≥ 2 are negligible. 

Using equations (25) and (26) in equation (20), we have the solutions for velocity, temperature and species concentrations, respectively as  

𝑢 𝑦 ≅ 𝑎3𝑒
−𝑚𝑦 + 𝑎4𝑒

−𝑣0𝑆𝑐𝑦 + 𝑎5𝑒
−𝑛𝑦 + 𝜖 𝑎18𝑒−𝑛𝑦 + 𝑎19𝑒

−𝑚𝑦  

      +𝑎20𝑒−2𝑚𝑦 + 𝑎24𝑒− 𝑆𝑐𝑣0+𝑛 𝑦 + 𝑎21𝑒− 𝑆𝑐𝑣0+𝑚 𝑦 + 𝑎22𝑒− 𝑛+𝑚 𝑦

        +𝑎23𝑒−2𝑣0𝑆𝑐𝑦 + 𝑎26𝑒− 𝑆𝑐𝑣0+𝑚(𝑟+2) 𝑦 + 𝑎27𝑒− 𝑆𝑐𝑣0+𝑚(𝑟+1) 𝑦

+𝑎28𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦 + 𝑎28𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦

                                                                               (27) 

𝜙 𝑦 ≅ 𝑎2𝑒
−𝑣0𝑆𝑐𝑦 + 𝜖 𝑎14𝑒− 𝑣0𝑆𝑐+𝑚 𝑟+2  𝑦 + 𝑎15𝑒− 𝑣0𝑆𝑐+𝑚 𝑟+1  𝑦  

 +𝑎16𝑒− 𝑣0𝑆𝑐+𝑚𝑟  𝑦 + 𝑎17𝑒−𝑣0𝑆𝑐𝑦  
                                                                                                (28) 

𝜃 𝑦 ≅ 𝑎1𝑒
−𝑚𝑦 + 𝜖 𝑎6𝑒

−𝑚𝑦 + 𝑎7𝑒
−2𝑚𝑦 + 𝑎8𝑒

−(𝑆𝑐𝑣0+𝑚)𝑦 + 𝑎9𝑒
−(𝑛+𝑚)𝑦  

 + 𝑎10 + 𝑎12 𝑒−2𝑆𝑐𝑣0𝑦 + 𝑎11𝑒− 𝑆𝑐𝑣0+𝑛 𝑦 
                                                                                    (29) 

All parameters are as define in the appendix. 

Now using equations (27) – (29), the local entropy generation are 

Γn,θ =  𝑎1𝑚𝑒−𝑚𝑦 + 𝜖 𝑎6𝑚𝑒−𝑚𝑦 + 2𝑎7𝑚𝑒−2𝑚𝑦 + 𝑎8 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚   

+𝑎9 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 +  2 𝑎10 + 𝑎12  𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦

+𝑎11 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 ))2

 26  

Γn,u = 𝛿1 𝑎3𝑚𝑒−𝑚𝑦 + 𝑎4𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦 + 𝑎5𝑛𝑒−𝑛𝑦 + 𝜖 𝑎18𝑚𝑒−𝑚𝑦 + 𝑎19𝑚𝑒−𝑚𝑦   

+2𝑎20𝑚𝑒−2𝑚𝑦 + 𝑎21 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚 + 𝑎22 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 

+2𝑎23𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦 + 𝑎24 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 + 𝑎29𝑆𝑐𝑣0𝑒

−𝑆𝑐𝑣0𝑦

     +𝑎26 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2  + 𝑎28 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦

  +𝑎27 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1    
2

                                                                             (27) 

Γn,ϕ = 𝛿2 𝑎2𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦 + 𝜖 𝑎14 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2    

+𝑎15 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1  + 𝑎16 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦

  +𝑎17𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦  

2

 28  
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Γn,τ = 𝛿3 𝑎1𝑚𝑒−𝑚𝑦 + 𝜖 𝑎6𝑚𝑒−𝑚𝑦 + 2𝑎7𝑚𝑒−2𝑚𝑦 + 𝑎8 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚   

+𝑎9 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 +  2 𝑎10 + 𝑎12  𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦

+𝑎11 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 ) 𝑎2𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦 + 𝑎17𝑆𝑐𝑣0𝑒

−𝑆𝑐𝑣0𝑦

+𝜖 𝑎14 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2   

               +𝑎16 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦   +𝑎15 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1    

 29  

Using equations (26) - (29) in equation (19) we obtain an explicit total entropy generation is obtained as 

𝐸𝐺 =  𝑎1𝑚𝑒−𝑚𝑦 + 𝜖 𝑎6𝑚𝑒−𝑚𝑦 + 2𝑎7𝑚𝑒−2𝑚𝑦 + 𝑎8 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚   

+𝑎9 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 +  2 𝑎10 + 𝑎12  𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦

+𝑎11 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 ))2 + 𝛿1 𝑎3𝑚𝑒−𝑚𝑦 + 𝑎4𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦  

+𝑎5𝑛𝑒−𝑛𝑦 + 𝜖 𝑎18𝑚𝑒−𝑚𝑦 + 𝑎19𝑚𝑒−𝑚𝑦  + 2𝑎20𝑚𝑒−2𝑚𝑦

     +𝑎21 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚 + 𝑎22 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 + 2𝑎23𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦

+𝑎24 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 + 𝑎29𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦

    +𝑎26 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2  + 𝑎28 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦

  +𝑎27 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1    
2

+ 𝛿2 𝑎2𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦  

        +𝜖 𝑎14 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2   + 𝑎16 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦

+𝑎15 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1    +𝑎17𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦  

2

     +𝛿3 𝑎1𝑚𝑒−𝑚𝑦 + 𝜖 𝑎6𝑚𝑒−𝑚𝑦 + 2𝑎7𝑚𝑒−2𝑚𝑦 + 𝑎8 𝑆𝑐𝑣0 + 𝑚 𝑒−𝑦 𝑆𝑐𝑣0+𝑚   

+𝑎9 𝑛 + 𝑚 𝑒−𝑦 𝑛+𝑚 +  2 𝑎10 + 𝑎12  𝑆𝑐𝑣0𝑒
−2𝑆𝑐𝑣0𝑦

+𝑎11 𝑆𝑐𝑣0 + 𝑛 𝑒−𝑦 𝑆𝑐𝑣0+𝑛 ) 𝑎2𝑆𝑐𝑣0𝑒
−𝑆𝑐𝑣0𝑦 + 𝑎17𝑆𝑐𝑣0𝑒

−𝑆𝑐𝑣0𝑦

+𝜖 𝑎14 𝑆𝑐𝑣0 + 𝑚 𝑟 + 2  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+2   

      +𝑎16 𝑆𝑐𝑣0 + 𝑚𝑟 𝑒− 𝑆𝑐𝑣0+𝑚𝑟  𝑦   +𝑎15 𝑆𝑐𝑣0 + 𝑚 𝑟 + 1  𝑒−𝑦 𝑆𝑐𝑣0+𝑚 𝑟+1    
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where all parameters are as defined above! 

Equation (30) is the expression for total entropy generation in passive control MHD flow in the presence of Arrhenius chemical reaction with heat 

generation/absorption 

It is quite essential to calculate the significant input of each source of entropy production in a system, in view of this, the Bejan number describes the 

proportion of the entropy production by heat transfer to the total proportion as represented in eqn (47) or (48),  

𝐵𝑒 =
Γn,θ

𝐸𝐺

=
Γn,θ

Γn,θ + Γn,u + Γn,d

                                                                                                                                   (31) 

It is important to note that the entropy generation due to diffusion (Γn,d = Γn,ϕ + Γn,τ) is the sum of a pure term (Γn,ϕ) which involves concentration 

gradient only and a crossed term (Γn,τ) with both thermal and concentration gradients. Therefore, a coupling effect between thermal gradient and 

concentration gradient can be shown in the expression of the entropy generation, whereas this coupling effect was neglected in the energy and specie 

conservation equations (Soret and Dufour effects) and also in the mass diffusion flux equation (first Fick’s law). 

Results and discussions 

The local entropy generation rate is a function of concentration temperature and velocity gradients in the y directions in the entire calculation domain. 

The analytical simulations presented in this work has been conducted in order to study the effects of the thermal Grashof number, heat 

generation/absorption, chemical reaction parameter and the Hartmann number on entropy generation in steady state conditions.  

Figures 2 and 3 shows the effect of Lorentz force and heat generation on the entropy generation respectively. From the figures we observe that the 

Lorentz force in term of Hartman and heat generation decline the bulk entropy generation of the flow field with maximum entropy generation at the 

surface. Increasing the Hartman number by 2.5%, 37.5% and 1.8% consecutively result into 43.2%, 85.6% and 59.1% decrease in entropy generation 

respectively as shown in Figure 2 while increasing the heat generation by 3.33%, 6.5 % and 6.1% consecutively as shown in Figure 3 produces 78.5%, 

68.6% and 76.1% decrease in total entropy generation respectively. It was further discovered that Eckert number enhances entropy generation. From 

Figure 4, doubling the value of Eckert number from 0.05 to 0.10 increases the entropy generation from 17.92 to 68.47 corresponding 282.14% and from 

𝐸𝑐 = 0.2 to 𝐸𝑐 = 0.5 yielded 516.72% increment.  The impact of convective heat transfer on Entropy generation was displayed in Figure 5. It was 

discovered that increase in convective heat transfer result in increase in entropy generation. The velocity slip factor was seen to increase the entropy 

generation as seen in Figure 6. From this figure we could see that increasing the velocity slip factor from 0 to 0.5, 1.0 and 2.0 produces entropies 

197.09, 321.28, 476.80, 881.07 at the surface respectively. The chemical reaction parameter effect was displayed in Figure 7, where increase in 

generative chemical reaction was seen to increase the entropy generation and conversely destructive chemical reaction lowers the entropy generation.  

From Figures 8-12, we displayed the impact of Frank Kamnetski parameter (𝜖), mass (Grc) and thermal (Grt) buoyancy and Soret number respectively 

on  entropy generation. From the figures, it was discovered that an increase in each parameter resulted in increase in entropy generation of the flow 
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field. The impact of Prandtl number is displayed in Figures 12. As expected, as much heat is generated, the bulk available heat in the flow system 

decrease resulting into lowering of  entropy generation in the flow field. 

For small thermal Grashof number, there is practically little or no convection and the entropy generation due to fluid friction is zero, consequently the 

total entropy generation is reduced to the entropy generation due to heat transfer. At higher Grashof number heat transfer due to convection begins to 

play a significant role increasing the flow velocity and in turn the entropy generation due to the viscous effects. Also, the isotherms are deformed 

increasing the temperature gradient and consequently the entropy generation due to heat transfer.. 

 

 

Figure 2: entropy Generation distributionfor various values of 

Hartman numbers  

 

Figure 3: Entropy generation distribution for various values of 

heat generation/absorption 

 

Figure 4: entropy Generation distribution for various values of Eckert 

numbers. 

 

Figure 5: Entropy generation distribution for various values of 

Convective heat transfer 
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Figure 6: entropy Generation distribution for various values of 

velocity slip factor 

 

Figure7: Entropy generation distribution for various values of 

reactivity parameter 

Figure 8: entropy Generation distributionfor various values of ofFrank 

Kamnetskiparameter 

Figure 9: Entropy Generation distribution       for various values 

of mass buoyancy.  

 

Figure 10: entropy Generation distributionfor various values of of 

thermal buoyancy 
Figure 11: Entropy Generation distribution for various values of 

Soret number. 
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Figure12: Entropy Generation distribution for various values of Prandtl number 
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Table 2: Correlation between the entropy generated and Velocity, temperature and Concentration at Flow Surface  

 

𝑢(0) 𝜃(0) 𝜙(0) 

𝐻 0.96 - 0.89 

𝛽 0.98 -0.89 -0.87 

𝐸𝑐 0.98 0.97 -0.98 

𝜆 0.99 - 0.98 

𝐺𝑟𝑐 0.97 - -0.59 

𝐺𝑟𝑡 0.99 -0.97 -1.00 

𝐵𝑖 0.98 0.92 -0.93 

𝐿0 0.99 - - 

𝜖 0.98 - -0.94 

𝑆𝑟 0.98 - -0.99 

𝑃𝑟 0.89 0.82 0.82 

Table 3: Effect of governing parameters on surface values of Entropy, Velocity, Temperature and Concentration. 

 𝐸𝐺(0) 𝑢(0) 𝜃(0) 𝜙(0) 

𝐻 =0.39 45.60 13.91 0.20 1.09 

𝐻 =0.40 25.89 4.23 0.20 1.14 

𝐻 =0.55 3.73 1.04 0.20 -1.78 

𝐻 =0.56 1.52 0.40 0.20 -1.04 

𝛽 =0.30 267.82 13.91 0.10 -0.79 

𝛽 =0.31 57.47 6.38 0.12 -0.66 

𝛽 =0.32 18.01 3.51 0.13 -0.39 

𝛽 =0.35 4.31 1.65 0.15 -0.35 

𝐸𝑐 =0.05 17.92 3.50 0.20 -0.37 

𝐸𝑐 =0.10 68.48 6.97 0.24 -0.39 

𝐸𝑐 =0.20 267.82 13.91 0.28 -0.44 

𝐸𝑐 =0.50 1651.64 34.73 0.40 -0.58 

𝜆 =-20.0 20.94 13.85 0.20 -0.49 

𝜆 =-10.0 108.69 17.91 0.20 -0.40 

𝜆 =10.0 489.73 23.99 0.20 -0.31 

𝜆 =20.0 783.04 34.12 0.20 -0.22 

𝐺𝑟𝑐 =1.0 9.38 2.80 0.20 -0.35 

𝐺𝑟𝑐 =3.0 94.09 8.36 0.20 -0.35 

𝐺𝑟𝑐 =5.0 267.82 13.91 0.20 -0.37 

𝐺𝑟𝑐 =7.0 529.48 19.42 0.20 -0.36 

𝐺𝑟𝑡 =0.8 0.97 0.45 -0.36 -0.36 

𝐺𝑟𝑡 =1.0 1.79 0.78 -2.05 -0.64 

𝐺𝑟𝑡 =1.5 6.66 1.89 -4.87 -1.57 

𝐺𝑟𝑡 =2.0 18.78 3.44 -8.82 -5.35 

𝐵𝑖 =0.8 10528.3 87.50 0.50 -0.92 

𝐵𝑖 =0.4 2069.15 38.76 0.34 -0.60 

𝐵𝑖 =0.2 267.82 13.91 0.20 -0.35 

𝐵𝑖 =0.1 25.65 4.28 0.11 -0.19 

𝐿0 =0.0 197.09 10.98 0.20 -0.35 

𝐿0 =0.5 321.28 15.87 0.20 -0.35 

𝐿0 =1.0 476.80 20.78 0.20 -0.35 

𝐿0 =2.0 881.07 30.62 0.20 -0.35 

𝜖 =0.01 3.03 1.37 0.20 -0.34 

𝜖 =0.02 11.27 2.76 0.20 -0.36 

𝜖 =0.03 24.80 4.15 0.20 -0.37 

𝜖 =0.05 67.75 6.94 0.20 -0.39 

𝑆𝑟 =0.5 15.06 3.49 0.20 -0.09 
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𝑆𝑟 =1.0 64.52 6.97 0.20 -0.17 

𝑆𝑟 =2.0 267.82 13.91 0.20 -0.35 

𝑆𝑟 =4.0 1079.53 27.50 0.20 -0.76 

𝑃𝑟 =0.01 2.81 0.40 0.46 -0.24 

𝑃𝑟 =0.03 0.42 0.17 0.33 -0.29 

𝑃𝑟 =0.71 0.11 -0.11 0.07 -0.39 

𝑃𝑟 =2.36 0.19 -0.11 0.03 -0.41 

6.Concluding remark  

From the solutions obtained, we deduced the following: That 

 Lorentz force in term of Hartman and heat generation decline the bulk entropy generation of the flow field  

 maximum entropy generation occur at the surface of the flow.  

 increasing the heat generation by decrease total entropy generation  

 Eckert number enhances entropy generation.  

 increase in convective heat transfer result in increase in entropy generation.  

 increase in generative chemical reaction increase the entropy generation and conversely destructive chemical reaction lowers the entropy 

generation.  

 Frank Kamnetski parameter (𝜖), mass (Grc) and thermal (Grt) buoyancy and Soret number bring about enhancement in entropy generation 

of the flow field.  
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Appendix 

𝑚 =
1

2
 𝑃𝑟𝑣0 +  𝑃𝑟2𝑣0

2 −  4𝑃𝑟𝛽 , 𝑛 =
1

2
 𝑣0 +  𝑣0

2 +  4𝐻  

𝑏2 =
𝜆

𝑚 𝑟 +  1  𝑆𝑐𝑣0 −  𝑚𝑟 −  𝑚 
, 𝑏3 =

𝜆

2 𝑟 +  2 𝑚 𝑆𝑐𝑣0 −  𝑚𝑟 −  2𝑚 
 

𝑏4 =
𝜆

𝑟𝑚 𝑆𝑐𝑣0 −  𝑚𝑟 
, 𝑏4 =

1

𝑆𝑐𝑣0

, 𝑎0 =  1 − 𝑎1 − 𝑎2 

𝑎2 =
𝐺𝑟𝑐

 −𝑆𝑐2 +  𝑆𝑐 𝑣0
2 +  𝐻

, 𝑎1 =
𝐺𝑟𝑡

−𝑚2 +  𝑚𝑣0 +  𝐻
 

𝑎3 =  −
𝑏2 + 𝑏3 + 𝑏4

𝑏5

, 𝑎4 =
𝛿𝑎0

2𝑛2

−2𝑃𝑟𝑛𝑣0 +  𝑃𝑟𝛽 +  4
 

𝑎5 =   −𝑚2 +  𝑚𝑣0 +  𝐻  −𝑚2𝑟2 +  𝑚𝑟𝑣0 +  𝐻   −𝑆𝑐2 +  𝑆𝑐 𝑣0
2 +  𝐻 𝐺𝑟𝑐 − 𝑟 +  2 2𝑚2 + 𝑣0 𝑟 +  2 𝑚 +  𝐻 

𝑏2

𝑎11

 

𝑎6 =   − 𝑟 +  1 2𝑚2 + 𝑣0 𝑟 +  1 𝑚 +  𝐻  −𝑚2 +  𝑚𝑣0 +  𝐻  −𝑚2𝑟2 +  𝑚𝑟𝑣0 +  𝐻   −𝑆𝑐2 +  𝑆𝑐 𝑣0
2 +  𝐻 𝑏3

𝐺𝑟𝑐

𝑎11

 

𝑎7 =
𝑏4𝐺𝑟𝑐

𝑎11

 − 𝑟 +  2 2𝑚2 + 𝑣0 𝑟 +  2 𝑚 +  𝐻  − 𝑟 +  1 2𝑚2 + 𝑣0 𝑟 +  1 𝑚 +  𝐻  −𝑚2 +  𝑚𝑣0 +  𝐻   −𝑆𝑐2 +  𝑆𝑐 𝑣0
2 +  𝐻  

𝑎8 =
𝑎3

𝑎11

 − 𝑟 +  2 2𝑚2 + 𝑣0 𝑟 +  2 𝑚 +  𝐻  − 𝑟 +  1 2𝑚2 + 𝑣0 𝑟 +  1 𝑚 +  𝐻  −𝑚2𝑟2 +  𝑚𝑟𝑣0 +  𝐻  −𝑚2 +  𝑚𝑣0 +  𝐻 𝑏5𝐺𝑟𝑐 

𝑎9 =
𝐺𝑟𝑡𝑎4

𝑎11

 − 𝑟 +  1 2𝑚2 +  𝑣0 𝑟 +  1 𝑚 +  𝐻   −𝑆𝑐2 +  𝑆𝑐 𝑣0
2 +  𝐻  −𝑚2𝑟2 +  𝑚 𝑟𝑣0 +  𝐻  − 𝑟 +  2 2𝑚2 +  𝑣0 𝑟 + 2 𝑚 +  𝐻  

𝑎10 =
𝑚2 −  𝑚𝑣0 −  𝐻

𝐻
, 𝑎12 =  −𝑎5 − 𝑎6 − 𝑎7 − 𝑎8 − 𝑎9 1 +  𝑎10  

𝑎11 =   𝑛 +  −𝑟 −  2 𝑚  𝑛 −  𝑚  𝑚𝑟 +  𝑛 − 𝑣0  𝑛 +  𝑚 𝑟 +  1 − 𝑣0  −𝑆𝑐𝑣0 +  𝑛  𝑛 −  𝑣0  +  𝑚  𝑛 +  𝑟 +  2 𝑚 − 𝑣0  −𝑚𝑟 +  𝑛  𝑛 
+  −𝑟 −  1 𝑚 𝑣0 𝑆𝑐 −  1  
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