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ABSTRACT 

The data used for this study was 400-level students' grade scores from the 2018/2019 session of the Department of Statistics at Ahmadu Bello University. It consists 

of 50 students’ results in six courses of two sets (applied and theoretical courses): Applied courses consist of Regression analysis, Demography, and Econometrics; 

while Theoretical courses consist of Multivariate analysis, stochastic processes, and Statistical inference. The data was structured and analyzed using NCSS 2018 

version. The aim of this research is to evaluate the students’ academic performance by studying the relationship between applied and theoretical courses and to find 

out the significant contribution among the variables. The methodologies used were canonical correlation analysis to analyze the relationship between applied and 

theoretical courses, and factor analysis to investigate the variability among the courses and find out the variables that contribute significantly to the percentage of 

variance obtained. Wilk’s Lambda and Bartlett’s tests were obtained to respectively test the significance of canonical variate and the homogeneity of variance 

among the variables. The results indicated that there are fairly positive correlations among some variables as shown by the correlation matrix. It was further revealed 

that less-mathematical courses (applied courses) have a significant impact on determining students’ academic performance. Two canonical roots were obtained and 

one is statistically significant showing a strong correlation between the two sets. 

Keywords: correlation, factor analysis, loading factor, Academic performance, Wilk’s Lambda, Bartlett’s test, Applied courses and theoretical courses. 

1.0 Introduction 

However, as a measure of academic performance, teacher-given grades have well-known limitations. Grades are composite measures that account not 

only for students’ content mastery but often for other factors such as their class participation, attitudes, progress over time, and attendance (Blackorby, 

Wagner, Levine, Cameto, & Guzman, 2003). This study presents canonical correlation analysis on the type of relationship that may exist between 

theoretical courses and applied courses. Performance indicators are a means to focus on specific expectations of a program. They facilitate the curriculum 

delivery strategies and assessment procedures. There is an important first step that must come before the development of performance indicators, and that 

is deciding on student outcomes. These are usually communicated to students in the program description, and are stated in terms that inform the students 

about the general purpose of the program and the expectations of the faculty. The primary difference between student outcomes and performance 

indicators is that student outcomes are intended to provide general information about the focus of student learning and are broadly stated of the outcome, 

not measurable, while performance indicators are concrete measurable performances, students must meet as indicators of achievement. Performance 

indicators are developed from program outcomes. This research work aims to study the relationship between applied and theoretical courses using 

canonical correlation procedures. 

1.1 The concept of academic performance 

The very concept of academic failure varies in its definition. Bonaciet et.al (2010) is the measurement of student achievement across various academic 

subjects. Teachers and education official typically measure achievement using classroom performance, graduation rate and result from standardized test. 

A student does not attain the expected achievement according to his or her abilities, resulting in an altered personality which affects all other aspects of 

life. Similarly, Tapia (2002) noted that, while the current Educational System perceives that the student fails if he or she does not pass, a more appropriate 

way of determining academic failure is whether the student performs below his or her potential.  
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Wooten (1998) undertook a study of 271 students taking introductory accounting at a major South Eastern American University of which there were 74 

students equal to or older than 25 years of age identified as non-traditional, while 127 students were under 25 years of age identified as traditional. He 

found that, for the traditional cohort grade history, motivations and family responsibilities all influenced the amount of effort these students made. 

However, neither extracurricular activities nor work responsibilities influenced their effort. However, for the non-traditional students, motivation was the 

only variable that significantly influenced effort. Neither grade history nor extracurricular activities, work responsibilities, nor family responsibilities 

affected motivations. Family activities had a significant negative impact on effort for the traditional students, but not for the non-traditional students. It 

is conjectured by the authors of this paper that these age differences may also capture different socio-economic circumstances. 

Much research has been done on common predictive factors of academic performance in accounting courses, including gender, prior knowledge of 

accounting, academic aptitude, mathematical background, previous working experience, age, class size, lecturer attributes and student effort, as 

documented by Naser, K. and Peel, M. (1998) and Koh, M. Y. and Koh H.C. (1999). The findings are not definitive. 

Mc Kenzie and Schweitzer (2001) investigated academic, psychosocial, cognitive and demographic predictors of academic performance to improve 

interventions and support services for a student at risk of academic problems. They recommended implementing stringent record-keeping procedures at 

the university level to enable researchers to fully examine the relationship between age, previous academic performance and university achievement. 

Nonis and Hudson (2006) noted that the Higher Education Research Institute at the University of California Los Angeles UCLA’s Graduate School of 

Education found that since 1987, the time students spend studying outside of class has declined each year, with only 47% spending six or more hours per 

week studying outside of class compared with 34% in 2003. This corresponds with the findings of Gose (1998) who found an increase in the number of 

students employed with 39% of students working 16 or more hours per week in 1998 compared with 35% working in 1993. Nonis and Hudson (2006) 

identified a need for empirical research to determine the impact of student work on academic performance, and its impact on the design of academic 

programs. Their study found a lack of evidence for a direct relationship between times spent working and academic performance. 

2.0 Methodologies  

This section discusses the method of canonical correlation analysis which is the approach used in this research to determine the type of relationship that 

exists between the performance of students in Applied and Theoretical courses. 

2.1 Mathematical computation of canonical correlation analysis 

Anderson (1958) gave a detailed mathematical concept of canonical correlation analysis. Let 𝑋 be a q-dimensional random vector and 𝑌 be a p-

dimensional random vector. Suppose that 𝑋 and 𝑌 have mean 𝜇 and 𝑣 respectively and that 

𝐸[(𝑋 − 𝜇)(𝑋 − 𝜇)′] =  ∑𝑋𝑋                                                                        ( 3.1) 

𝐸[(𝑌 − 𝑣)(𝑌 − 𝑣)′] =  ∑𝑌𝑌                                                                          (3.2) 

𝐸[(𝑋 − 𝜇)(𝑌 − 𝑣)′] =  ∑𝑋𝑌                                                                          (3.3) 

Let us now consider the two linear combinations 

𝐺 =  𝑎′𝑋 = ∑𝑎𝑖𝑥𝑖

𝑛

𝑖=1

                                                                                         (3.4) 

and 

𝐹 =  𝑏′𝑌 = ∑𝑏𝑖𝑦𝑖

𝑛

𝑖=1

                                                                                           (3.5) 

Where 𝑎𝑖 and 𝑏𝑖 are the canonical weights to maximize the correlation between the canonical variates. 

The correlation between 𝑎 and 𝑏 is defined in (3.6) 

𝜌(𝑎, 𝑏) =
𝑎′∑𝑋𝑌𝑏

[(𝑎′∑𝑋𝑋𝑎)(𝑏′∑𝑌𝑌𝑏)]
1
2

                                                              (3.6) 

 

Our canonical variables are 

𝑔 = 𝑎0
′ ∑𝑋𝑋

−1/2
𝑋                                                                                               (3.7) 

and 

𝑓 =  𝑏0
′∑𝑌𝑌

−1/2
𝑌                                                                                               (3.8) 

which can be used to find the canonical correlation coefficient 𝑐𝑜𝑟𝑟(𝑔, 𝑓)), which is the measure of the association between 𝑔 and 𝑓. 

2.2 Method of computation of canonical coefficient 

Consider two sets of variables 𝑌 = 𝑌𝑛×𝑝 and 𝑋 = 𝑋𝑛×𝑞 where 𝑝 ≤ 𝑞. 

The construction of the linear combinations will be as defined above in 3.4 and 3.5 such that ᴦ𝑔𝑓 is a maximum. 

The XY matrix is: 

 

𝑋𝑌 = 

[
 
 
 
𝑋11

𝑋21

𝑋1𝑞  𝑌11

𝑋2𝑞  𝑌21
⋯

𝑌1𝑝

𝑌2𝑝

⋮ ⋮ ⋮
𝑋𝑛1 𝑋𝑛𝑞  𝑌𝑛1 ⋯ 𝑌𝑛𝑝]

 
 
 
                                                                                    (3.9) 
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Let R denotes the correlation matrix, then the partitioned correlation matrix R is given by: 

 

𝑅 = [
𝑅𝑋𝑋 𝑅𝑋𝑌

𝑅𝑌𝑋 𝑅𝑌𝑌
]                                                                                                                (3.10) 

 

Where 𝑅𝑋𝑋 and 𝑅𝑌𝑌 are the correlation matrices within 𝑋 and 𝑌 respectively and 𝑅𝑌𝑋 = 𝑅𝑋𝑌
′  which is the correlation matrix between 𝑋 and 𝑌.  

To obtain the eigenvalues and their corresponding eigenvectors, it is required to form a symmetric matrix 𝑅
𝑋𝑋

−
1

2𝑅𝑋𝑌𝑅𝑌𝑌
−1𝑅𝑌𝑋𝑅

𝑋𝑋

−
1

2 . The eigenvalues and the 

corresponding eigenvectors of 𝑅
𝑋𝑋

−
1

2𝑅𝑋𝑌𝑅𝑌𝑌
−1𝑅𝑌𝑋𝑅

𝑋𝑋

−
1

2  give the canonical correlations and the canonical coefficients of the independent variable 𝑋, we use: 

𝑎1 =  𝑅
𝑋𝑋

−
1
2ℓ1                                                                            (3.11) 

Where ℓ1 is the corresponding eigenvector for the independent variable. 

To find the corresponding eigenvectors for 𝑌, we use: 

ℎ1 =
1

𝜆
𝑅

𝑌𝑌

−
1

2∑𝑌𝑋𝑎1                                                                                                                             (3.12) 

We can now obtain the canonical coefficients for the dependent variable Y, by applying (3.13) 

𝑏1 =
1

𝜆
∑𝑌𝑌

−1∑𝑌𝑋𝑎1                                                                                                             (3.13) 

3.0 Results and Discussion 

This section discusses data analyses and results as follows: 

 

 

Figure 1: Correlation matrix for the set-X and set-Y 

  

Figure 1 shows the relationship between the set of variables, X and Y using a Scatter plot. The fit line indicates the direction of the relationship and the 

results show that there is a positive relationship between the set of variables X and Y (i.e. both the set of variables are moving in the same direction). We 

also observed that there are some points close to the fitted line and some points far from the fitted line which indicates the strength of the relationship 

between the set of variables. 
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Figure 2: Score plots for canonical correlation 

Figure 2 shows the relationship between each pair of canonical variates. The correlation coefficient of the data in the first plot (Y1 versus X1) is the first 

canonical correlation coefficient; the second plot (Y2 versus X2) is the second canonical correlation coefficient and so on. The results show that there are 

relationships between their pairs. 

3.1 Correlation matrix for set of variables and significant of correlation 

Table 1: Correlation matrix for set X and set Y 

Variables 
Regression 

Analysis (X1) 

Demography 

(X2) 

Econometric 

(X3) 

Multivariate 

analysis (Y1) 

Stochastic 

processes (Y2) 

Statistical 

inference (Y3) 

Regression analysis (X1) 

Sig. value 

1.000 0.059 

0.685 

– 0.157 

0.280 

– 0.209 

0.149 

0.266 

0.044* 

– 0.082 

0.573 

Demography (X2) 

Sig. value 

 1.000 0.387 

0.006** 

0.269 

0.042* 

0.386 

0.006** 

– 0.059 

0.686 

Econometric (X3) 

Sig. value 

  1.000 0.215 

0.137 

0.096 

0.512 

– 0.078 

0.596 

Multivariate analysis (Y1) 

Sig. value 

   1.000 0.110 

0.451 

0.217 

0.134 

Stochastic processes (Y2) 

Sig. value 

    1.000 0.258 

0.046* 

Statistical inference (Y3) 

Sig. value 

     1.000 

**Correlation is significant at the 0.01 level (2-tailed) 

*Correlation is significant at the 0.05 level (2-tailed) 

Table 1 shows the correlation matrix between each pair of variables. The results showed that there is significant and fairly positive correlation between 

stochastic process and regression analysis with (r = 0.266, P-value = 0.044), there is significant and fairly positive correlation between demography and 
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econometrics with (r = 0.387, P-value = 0.006), there is significant and fairly positive correlation between demography and multivariate analysis with (r 

= 0.269, P-value = 0.042), there is significant and fairly positive correlation between demography and stochastic process with (r = 0.386, P-value = 0.006), 

there is significant and fairly positive correlation between stochastic process and statistical inference with (r = 0.258, P-value = 0.046). There is negative 

correlation between regression analysis and each of econometric (r = – 0.157, P-value = 0.280), multivariate analysis (r = – 0.209, P-value = 0.149) and 

statistical inference (r = – 0.082, P-value = 0.573); but the correlation is not significantly different from zero. There exist no significant difference from 

zero and positive correlation between econometric and each of multivariate analysis (r = 0.215, P-value = 0.137) and stochastic processes (r = 0.096, P-

value = 0.512); multivariate analysis and each of stochastic processes (r = 0.110, P-value = 0.451) and statistical inferences (r = 0.217, P-value = 0.134); 

and regression analysis and demography (r = 0.059, P-value = 0.685). 

3.2 Canonical correlations analysis 

An initial step in canonical correlation analysis is an inspection of the correlation matrix of the given data.  

Let S denotes the data such that  

S = {set X, set Y} 

Where: 

Set X = {Regression analysis, Demography and Econometrics}  

Set Y = {Multivariate analysis, Stochastic processes and Statistical inference} 

Table 2: Canonical correlation coefficient of set X and set Y 

Canonical Function Canonical Correlation 
Eigen 

value 

% of variance 

Explained 

First pair of canonical variate 

Second pair of canonical variate 

0.5423 

0.3485 

0.2941 

0.1214 

70.8 

29.2 

 

Table 2 shows the canonical correlation of the canonical variates and their corresponding eigenvalues. Now, consider the first canonical variate pair X1 

and Y1 with canonical correlation coefficient 𝑟1 = 0.5423, such that the proportion of variance common to the first pair of canonical variate is 𝑟1
2 = 0.2941 

showing about 70.8% of the proportion of variance captured by the first canonical variate. Similarly, 𝑟2 = 0.3485 is the canonical correlation coefficient 

between the second pair of the canonical variate, such that 𝑟2
2 = 0.1214, which indicates about 29.2% of the proportion of variance captured. 

The eigenvalues of the canonical variates can be tested by employing Wilk’s Lambda criterion to test for significance, Rencher (1998).   

Hypothesis: 𝐻0: ∑𝑋𝑌 = 0 against 𝐻1: ∑𝑋𝑌 ≠ 0 

Decision Rule: Reject 𝐻0, if P-value < 𝛼, at 𝛼 = 0.05. 

Table 3: Wilk’s Lambda test results 

Pairs N P Q DF1 DF2 P-value 

First 

Second 

50 

50 

3 

2 

3 

2 

9 

4 

107 

90 

0.0079 

0.1643 

 

In Table 3, P is the number of variables considered in a certain pair of canonical variate, Q is the number of variables considered in the opposite canonical 

variate and DF is the degree of freedom used at each level of canonical function. The result shows that only the first pair of canonical correlation tested 

is significant with P-value (0.0079) < 𝛼 (0.05), this implies that the null hypothesis is rejected. This is an indication that one out of the two canonical 

correlations is significantly different from zero. 

Table 4: Canonical loadings for set X and set Y 

Sets Courses r1 r2 

X 

Regression analysis 

Demography 

Econometrics 

0.4473 

0.8009 

0.1335 

– 0.8688 

0.3906 

0.2215 

Y 

Multivariate analysis 

Stochastic processes 

Statistical inference 

0.2751 

0.9352 

– 0.5497 

0.9859 

– 0.2888 

0.0116 

 

The canonical loadings in Table 4, provided information about the relative contribution of variables to each independent canonical relationship. The first 

pair of canonical variates can be written as follows: 
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𝑈1 = 0.4473 ∗ 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 +  0.8009 ∗ 𝐷𝑒𝑚𝑜𝑔𝑟𝑎𝑝ℎ𝑦 +  0.1335 ∗ 𝐸𝑐𝑜𝑛𝑜𝑚𝑒𝑡𝑟𝑖𝑐𝑠 

𝑉1 = 0.2751 ∗ 𝑀𝑢𝑙𝑡𝑖𝑣𝑎𝑟𝑖𝑎𝑡𝑒 𝑎𝑛𝑎𝑙𝑦𝑠𝑖𝑠 +  0.9352 ∗ 𝑆𝑡𝑜𝑐ℎ𝑎𝑠𝑡𝑖𝑐  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 − 0.5497 ∗ 𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑖𝑛𝑓𝑒𝑟𝑒𝑛𝑐𝑒 

The correlation ∅1 =  0.5423 between 𝑈1and 𝑉1is called the first canonical correlation coefficient. Of the individual variable, Demography loading is the 

highest with the value (0.8009) followed by Regression analysis (0.4473) and Econometrics (0.1335) loading for the ordering of the criterion variables.  

The values attached to each course are the correlation to their corresponding canonical variables and indicate the individual contribution to the canonical 

pair.  

Table 5: Canonical cross loading for set X and set Y 

Sets Courses r1 r2 

X 

Regression Analysis 

Demography 

Econometrics 

0.5083 

0.8957 

0.4139 

– 0.8538 

0.4001 

0.4604 

Y 

Multivariate Analysis 

Stochastic process 

Statistical inference 

0.2483 

0.8367 

– 0.2714 

0.9585 

– 0.1836 

0.1673 

 

Table 5 shows the canonical cross loading of the two canonical functions. In the first canonical function, we discovered that Demography has the highest 

correlations (0.8957) with independent canonical variate. While, the weak correlation came from set Y i.e. Multivariate analysis with 0.2483. 

The first canonical correlation explains the maximum relationship between the canonical variates while each successive canonical correlation is estimated 

to be orthogonal and yet explains the maximum relationship not accounted for by the previous canonical correlation. This reflects the high variance 

among these variables. By squaring the terms in the canonical loading, we find the percentage of the variance for each of the variables explained by 

function 1. 

3.3 Factor Analysis 

We wish to determine the hidden factors behind the variables to identify the natural groupings (factors that are highly correlated with each other and those 

that are weakly correlated with others). The correlations between the independent variables are in the range of – 0.781 to 0.501. Kaiser (1974) recommends 

accepting values greater than 0.5 which means the result for this research is accepted with the value of Keiser-Meyer-Olkin (KMO) to be 0.502. Bartlett’s 

test is highly significant (P-value < 0.01) and therefore, factor analysis is appropriate for this data, to see the variables that possess high variability 

contribution to the set of data 

Table 6: KMO statistics for sampling adequate and Bartlett’s test for homogeneity 

Tests DF Approx. Chi-Square P-values 

Keiser-Meyer-Olkin Measure of Sampling Adequate – – 0.502 

Bartlett’s Test of Sphericity 15 37.288 0.001 

Table 7: Total variance explained 

Components 
Initial Eigenvalues Extraction sum of squared loadings 

Total % of variance Cumulative % Total % of variance Cumulative % 

1 1.776 29.608 29.608 1.776 29.608 29.608 

2 1.374 22.893 52.501 1.374 22.893 52.501 

3 1.232 20.536 73.037 1.232 20.536 73.037 

4 0.659 10.990 84.027 0.659 10.990 84.027 

5 0.548 9.132 93.159 0.548 9.132 93.159 

6 0.410 6.841 100.000    

Table 7 lists the eigenvalues associated with each linear component (factor) before extraction, after extraction and after rotation. Before extraction, it has 

identified six (6) linear components within the data set. The eigenvalues associated with each factor represent the variance explained by the particular 

linear component and also displays their eigenvalues in term of the percentage of variance explained (so, factor 1 explains 29.608% of total variance). 

Principle Component Analysis (PCA) extracts all factors with eigenvalues greater than 0.5. In this study, we used the common decision in which we 

retain only the factor with about 93.159% of variance explained. Therefore, from the extraction sum of squared loading column, we observed that five 

factors are retained together with their percentage of variance explained by each factor. The cumulative variance given as well shows that the first five 

factors accounted for 93.159% of the total variance in the data. A factor’s eigenvalue may be computed as the sum of its squared factor loadings for the 

entire variable (Rencher, 2002).  

Table 8: Communalities extracted by each variable 

Variables Initial Extraction 

Regression analysis 1.000 0.984 
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Demography 

Econometrics 

Multivariate analysis 

Stochastic processes 

Statistical inference 

1.000 

1.000 

1.000 

1.000 

1.000 

0.853 

0.995 

0.982 

0.851 

0.924 

Table 8 shows the communalities which measure the percentage of variance explained by all the components. That is, communality is the squared multiple 

correlations for the variable using the components as predictors. Communalities for variables are the sum of squared components loadings for that variable 

(row) and are the per cent of variance due to the variable explained by all the components. For full orthogonal factor analysis, the communality will be 

1.0 and all the variance in the variable will be explained by all the factors, with their number equal to that of the variables and is written under initial. 

Extraction communalities are estimates of the variance in each variable accounted for by the components. From Table 8, it can be seen that all the courses 

are well represented because all variables extracted are high. If any communality is very low in the extraction of a principal component, you may need to 

extract another component. 

Conclusion 

Canonical correlation analysis was employed in this study to measure the strength of the relationship of the canonical pairs and to identify the courses 

that contributed strongly. The canonical correlation analysis generated three correlation coefficients, which were tested and found one of the correlations 

statistically different from zero. A set of weights for each of theoretical and applied courses were determined so that the linear combination of each set is 

maximally correlated and explained the nature of whatever relationship exists between the two variable sets. It was revealed in Table 2 that the measure 

of correlation of the first pair is 0.2941 with a variability proportion of about 70.8%, whereas, the second pair had 0.1214 as its measure of the correlation 

with the variability proportion of about 29.2%. Hence, the total variability captured by the two canonical pairs is 100%. The 70.8% variability is due to 

the individual contribution of the composites of demography, regression analysis, econometrics, multivariate analysis, stochastic processes and statistical 

inference. 

Factor analysis was also applied and showed four groups of closely inter-related courses based on the fact that four factors were used which indicates 

variable reduction. The strongest inter-related courses are found in the beginning column and decrease through the last column. 

Therefore, we conclude that the student’s performance in the applied courses has influence on their performance in the theoretical courses. It was clearly 

shown that set-X and set-Y are were directly related, that is, an increase in performance of students in theoretical courses resulted to an increase in 

performance of students in applied courses. 
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