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ABSTRACT- 

Modern computer systems and fast evoluation of information technology, traditional healthcare is moving towards a more eletronic world. The fundamental 

challenge of learning a classification model for risk forecast lies within the unlabeled knowledge that establishes the bulk of the collected dataset.. There’s no 

ground truth for discriminating their states of health. Significantly, the unlabeled knowledge describes the contributors in health investigations whose health 

conditions will vary greatly from healthy to very-ill.. A graph based, semi-supervised learning algorithm called SHG-health (Semi-Supervised Heterogeneous Graph 

on Health)for risk predictions to classify a progressively developing situation with the majority of the data unlabeled. Extensive experiments based on both real 

health examination datasets and synthetic datasets are performed to show the effectiveness and efficiency of our method. 

Index Terms- Health examination records, semi-supervised learning, heterogeneous graph extraction 

1. INTRODUCTION  

Data mining refers to extracting or mining knowledge from large amounts of data. The term is actually a misnomer. Remember that the mining of gold 

from rocks or sand is referred to as gold mining rather than rock or sand mining Thus, data mining should  have been more appropriately named 

“knowledge mining from data,” Which is unfortunately somewhat long,” knowledge mining,” a shorter term, may not reflect the emphasis on mining 

from large amounts of data. 

Never the less, mining is a vivid term characterizing the process that finds a small set of precious nuggets from a great deal of raw material. Thus, such a 

misnomer that carries both “data” and “mining” became a popular choice. Many other terms carry a similar or slightly different meaning to data mining, 

such as a knowledge mining from data, knowledge extraction, data/pattern analysis, data archaeology, and data dredging. Many people treat data mining 

as a synonym from another popularly used term health mining 

Large amounts of electronic health records(HER) collected over the years have provided a rich base for risk analysis and prediction. An HER contains 

digitally stored healthcare information about an individual, such as observations, laboratory test, diagnostic reports, medications, procedures, patient 

indentifying infromation and allergies. A special type of HER is the Health Examination Records(HER)from annual general health check-ups. Since 

clinical care often has a specific problem in mind, at a point in time, only a limited and often small set of measures considered necessary are collected 

and stored in person’s EHR. Identifying participants at risk based on their current and past HER’S is important for early waring and preventive 

intervention. By risk we mean unwanted outcomes such as mortality and morbidity. 

  There is no ground truth for differentiating their states of health we propose a graph-based, semi-supervised learning algorithm called SHG-Health 

(Semi-supervised Heterogeneous Graph on Health) for risk predictions to classify a progressively developing situation with the majority of the data 

unlabeled. An efficient iterative algorithm is designed and the proof of convergence is given. Extensive experiments based on both real health examination 

datasets and synthetic datasets are performed to show the effectiveness and efficiency of our method. 

Most existing classification methods on healthcare data do not consider the issue of unlabeled data. In this study we formulated the task of risk prediction 

as a multi-class classification problem using the Cause of Death (COD) information as labels, regarding the health-related death as the “highest risk”.  

A participant may have a sequence of irregularly time stamped longitudinal records, each of which is likely to be sparse in terms of abnormal results, and 

test items are naturally in categories, each conveying different semantics and possibly contributing differently in risk identification. 

1. The existing classification methods on health data do not consider the issue of unlabeled data.  

2. They either have expert-defined low risk or control classes or simply treat non-positive cases as negative. 

3. Methods that consider unlabeled data are generally based on Semi-Supervised Learning (SSL) that learns from both labeled and unlabeled 

data.  

Amongst these SSL methods, only handle large and genuinely unlabeled health data. 
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Fig.1: An example of health examination records of participant p1 who took examinations in three non-consecutive years, 2005, 2007, and 2010. Test 

items are in different categories (A,B,...) and the abnormal results are marked black. The main cause of death of p1 was cirrhosis of liver encoded as 

K746. 

It present the SHG-Health algorithm to handle a challenging multi-class classification problem with substantial unlabeled cases which may or may not 

belongs to the known classes. This work pioneers in risk prediction based on health examination records in the presence of large unlabeled data. A novel 

graph extraction mechanism is introduced for handling heterogeneity found in longitudinal SHG Health that combines the advantages health examination 

records. The proposed graph-based semi-supervised learning algorithm. 

Health examination records are represented as a graph that associates all relevant cases together. 

1. Multi-typed relationships of data items can be captured and naturally mapped into a heterogeneous graph. 

2. Features can be weighted in their own type through a label propagation process on a heterogeneous graph. 

2. SHG-HEALTH: 

To solve the problem of health risk prediction based on health examination records with heterogeneity and large unlabeled data issues, we present a semi-

supervised heterogeneous graph-based algorithm called SHG-Health. The semi-supervised learning problem is formulated as follows: Problem Definition 

1. Given a set of health examination records of n participants S = {s1,...,sl,sl+1,...,sn}, where si = {ri1,...,rini} is the set of ni records of participant i and 

rij is a tuple (xij,tij) such that xij∈ Rd is a d-dimensional vector for the observations at time tij, and a set of labels C = {1,...,c},thefirst l participants si (i 

≤ l) are labeled as yi∈ C and the remaining u = n−l participants sl+1,...,sl+u are unlabeled (l  u). The goal is to predict for unlabeled si(l <i ≤ n) a label 

yi∈ ̃  C = {1,...,c,c+1}where c+1 gives a mechanism to handle an additional class for unknown cases. An overview of our proposed solution to the problem 

is included .Our SHG-Health algorithm takes health examination data (GHE) and the linked cause of death (COD) labels described in as inputs. Its key 

components are a process of Heterogeneous Health Examination Record (HeteroHER) graph construction and a semi-supervised learning mechanism 

with label propagation for model training. Given the records of a participant pi as a query, SHG-Health predicts whether pi falls into any of the high-risk 

disease categories or “unknown” class whose instances do not share the key traits of the known instances belonging to a high-risk disease class. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 Proposed view of SHG Algorithm 
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Fig.3 Proposed System of SHG Health Algorithm 

2.1 HeteroHER  

Graph A graph representation allows us to model data that is sparse. To capture the heterogeneity naturally found in health examination items, we 

constructed a graph called HeteroHER consisting of multi-type nodes based on health examination records. Graph Construction The process of 

HeteroHER graph construction includes the following steps: 

Step 1. Binarization: As a preparatory step, all the record values are first discretized and converted into a 0/1 binary representation, which serves as a 

vector of indicators for the absence/presence of a discretized value. Specifically, real values, such as age, are first binned into fixed intervals (e.g., 5 years). 

Then, all the ordinal and categorical values are converted into binary representations.  

Step 2. Node Insertion: Every element in the binary representation obtained in Step 1 with a value “1” is modeled as a node in our HeteroHER graph, 

except that only the abnormal results are modeled for examination items (both physical and mental). This setting is primarily based on the observation 

that physicians make clinical judgements generally based on the reported symptoms and observed signs, and secondarily Sor the reduction of graph 

density.  

Step 3. Node Typing: Every node is typed according to the examination category that its original value belongs to, for example, the Physical tests (A), 

Mental tests (B), and Profile (C) in Fig. 1. In addition, a new type of nodes is introduced to represent individual records such as r11, r12, and r13 in the 

same figure. All the other non-Record type nodes that are linked to the Record type nodes can be seen as the attribute nodes of these Record type nodes. 

In other words, categories A, B, and C in Fig. 1 can be regarded as the attributes of the Record type at a schema level. This leads to a graph schema with 

a star shape as shown on the right which   is known as a star schema. Note that type scan often be hierarchically structured and thus choosing the 

granularity of node type may require domain knowledge or be done experimentally. 

Step 4. Link Insertion: Every attribute (non-Record) type node is linked to a Record type node representing the record that the observation was originally 

from. The weight of the links is calculated based on the assumption that the newer a record the more important it is in terms the graph on the left shows 

a HeteroHER graph extracted from the example in Fig. 1. For instance, there is a link between r11 (the first record of p1) and a3 (the third item of category 

A) if the result of a3 is abnormal in r11. The link is weighted using Eq. 1. The star-shaped schema on the right is a type-level schema of such a graph. of 

risk prediction. A simple function g(·) can be defined as:  

 

 

Wheretisthetimeofcurrentrecord, list he time window of interest, and s is the starting time of the time window. Other functions such as truncated Gaussian 

distribution and Chi Squared distribution can also be used. The window length is the time period of records considered by the model. Note that the 

window length only sets the scope. It is the link weighting function that controls the contribution of time t records to the model. The two should be 

considered together according to domain knowledge and/or experimentally.  

We include as an example based on the records of participant p1 in Fig. 1 to illustrate the process. In this simplified example, we assume all the values 

of examination items are binary.     Different types of examination items are treated as different types of nodes on the graph. An abnormal result of the 

item of type Z in the jth record of the kth participant is represented as a link between nodes rkj and zi. For instance, there is a link between r11 and a3 in 

the left sub-figure , and the weight of the link is (2005 − 2005 + 1)/6 ∼ = 0.17 using Eq. (1) with a window width equal to 6 years. The output of the 

graph construction process is a heterogeneous graph represented as a set W of sparse matrices Wij for any two node types i,j that are linked to each other 

in the schema. 

2.1.1 Normalized Weights To strengthen the weights in the low density region and weaken the weights in the high density region, the weights Wij for 

i,j = 1,...,m are further normalized by the row sum and column sum as in : 

 

 

Where dij,pp = Wij,pq is the sum of row p in Wij and Dij is an ni-by-ni diagonal matrix with the (p,p) element as dij,pp. 
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2.2 Semi-supervised Learning on HeteroHER Graph The second component of our method is a semi-supervised learning algorithm for the constructed 

HeteroHER graph 

 The algorithm combines the advantages  for class discovery and for handling heterogeneity to solve a specific problem induced by evidence-based risk 

prediction from health examination records. In this section, we first define an objective function for the learning problem and show its convexity, followed 

by an optimization procedure to solve the problem. Then we derive an efficient iterative algorithm and show its convergence. Finally, time complexity is 

discussed. 

2.1.2 Notations  

Let us start with definitions and notations for the following discussions. Assume there are c classes and there is one 

additional“unknown”classforthecasesthatarenotknown to belong to any of the c disease classes. In this work we attach label information of a participant 

to the Record type nodes representing their examination records. However, the modelis generalenoughtoinclude labelsfordifferenttypes ofnodes.DefineY 

= [Y1,...,Ym]T ∈{0,1}Pm ini×(c+1) such that Yi = [yi1,...,yini]T ∈{0,1}ni×(c+1) encodes the labels of type i nodes. Let y(k) ip be the kth element of 

vector yip. If xip, i.e., node p of type i, is labeled, y(k) ip = 1 if xip belongs to class k; otherwise y(k) ip = 0. If xip is unlabeled, y(c+1) ip = 1. By doing 

so, we set the initial labels of the unlabeled data to be the unknown class. However, we will show later that these initial labels for the unlabeled data have 

little influence on learning their labels. In addition, we designed the computed labels to be soft labels. Soft labels are especially desirable for medical 

applications because knowing to what degree of certainty a person is classified into is sometimes as important as knowing the class itself. Let F = 

[F1,...,Fm]T ∈RPmini×(c+1) be the computed soft labels of m node types such that Fip∈ Rc+1 is a vector indicating the degree of certainty that xip 

belongs to any of the c+1 classes. The class label of xip iscomputedas argmaxk≤(c+1)F(k) ip . Fi canbeinitialized uniformly amongst type i nodes for i = 

1,...,m. 

2.1.3 Objective Function  

We considered a regularized framework on a heterogeneous graph for our problem. Denote tr(·) as trace and denote k·kF as the Frobenius norm of matrix, 

i.e., kMk2 F = tr(MTM). The classification problem can be viewed as an optimization problem that minimizes an objective function J(F): 

 

 

 

 

where ˜ Wij is the normalized weights on the links between type i and j nodes as defined in Eq. (2), and F and Y are the same as defined in .The first term 

is the smoothness constraint based on the assumption that the computed labels between the connected nodes in the graph should be close. Let z = 

[z1,...,zm]T such that 0 ≤ zi≤ 1 be the weights for m node types. Then, γij is defined as between-type weight of type i and type j nodes as follows:  

 

 

 

where the weight is reduced to half for links between sametype nodes to avoid double counting in the summation. The second term is the fit ness constraint 

that penalizes when the computed F is different from labels Y. Let ˜ dij,pp = Wij,pq and ˜ Dij be an ni-by-ni diagonal matrix with the (p,p) element 

as ˜ dij,pp. Then ˜ dip in Eq. (3) is the degree of node p of type i, weighted by its connected node type, i.e.,  

 

On the other hand,µip> 0controls the trade off between the smoothness and fitness co nstraints for node p of type i. 

2.1.4 Convexity The strict convexity of Eq. (3) minimization is derived in this section. For clarity, we will discuss two terms in Eq. (3) separately. The 

first term of the objective function denoted as J1(F) can be derived as follows: 
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where ˜  is defined in the same way as in Eq. (2) and ˜ Dij and γij the same previous section. Suppose the total number of nodes n =Pm ini. Let ˜ L be a 

n-by-n block matrix. Let its (i,j) block ˜ Lij = ˜ Dij − ˜ Wij be a Laplacian matrix with normalized weights. Eq. (5) can be transformed to the following 

matrix expression: 

 

Where Iz is a block diagonal matrix with the elements of the diagonal of (i,i) block equal to zi, and H = Iz ˜ L. The second term of the objective function 

can be derived as follows: 

 

 

 

 

where the diagonal matrix ˜ Di = Pm j zj ˜ Dij and its (p,p) entry is ˜dip asdefinedearlierinUi isadiagonal matrix such that Ui,pp = µip. Combining Eq. (6) 

and Eq. (7), the objective function can be transformed into:  

 

where ˜ D is a block diagonal matrix with the diagonal of the (i,i) block equal to ˜ Di. 

It is easy to verify that ˜ L is positive semi-definite and likewise, H, U, ˜ D, U ˜ D and their traces. Therefore the objective function is strictly convex. 

4.2.4 Optimization Procedure The closed-form solution for minimizing Eq. (8) can be obtained by setting the partial derivative of J(F) with respect to F 

to zero: 

 

 

where we use the fact that H = Iz ˜ L is symmetrical and that ˜ D and U are diagonal. By multiplying ˜ D−1 on both sides of Eq. 9 and rearranging the 

equation, we have:  

 

By using the fact that U = I−Iα Iα = Iβ Iα , we have:  

 

 

 

 

where ˜ L = ˜ D− ˜ W as before, P = ˜D−1 ˜ W, and ˆ P = IαIzP. Note that the ∞−norm of IαIzP is lower than 1 given 0 ≤ ziαi< 1(i = 1,...,n). Hence the 

spectral radius of ˆ P is not greater than the∞−norm. So (I − ˆ P) is invertible. 

2.2 Iterative Solution  

An iterative algorithm is often more efficient than a closedform solution with matrix inverse. Here we describe an iterative solution for F and prove its 

convergence. The optimal Fi for type i nodes can be computed with the following update rule for i = 1,...,m: 

 

 

Where Pij = ˜ Di ˜ Wij, Iβi = I −Iαi, and zj is a type weight scalar as defined earlier in. Eq. (12) bears a label propagation interpretation. Each node 

iteratively spreads label information to its neighbors until a global stable state is achieved. Particularly, zjPij can be seen as the normalized links from 

type j nodes to type i nodes, scaled by the source type weight zj. Soft labels of type i nodes at (t + 1) are determined by two factor, , 1) the computed label 

scores of neighboring nodes at time t propagated via links, and 2) the initial labels for type i nodes.The diagonal matrix Iαi controls the trade-off between 

these two influences. It is important to note that Iαi provides a mechanism to learn an extra outlier class via an instance-level control over the trade-off. 

Specifically, αl and αu are introduced as parameters in the range of [0,1] that control the influence from the labeled data and unlabeled data respectively. 

The parameters αip (p = 1,...,ni) in Iαi are defined as αip = αl if xip is labeled, and αip = αu if otherwise. The larger αl and αu are, the less influence initial 

labels from Yhas. 
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Particularly, when αu is set to a value extremely close to 1, it means that the initial labels of the unlabeled data play almost no role in the learning so that 

the computed label for annul labeled case is basically determined by its connectivity in the graph. This mechanism allows the algorithm to learn an 

additional (c + 1) class for nodes that are less connected to the labeled nodes from high risk disease classes. The complete algorithm of SHG-Health, 

combining the graph construction and iterative solution, is summarized in Algorithm 1. 

2.2.1. Convergence  

The proof of the convergence of Eq. (12) is as follows: Let Iα, Iβ, zj and P = ˆ D−1 ˆ W be the same as defined earlier . The update rule Eq. (12) for type 

i = 1,...,m can be reorganized as: 

 

 

 

 

 

where ˆ Pi = IziIαiPi. It is equivalent to the following expression: 

 

 

It has been proved in that F∗ = lim t→∞ F(t) = (I − ˆ P)−1IβY , which is equivalent to the close-form solution expressed in Eq. (11) and hence our proof 

is completed. 

Time Complexity Analysis Now we analyze the computational time complexity of the iterative solution (Step 3-8 of Algorithm 1). Step 3 takes O(k|V|) 

time for initialization, where k is the number of classes (i.e., k = c + 1) and |V| is the number of nodes in the graph. At each iteration of Step 6, every link 

needs to be processed twice, once for the node at each end of the link. This is done for every class, and consequently takes O(k|E|) time, where |E|is the 

number of links. Also, another O(k|V|) time is needed for incorporating IβiYi. Therefore,thetotaltimefor each iteration is (k(|E|+|V|)), 

3. CONCLUSION 

Mining health examination data is challenging especially due to its heterogeneity,intrinsic noise, and particularly the large volume of unlabeled data. In 

this paper, we introduced an effective and efficient graph-based semi-supervised algorithm namely SHG-Health to meet these challenges.  

Firstly, health examination records are represented as a graph that associates all relevant cases together. This is especially useful for modeling abnormal 

results that are often sparse.  

Secondly, multi-typed relationships of data items can be captured and naturally mapped into a heterogeneous graph. Particularly, the health examination 

items are represented as different types of nodes on a graph, which enables our method to exploit the underlying heterogeneous sub graph structures of 

individual classes to achieve higher performance.  

Thirdly, features can be weighted in their own type through a label propagation process on a heterogeneous graph. These in-class weighted features then 

contribute to the effective classification in an iterative convergence process. 
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4. FUTURE ENHANCEMENT 

Our work shows a new way of predicting risks for participants based on their annual health examinations. Our future work will focus on the data fusion 

for the health examination records to be integrated with other types of datasets such as the hospital-based electronic health records and the participants 

living conditions (e.g.Diets and general exercises). By integrating data from multiple available information sources, more effective prediction may be 

achieved. 
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