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ABSTRACT 

Defect prediction results provide a list of source code artifacts that are prone to defects. Quality assurance teams can effectively 

devote more energy and allocate limited resources to defect-prone source code verification software products. A module that identifies defect 

prediction methods for frequent defects before the start of the testing phase. Measurement-based defect-prone modules improve software 

quality and reduce costs, leading to effective resource allocation. The previous method doesn't analyze the defect pattern, and it has less 

performance during software development. This work introduces a Pattern-based Modified Hidden Markova Fault Tree (PMHMFT) framework 

to extract the hidden fault analysis during cross-project validation. Evidential sequence feature selection method to random feature subset 

selection to estimate the fitness value. This feature selection method reduces the dimensionality of the features to improve the performance of 

the prediction model. Density-based clustering method to extract the interesting pattern from a large set of defect data based on defect density. 

The proposed Modified Hidden Markova Fault Tree algorithm constructs the defect fault tree to analyze the cross-project code defect. Using a 

Levy flight, optimize the method to search the fault classes efficiently compared to another method. The proposed PMHMFT to implement 

evaluate the performance using k-fold validation. Thus, the proposed work on software defect prediction achieves higher accuracy in true 

classification and prediction with less error rate. 

Keywords: Defect prediction, Pattern-based Modified Hidden Markova Fault Tree (PMHMFT), cross-project validation, Levy flight 

1. Introduction  

Software metrics and software defect datasets can train and develop a potential clustering model to enhance the process of software 

defect prediction. After training, the model is used for finding unknown defect modules in the selected dataset. The attributes involved in 

software defect prediction produce a great impact on the effectiveness of the process. During testing, the testing team is responsible for providing 

a guarantee on all defects have been rectified and fixed by the software developers during the system testing stage. On the other side, the end-

users will expect to predict defects in the software to select whether the software is robust and reasonable for release. Henceforth the capability to 

forecast how many defects are identified at the initial time of system testing could be an ideal way to overwhelm this issue.  Software Defect 

Prediction [SDP] plays a significant role in active research in software engineering. Software malfunction is an error, defect, malfunction, 

software malfunction or bug that can result in a false or unexpected result. The main risk factors related to not detecting software flaws in the 

early stages of software development are wasting time, quality, cost, energy and resources. These are flaws that can appear at various stages of 

software development. Growing up, software companies focus on software quality, especially in the early stages of software development. 

An example of this approach is incorporating functional information and process artifacts into the source code, such as information 

representing version control concepts behind the developer's functional changes. The integration of such source code artifacts and software 

processing artifacts in software engineering, such as automatically predicting where failures in source code may occur during software 
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processing, allows for more complex automated learning and rationalization. The proposed idea is that assistance should not be included in the 

sample of activities that do not improve the forecast software. Interestingly, the reduced feature set helps developers provide information about 

each block of code's functionality, which is still vulnerable to vulnerabilities to improve model description capabilities.  

SDP identifies defective modules and requires extensive testing. An error can lead to premature detection of an efficient allocation of 

resources, reducing the time and cost of developing software and high-quality software. Therefore, the SDP model plays an important role in 

understanding, evaluating, and improving software systems' quality. 

2. Related work  

Possible loss identification information of random forest algorithms, deficiencies due to aggregation, and accumulation may adversely 

affect the forecast model's performance [1]. According to Micro interaction metrics (MIM), although it is acknowledged that a developer's 

behavior may affect software quality, this widely used deficiency predictor does not take into account developer behavior [2]. Deficiency 

prognosis after minimizing the strong interactions' impact, we found that the research team had a lower impact than the indicator series [3]. 

However, the test is central in selecting the factor that dominates the forecasting system (especially the classifier) in influencing the forecasting 

performance, the classification method for detection [4].  

The deep belief network (DBN) learns to use itself, extracting token vector semantic features (file-level defect prediction models) and 

source abstract modifications (transition level defect prediction models) from the abstract syntax trees (AST) project [5]. The proposed structure's 

performance was verified using multivariate exponentially weighted moving average (MEWMA) using statistical multidimensional quality 

control [6]. Features subcommittee selection and feature ranking programs are closely related to these two feature subcommittee selections. The 

feature sequence system performance [7], CPTP (cross-project defect prediction), feature selection, capability analysis are involved. The Semi-

supervised transfer component analysis (SSTCA) explores class inequality learning's relevance under cross-item defect prediction [8]. 

Cross-project data distribution is typically different from the target volume to find the most closely related training data and the time-

to-project Within-project semi-supervised defect prediction (WSDP) [9]. The Clustering-based Multi-Version Classifier (CMVC) can repeatedly 

select the most appropriate and quietest version of the training data by assigning more weight than others [10]. The best first search algorithm 

always focuses on the continuous programs; no work has been considered for simultaneous program error prediction, which differs from program 

characteristics by successive programs [11]. Therefore, to minimize vulnerabilities, the software manager can focus on the transition rate from 

one project to another over time [12]. The chromosomal theory forms our understanding of inherited laws of various traits from humans and other 

organisms [13].   

To obtain a mathematical model, the defect prognosis model must be satisfied so that there are limitable conditions that can be 

demonstrated when using the defect prediction model [14]. Vector sequences and their labels (defective or non-defective) are used to generate 

project semantic information that the Long Short Term Memory (LSTM) can automatically learn and make defect predictions [15]. Intuitively, 

the main type is likely to be off-road vehicles because they participate in more activities or have more contact and dependency. However, there is 

nothing wrong with using K-nucleus decay analysis software [16]. Also, to suggest a large-scale deficiency prognosis solution for inexperienced 

software practitioners and novices [17]. Disabled diagnostic solutions can help disabled software practitioners and newcomers identify/work with 

defective documentation improve their coded analysis performance [18].  

The data imbalance problem helps make an integrated modeling method without changing the adaptive synthetic sampling 

(ADASYN) and random model. This classification is established based on attributes and classes, which reduce the dependency and variance 

association rules using multi boost to minimize classification errors [19]. Gated hierarchical long short-term memory networks (GH-LSTMs) are 

based on the development of defect prediction technology that exposes outdated software's inability to capture semantic information, and 

economic features are used to develop error prediction models [20]. Over the literature show, the cross-project verification and difficulty in 

predicting defect pattern are provided unnecessary result. The proposed method to handle the uncertainty in determining the similar patterns 

among the dataset using clustering. 

3. Implementation of the proposed method  

The proposed Pattern-based Modified Hidden Markova Fault Tree (PMHMFT) framework is adapted to provide higher performance 

classification. Features, when they operate individually, will give the best classification output while combining the attributes. As a cleaning 
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process, the dataset is normalized using the min-max process to convert the dataset values to lie under the range of 0 to 1. The dataset consists of 

a huge volume of data, so to overwhelm this problem, the Evidentialsequence feature selection is performed. TheRandom features, software error 

predictions are used to determine the similarity between the data set events. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1Proposed method block diagram 

The random features of each instance are clustered using density-based clustering. The resulting cluster set is used to generate useful 

and interesting patterns to classify whether the given instance is defect-free using MHMM. 

 

3.1 Evidential sequence feature selection 

All-new features support the distributing propositions to determine software defects. The "frame-of-discernment" scheme computes 

the system. All the mutual exclusive situation clarification are computed and represented by sign 𝜑. Significance is denoted as 1 for “defect”, 2 

for “no defect," and 3 for "Either defect or no defect," actually a sign of witlessness or “neither defect nor no defect” is a sign of the exceptional 

condition. To analyze the feature subset value of each parameter (p), Select the instance 𝐼𝑅 and find the related hits (𝑕) 

To read the dataset to analysis the value  

 For each i in sd do 

  Labeled for each class Sd 

   Neighbor value estimation 𝑒𝑛  = 
𝑠𝑑(𝑖)∈𝑛

𝑆𝑑

𝑆𝑑
𝑖=1  

  While n to 𝑒𝑛  

   𝜑max𝑛(𝑒𝑛) > 𝑆𝑑𝑖  

 End 

End  

𝑓𝑥(𝜑)   
𝑝 𝑥𝑖

λ  

1 − 𝑝  𝑐𝑙𝑎𝑠𝑠 𝑥𝑖
λ   

 𝑑𝑖𝑓𝑓 𝜎 𝑖 , 𝜇  𝑖  
𝑘

𝑖=1
 

𝐶≠𝑐𝑙𝑎𝑠𝑠 (𝐼𝑅)

 

 

The first check for the existence of outliers is performed in these two variables and their dependent variables. 

 

3.2 Density based clustering for pattern extraction 

Density-based clustering basically operates by associating related items contained in the sample space. The association is performed 

by maintaining maximum interclass similarity and minimum interclass similarity. However, the major downside of such an approach is that it is 

time-consuming in huge datasets. The basic idea of a density-based clustering algorithm is that it operates based on neighbor density points. A 

node is considered as a part of a cluster if it has a group of 𝑛𝑒𝑖𝑔𝑕𝑏𝑜𝑟𝑠 >=  𝑚𝑖𝑛𝑝𝑡𝑠 , satisfying the distance threshold defined by𝑚𝑎𝑥𝑡𝑕 . This 
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neighborhood-based analysis acts as the basis for identifying varied shaped clusters without providing the initial cluster count. To estimate each 

cross-code defect weightage 

𝑓 𝜑 =  𝑠𝑖𝑛 
𝑙𝑖+𝑐𝑜𝑠𝑡 𝑖

𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔  𝑡𝑖𝑚𝑒

𝑑
𝑖=0  𝑙   (1) 

Where the 𝑙𝑖  number of logic. 

Algorithm steps 

Input: preprocessed dataset (PD) 

Step 1: initialize the dataset and cluster classes(C), 𝑚𝑖𝑛𝑝𝑡𝑠  and number of cluster points (k). 

Step 2: where the cluster list is taken 𝐶1 , 𝐶2 , 𝐶3  𝑎𝑛𝑑 𝐶𝑛  

Step 3: mark the 𝑚𝑖𝑛𝑝𝑡𝑠  based on vector classes. 

 For each i from PD 

  Neighbor cluster class (𝑁𝐶𝑐) = fault class (𝑚𝑖𝑛𝑝𝑡𝑠 , 𝐶𝑖) 

  To estimate the fault weight based on above equation 

  If size of (Neighbor point  𝜑 <𝑚𝑖𝑛𝑝𝑡𝑠 ) 

   Mark the fault point 𝑚𝑖𝑛𝑝𝑡𝑠 (𝑖) 

  Else C= next cluster 

   Expand cluster (𝑚𝑖𝑛𝑝𝑡𝑠 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑜𝑖𝑛𝑡, 𝐶𝑖 , 𝑃𝐷(𝑖)) followed step 4. 

  End if 

 End for 

Step 4: Expand cluster 𝑚𝑖𝑛𝑝𝑡𝑠 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑝𝑜𝑖𝑛𝑡, 𝐶𝑖 , 𝑃𝐷(𝑖) 

  Add 𝑚𝑖𝑛𝑝𝑡𝑠  to cluster 𝐶𝑖  

 Repeat step 3 

 If the 𝑚𝑖𝑛𝑝𝑡𝑠 (𝑖)is not visited  

  Update the cluster value 

 If size of (Neighbor point  𝜑 >=𝑚𝑖𝑛𝑝𝑡𝑠 ) then 

  𝜑 = Neighbor cluster (fault value estimate) 

  Add 𝑚𝑖𝑛𝑝𝑡𝑠 current cluster 

  Return all object with the𝐶𝑖 . 

 End if  

Step 5: Until each fault class within 𝑚𝑖𝑛𝑝𝑡𝑠  in Neighbor Cluster 

It can also find clusters surrounded by a different cluster that is not connected to another cluster. 

 

3.3 Modified Hidden Markova Fault Tree  

MHMM statistical framework, a set of elementary probabilistic models of basic linguistic units (e.g., phonemes), is used to build 

speech representation. MHMM training algorithm creates a statistical representation model of the fault datasets. The proposed is designed to 

solve any problem that can be considered a sequence of defect states d1, d2, d3, dn. Markov process is a random model that describes the case's 

sequence, the possible conditions that depend on only the current fault state to a previous fault state. Our model will be useful in using fault trees 

to identify the cause of failures, repair rates and analyze defect prediction performance metrics. After construct, the fault tree applies the Lavy 

flight optimization model to predict the cross-code defect module. Lévy flight has a global exploration approach solution by tracking in large 

steps in the long run. It uses most of the optimization problems to look for the best new solution with Lévy flight efficiently. Levy flights select 

the random fault feature to evaluate the fitness value and generate the new solution. 
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Fig. 2 fault tree model 

The occurrence of an event on this node is represented by logic 1; otherwise, the node has a logical value of 0. The calculation set to 

the probability of n steps is used to evaluate the probability (𝑝𝑖𝑗 (n)) of positive steps.  

𝑝𝑖𝑗  𝑛 = 𝑝𝑖𝑗      (2) 

𝑝𝑖𝑗  𝑛 = Pr⁡(𝑋𝑛+𝑚 = 𝑘)|(𝑋𝑛 = 𝑖)  (3) 

To compute the transition probability for each chain  

𝑝𝑖𝑗  n = Pr⁡(𝑋𝑚 = 𝑘)|(𝑋𝑚−1 = 𝑖)  (4) 

Following equation 3 and 4 represent a transition probability if the state 𝑛 ≥ 1, and 0 state-transition probability fault tree, 

𝑝𝑖𝑗  0 = {0, 1}    (5) 

In this probability, the state is changed based on time. To assume the 𝑛𝑡𝑕  state 𝑋𝑛 = 𝑖 and the next state probability j following 

equation. 

𝑋𝑛 + 1 = 𝑗    (6) 

In this Markov chainmodel, to predict the fault class and validate time taken long iteration. To reduce the random selection and long-

run prediction shorten using a Monte Carlo. This method approximates the posterior distribution of sampling interest parameters in probability 

space to identify the user's corresponding policy value randomly.Levy flights estimate the fitness value using the following equation. The fitness 

value of 𝑓𝑖  is greater than the𝑓𝑗 . The objective function 𝑓(𝑥)is defined on the search space (S), 

𝑥𝑖 𝑓 = 𝑥𝑖 𝑓 + 𝛼⨂𝑙𝑒𝑣𝑦(𝑥, 𝜆)   (7) 

It has considered four post-placement metrics to select the fault class from the software module's solution space. 

4. Result and discussion 

The simulation analysis for validating this process uses the publicly available dataset from the NASA MSP repository. This 

experimental result uses k-fold cross-validation to determine the proposed work's performance by training and testing the given dataset. The 

dataset was trained, and test sets were split into different ratios like 70/30, 75/25, and 80/20 (A, B, and C). 

Table 1 proposed method simulation parameter 

Parameters Value 

Tool Visual studio 

Dataset name  NASA MSP repository  

Number of data 1000 

Fault tree 

Classes  

Failure state 1   Failure state 2 

Idle state 
Repair 

state 
Idle state 

Repair 

state 
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The implementation of the proposed Pattern-based Modified Hidden Markova Fault Tree (PMHMFT) method simulation is present in 

table 1. In this PMHMFT method compared to existing method Kernel Supervised Sub-Code Prediction (KSSP) method compare to existing 

method Support Conventional neural network (CNN), Defect prediction via an attention-based recurrent neural network (DP-ARNN), Random 

Forest (RF) and Improved Subclass Discriminant Analysis (ISDA) method. 

 

Table 2performance analysis and k-fold cross-validation 

No of fold precision recall f1-score Accuracy 

1 0.89 0.75 0.70 0.92 

2 0.82 0.75 0.78 0.91 

3 0.83 0.70 0.72 0.86 

4 0.79 0.75 0.80 0.92 

5 0.71 0.85 0.71 0.88 

6 0.78 0.70 0.73 0.88 

7 0.89 0.65 0.73 0.91 

8 0.85 0.85 0.85 0.89 

9 0.83 0.74 0.88 0.89 

10 0.82 0.78 0.80 0.91 

 

Our Proposed method evaluation result provides better precision, recall, f1-score and accuracy rate, as shown in table 2. This analysis 

of the proposed method provides better accuracy, f1-score, recall and precision results compare to another method. 

 

Fig.3 proposed method k fold validation performance analysis 

The k-fold validation for split the data into the different datasets to analyze the system performance. The proposed PMHMFT method 

has a 91% accuracy for 10-folds and 80% of f1-score, 78% of recall rate, and 82% Precision rate for 10-fold data validation. In this analysis, the 

result comparison is illustrated in fig. 4. 

Table 3 performance analysis comparison based Test sets  

Test sets F1-score recall Precision  Accuracy  

A 93.4 78.9 84.2 93.5 

B 92.0 79.3 81.9 90.1 

C 91.8 80.2 83.6 91.3 
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Table 3 presents a comparison of proposed PMHMFT method test sets software defect prediction performance of f1-score, recall, 

precision and accuracy. The result comparison shows the proposed PMHMFT method has a 91.3% accuracy for the C dataset and 83.6%precision 

rate, 91.8% of f1 score better result. 

 

Fig. 4 overall performance of the proposed and existing method 

 

The fig. 4 compares the proposed PMHMFT method test sets software defect prediction performance of f1-score, recall, precision and 

accuracy. The comparison result shows the overall average performance of the existing CNN, Random Forest, ISDA, KSSP method and proposed 

PMHMFT method. It provides a 91.8% average more accuracy compared to another existing method. 

 

Fig.5 Error rate analysis of proposed method 

 

The classification error rate comparison of the proposed PMHMFT method has a 6% of low error rate, and it is shown in the figure.  

In this error rate, the existing Random forest method has 14.5%, CCN has a 12.2%, ISDA has 10.8% and KSSP 9.2% higher error rate than the 

proposed PMHMFT method.  
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5. Conclusion 

The software's quality entirely depends on fault-free reliable software; therefore, there is a need to find the solution to overcome 

software defects. The importance of feature selection in software defect prediction when the dataset is very vague and imprecise to handle. 

Several faults that occurred can also be included in software defect prediction to understand the defect pattern more precisely and improve the 

measures accordingly. The proposed Pattern-based Modified Hidden Markova Fault Tree (PMHMFT) framework method analyzes the fault tree 

to predict the defect prediction. The Density-based clustering method to extract the fault pattern and estimate the fault wait to improve 

classification accuracy. The proposed PMHMFT successfully handles the class imbalance problem by giving a good performance compared to 

existing models. 
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