
International Journal of Research Publication and Reviews, Vol 3, no 6, pp 3614-3619, June 2022 

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

Binary Counters Based on Symmetric Stacking 

B.Venkatesu
1
, G.Navyasri

2
 , L.Pranathi

2
, P.Jyoshna

2
 , R.Pranavi

2 
 

1Working as Assistant Professor in Electronics and Communication Engineering Dept,2Pursing BTech in ECE Dept  
2Pursing BTech in ECE Dept ,Puttaparthi (M),(D) 

ABSTRACT: 

This project is to design binary counter using solely full adders and  after with new symmetric stacking method. Evaluating these two techniques and displaying 

how the symmetric stacking method is decreasing the EX-OR gate delays in the essential route of the binary counter. This kind of our proposed counter is very 

useful in the existing counter based totally Wallace tree multiplier design. With this new symmetry stacking counter we are lowering delay and Power 

Consumption.The  designing and simulating our proposed quick binary counter incorporated in  Xilinx ISE layout suite 14.5 
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 INTRODUTION: 

The present disclosure may be embodied as a counting method that uses bit stacking circuits followed by a method of combining two small stacks to 

form larger stacks. A 6:3 counter built using this method uses no XOR gates or multiplexers on its critical path. VLSI simulation results show that the 

presently-disclosed 6:3 counter is at least 30% faster than existing counter designs while also using less power. Simulations were also run on full 

multiplier circuits for various sizes. The same Counter Based Wallace (CBW) multiplier design was used for each simulation while the internal counter 

was varied. Use of the presently-disclosed counter improves multiplier efficiency for larger circuits, yielding 64- and 128-bit multipliers that are both 
faster and more  

 

 

Figure 1  A 7:3 counter and a 6:3 counter built from full and half adders 

efficient, at least by 25% and 40%, respectively, in terms of power-delay product (PDP). It outperforms the fastest in terms of latency and it consumes 
less power than the most efficient, meaning that the use of the presently-disclosed counter in a CBW multiplier yields a pure gain 

LITERATURE SURVEY 

1.C. S. Wallace, ―A suggestion for a fast multiplier,‖ IEEE Trans. Electron. Comput., vol. 

In this a design is developed for a multiplier which generates the product of two numbers using purely combinational logic,and it is found that the cost 

of the unit would be about 10 per cent of the cost of a modern large-scale computer. 
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2.S. Veeramachaneni, L.Avinash, M. Krishna, and M. B. Srinivas, ―Novelarchitectures for efficient (m, n) parallel counters,‖. 

In this paper, novel architectures and designs for high speed, low power (3, 2), (7, 3), (15, 4) and (31,5) counters capable of operating at ultra-low 

voltages are presented,based on these counters, a generalized architecture is derived for large (m, n) parallel counters,. The proposed counter designs 

have been compared with existing designs and are shown to achieve an improvement of about 45% in delay and a reduction of about 25% in power 

consumption. 

 

 3.S. Asif and Y―Design of an algorithmic Wallace multiplier using high speed counters,‖. 

 
Wallace tree multipliers provide a power-efficient strategy for highspeed multiplication. The use of high speed 7:3 counters in the Wallace tree 

reduction can further improve the multiplier speed. This paper presents an algorithmic approach to construct the counter based Wallace tree multipliers, 

The detailed comparison of traditional and counter based Wallace multipliers is performed which shows that the counter based Wallace multiplier is up 
to 22% faster as compared to the traditional Wallace multiplier. 

 

SYMMETRIC BIT STACKING: 

The present disclosure proposes a new paradigm for computer arithmetic designs called bit stacking. Exemplary circuits are presented that stack 3 bits, 

then 6 bits, and a discussion is provide to show how the principles used in those circuits can be used to build circuits that stack vectors of many more 

sizes. In the present disclosure, the focus will be on the use of these bit stacking circuits to design binary counters. Ultimately, these counters may used 
in, for example, large multiplier circuits to produce substantial savings in terms of latency and power consumption over the prior art counter designs. 

However, although these counter circuits based on bit stacking will achieve high performance and low power consumption, a large part of the delay and 

complexity comes from converting the bit stacks to binary counts. Thus, the present disclosure provides applications that do not require binary counts 
but can make use of the bit stacks directly. Such applications can achieve very large performance improvements using bit stacking.Bit stacking is an 

intuitive concept that can be visualized as pushing all of the ‗1‘ bits together. The length of the bit stack is exactly the number of ‗1‘ bits in X, which 
the present disclosure will define later as the Population Count of X. Determining the count from a stacked vector is much simpler than adding up the 

‗1‘ bits to determine the count. 

THREE BIT STACKING : 

In the exemplary 6-bit stacker, the primitive stacking circuit we will use is a 3-bit stacker. Given inputs X0, X1, and X2, a 3-bit stacker circuit will have 

three outputs Y0, Y1, and Y2 such that the number of ‗1‘ bits in the outputs is the same as the number of ‗1‘ bits in the inputs, but the ‗1‘ bits are 

grouped together to the left followed by the ‗0‘ bits. 

Given inputs X0, X1, and X2, a 3-bit stacker circuit will have three outputs Y0, Y1, and Y2 such that the number of ―1‖ bits in the outputs is the same 
as the number of ―1‖ bits in the inputs, but the ―1‖ bits are grouped together to the left followed by the ―0‖ bits. It is clear that the outputs are then 

formed by         Y0 = X0 + X1 + X2 

 (1) Y1 = X0X1 + X0X2 + X1X2  

 (2) Y2 = X0X1X2. 

 

Figure 2Three bit stacking circuit 

MERGING STACKS : 

The two smaller stacks may be merged into one large one.We wish to form a 6-bit stacking circuit using the 3-bit stacking circuits discussed. An 

example for this process is shown below 



International Journal of Research Publication and Reviews, Vol 3, no 6, pp 3614-3619, June 2022                             3616 

 

 

Figure 3Six bit stacking example 

The two smaller stacks may be merged into one large one. We wish to form a 6-bit stacking circuit using the 3-bit stacking circuits discussed. Given six 

inputs X0, . . . , X5, we first divide them into two groups of three bits which are stacked using 3-bit stacking circuits. Let X0, X1, and X2 be stacked into 

signals named H0, H1, and H2 and X3, X4, and X5 be stacked into I0, I1, and I2. First, we reverse the outputs of the first stacker and consider the six bits 
H2H1H0I0I1I2. See the top of FIG. 3 for an example of this process. We notice that within these six bits, there is a train of ‗1‘ bits surrounded by ‗0‘ bits. 

To form a proper stack, this train of ‗1‘ bits should start from the leftmost bit. 

In order to form the 6-bit stack output, two more 3-bit vectors of bits are formed called, J0J1,J2 and K0, K1, K2. The objective is to fill the J vector with 

ones before entering ones in the K vector. So we let: 

 

J0=H2+I0 (5) 

 

J1=H1+I1 (6) 

 
J2=H0+I2 (7) 

In this way, the first three ‗1‘ bits of the train fill into the J bits although they may not be properly stacked. Now to ensure no bits are counted twice, the 

K bits are formed using the same inputs but with AND gates instead: 

 

K0=H2I0 (8) 

 

K1=H1I1 (9) 

 

K2=H0I2 (10) 

In this way, the J bits will fill before the K bits. Focusing on the J vector, if one, two, or three of the input bits are set, we can see from Equations, 5, 6, 

and 7 that the same number of J bits will be set as none of the expressions have any overlap but together they cover all six bits from H and I. Now we 
consider the K bits. Note that Equations 8, 9, and 10 give the three possibilities when four input bits are set: either the left 3-bit stack was full and we 

had one ‗1‘ bit from the right 3-bit stack, or there were two ‗1‘s in each of the 3-bit stacks, or we had one ‗1‘ but from the left 3-bit stack and a full 

stack on the right. Because the inputs to the AND gates are spaced by three bits, and because H0, H1, H2I0,I1I2 contains a continuous train of ‗1‘ bits if 
more than three inputs are ‗1‘s, any extra bits will spill into the K vector. The entire symmetric bit stacking process for b=6 bits is illustrated 

CONVERTING BIT STACK TO BINARYNUMBER : 

We will now use the bit stacking method defined above for b=6 specifically and for general b above to create a 6:3 counter circuit. The 6:3 counter will 

have six binary inputs X0, . . . , X5 and produce three outputs C2, C1, and S such that the binary number C2 C1S is equal to Pc(X), the number of ‗1‘s in 

the input vector X. Clearly, the length of the ‗1‘ bits in the bit stack called Y shown above is the count of the number of ‗1‘ bits in X. Also, it is clear 
that we can identify the length of a bit stack by finding the point at which a ‗1‘ bit is adjacent to a ‗0‘ bit. Given a proper bit stack called S, we can 
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identify a stack of length l by checking 

 

Sl−1Sl (31) 

Furthermore, we can check that the length of the stack of ‗1‘ bits in the properly-stacked vector S is bounded by any lengths x and y such  

x≤l<y (32) 

by checking Sx-1Sy-1 (33) 

In order to convert S5:0 to a binary count, we need to identify which stack lengths result in each output bit being set. Table 1 shows the minterms which 

correspond to each case in which the output bits C2C1S should be set. 

TABLE 1 

6:3 COUNTERSIMULATION RESULTS : 

 

 

Figure 4 6:3 counter based on symmetric stacking 

Note that for the mux-based counter design we can take the propagation delay for a mux as 2TNAND which follows from the standard implementation of 

a mux and is also verified by simulation. 

 Because the presently-disclosed 6:3 counter based on bit stacking has no XOR gates on its critical path, it operates 30% faster and consumes at least 
20% less power than all other counter designs. Additionally, the presently-disclosed counter has less wiring complexity in that it uses fewer internal 

subnets than all other simulated designs. Thus, this method of counting via bit stacking allows construction of a counter for a substantial performance 

increase at a reduction in power consumption. 

TABLE 2 

7:3 COUNTERSIMULATION RESULTS : 
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Figure 5 7:3 counter using symmetric bit stacking 

The present symmetric stacking method can be used to create a 7:3 Counter as well. 7:3 Counters are desirable as they provide a higher compression 
ratio—the highest compression ratio for counters that output three bits. The design of the 7:3 Counter involves computing outputs for C1 and 

C2 assuming both the cases where X6 = 0 (which matches the 6:3 Counter) and assuming X6 = 1. We compute the S output by adding one additional 

XOR gate as this will again not be on the critical path. 

[0068] To compute C1 if X6 = 0, we use the same process as before in the 6:3 counter. If 

X6 = 1, then everything will shift up as shown in Table 4. The output will be '1' if we have at least one but less than three of X0, ..., X5 as a '1' or if ve of 

these inputs are '1'. This is because X6 will add one more to the count causing the same case as before. 

 

FULL MULTIPLIER SIMULATIONS : 

To demonstrate a use case of the proposed 6:3 counter, multiplier circuits of different sizes were constructed using different internal counters. No new 

multiplier design is proposed; rather, existing architectures are simulated with different internal counters. For reference, a standard Wallace tree was 

implemented for each size. Then, the counter-based Wallace tree was used from which achieves the fewest reduction phases. The internal 7:3 and 6:3 

counters used for this CBW multiplier were varied. The 5:3 and 4:3 counters were kept the same for each multiplier, using the counter designs from  

Standard CMOS implementations were used for the full and half adders. Because of the efficiency of the 6-bit version of the proposed counter, for 

simulations using the stacker-based counter, we use the 6-bit version with no 7:3 counters, even though this results in one additional reduction phase for 

each size. An example of a CBW multiplier reduction tree that uses up to 6:3 counters for 16-bit inputs 

 

 

Figure 6. Power and latency for CBW multipliers with different counters 
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CONCLUSION : 

 In this brief, a new binary counter based on a novel symmetric bit stacking approach is proposed. We showed that this counting method can be used to 

implement 6:3 and 7:3 counters, which can be used in any binary multiplier circuit to add the partial products. We demonstrated that 6:3 counters 

implemented with this bit stacking technique achievehigher speed than other higher order counter designs while reducing power consumption. This is 

due to the lack of XOR gates and multiplexers on the critical path. The 64-bit and 128-bit counterbased Wallace tree multipliers built using the 

proposed 6:3 counters outperform both the standard Wallace tree implementation as well as multipliers built using existing 7:3 counters. 
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