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ABSTRACT: 

An integrated supercharger/turbocharger is an integral tool benefits high charging, turbocharging, and timely turbocharging to eliminate some of their individual 

problems. High boost, turbocharging and improved controls are key strategies for meeting future fuel savings requirements. Higher upgrades increase engine 

power while more losses remain always, to generate total efficiency profits. By harnessing multiple exhaust turbine output at high speed and torque, 

turbocharging improves engine efficiency. Supercharging boosts the high-torque vehicle's operating speed. FEM, or finite element analysis, Pro Engineer for 

complete design and modelling, and ANSYS for stress and CFD analysis on both turbine rotors and compressor impeller bottoms were the main programmes 

used in this study. The turbocharger's most essential metrics, including all stage parameters on both the turbine and compressor sides, are reported in the results 

section. This assignment was both a challenge and a learning opportunity. This allowed us to gain a better knowledge of the theoretical, conceptual, and practical 

aspects of turbomachinery design. 
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INTRODUCTION: 

Ordinary I C engines take in the air that is required for fuel combustion on their own. The low-pressure zone within the cylinder created by the piston's 

downward movement during the suction stroke of the four-stroke cycle is used to accomplish this. These engines can deliver a maximum amount of 

power. Allowing more air into the cylinder, regardless of manner, enables for more fuel to be burned efficiently and hence more power to be generated. 

The device that will take over this job is Turbo Charger. The power of the exhaust gases is harnessed by the turbocharger. It increases the efficiency of 

the engine by repurposing the wasted power of the exhaust gases.A turbocharger is a little engine that produces a lot of power. A turbocharger is 

essentially a small centrifugal compressor with a turbine attached to it. Exhaust gases cause the turbine to spin at incredibly high speeds when they pass 

through it (between 80,000 and 10,000 rpm). The compressor is connected to the turbine and rotates with it, allowing atmospheric air to be taken in and 

compressed. This compressed air is delivered to the engine for burning. The exhaust gases are expelled through the exhaust pipe after passing through 

the turbine. 

OBJECTIVE OF WORK 

The main objective for this project is to design and Analysis a complete turbocharger based on a few parameters by using of software’s. 

Specifically, the objectives include the following items: 

 

1. Simulation and Analysis of all parameter of turbocharger by using of ANSYS Software. 

    2. Compressor performance Analysis by using of CFD Analysis (ANSYS). 

    3. Turbine performance analysis by using of CFD Analysis (ANSYS). 

 

3. METHODOLOGY 

The turbocharger analysis is performed using Finite Element Analysis, also known as FEA, which allows the user to analyze the model using the 

software according to the required environment and the necessary parameters needed to assemble the solution. The turbocharger analysis is blocked by 

the following two key elements: 

 Compressor impeller and turbine must have the same outer diameters 

 The turbine and impeller rotate at the same rotational speed 
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The reason for maintaining the exact same range of turbine and compressor impeller is based on the ease of operation and placement of the engine. 

Having two very different diameters can be difficult when planning other parts that go into the engine room. This is an example of application-based 

design considerations. The second limit is due to the fact that the impeller and turbine sit on the same shaft. This restriction is found in most turbo 

generators. 

 

Figure 1: Flow chart for Design and Simulations of Turbocharger Components by using of design software 

 

4 DATA COLLECTION AND ANALYSIS OF DATA 

The analysis done in this project is in and around a turbocharged; four-cylinder spark-ignition engine, more data is given in the table below (Table 4.1). 

For the most part, the engine work is maintained by the use of a turbocharger. A turbocharger has been a successful device with single-entry and vane 

less turbines as is common in spark-ignition engines. The manifold is made up of cast-iron having a 4 2 1 joint design. 

 

Table 4.1. Data of a four-cylinder engine. 

Number of Cylinders 04 

Cylinder Valves 04 

Bore/ Stroke 90 mm/78mm 

Maximum-Power 151 kW 

Maximum-Torque 280 Nm 

Maximum Inlet Pressure 1.8 bar 

 

The initial parameters are given in table 4.2.With these initial parameters, it is possible to start the analysis by employing the correct equations in FEA. 

 

Table 4.2: Parameter list for compressor and turbine 

Parameter Compressor Turbine 

Volume Flow Rate V [m3/s] 0.33 NA 

Mass Flow Rate m[kg/s] NA 0.55 

Inlet pressure P01 = P02 = 1.8bar Pin = Pce - ∆Ploss 

Design rpm 60,000 60,000 

Isentropic efficiency      87% 83% 

Hub Diameter station 2: Dh2 = 24mm NA 
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Tip diameter station 2: Dt2 = 67:8mm NA 

Tip diameter station 3: Dt3 = 102mm NA 

Relative inlet angle β2 = 143o NA 

 

 

Figure 4.1 the meshing picture of compressor part 

 

 

 

Figure 4.2 Housing of compressor with result of pressure-effect analyze by using of CFD Analyze 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 Housing of compressor with result of velocity effect analyse by using of CFD Analyze 
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CONCLUSION: 

Power output can be increased considerably in two-wheelers with the use of turbochargers. An engine equipped with a good turbocharger can develop 

20% + more power compared to the normal one, with an increase in specific fuel consumption. As exhaust coming from the engine is utilized for useful 

work which would have been wasted to increase the thermal efficiency of engines over natural engine or supercharged engines. 
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