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ABSTRACT: 

Massive multiple-input multiple- output (MIMO) is a critical technology for meeting performance expectations from users for next-generation connectivity, as 
well as quality of service (QoS) systems. Because there are so many antennas and radio frequencies, the complexity of symbol detectors expanded dramatically 
because of (RF) chains in a MIMO uplink receiver with many antennas. As a result, the search for the most efficient massive MIMO detection technique is going 
on. The combination of high performance and low complexity has gotten a lot of attention in the last ten years. In recent years, optical wireless communication 
(OWC) has become a fast-increasing study area. Using MIMO (multiple-input multiple-output), especially on a big scale. Incorporating MIMO into OWC has the 
potential to significantly boost performance. Efficiency of the spectrum However, there is one difficult challenge to solve. The practical signal detection 
technique is such an appealing goal. Where the linear signal detection is used in optical MIMO systems. A minimum mean square error (MMSE) algorithm can 
do this. A good result, although it necessitates a complex matrix inversion large in size. We first prove a particular property in this paper. The linear MMSE 
algorithm's filtering matrix is symmetric. Indoor optical MIMO systems have a positive definite. As a result, a property, a signal detection technique with a 
minimal level of complexity based on the approach of sequential overrelaxation (SOR) is offered as a way to lessen the overall level of difficulty. 

 

INTRODUCTION: 

Every year, the number of mobile users grows substantially. Users want immediate access to multimedia services and speedierinternet connection. 
Furthermore, smart city implementationhas progressed to the point where a dense and heterogeneous set of devices positioned across the city generates 
extra bytes of data to be exchanged. Higher data rates, more network capacity, higher spectrum efficiency, higher energy efficiency, and improved 
mobility are all required. Massive MIMO, in contrast to typical small-scale multiple-input multiple-output (MIMO), uses a huge number of antennas 
(e.g., hundreds) at the base station (BS) to simultaneously serve a group of customers (e.g., in the order of tens). Massive MIMO offers significant 
spectrum and energy efficiency improvements, and it is widely regarded as a potential technology for 5th generation (5G) wireless communication 
systems. However, for actual large MIMO systems, various problems must be overcome, one of which is a low- complexity signal detection scheme 
with near-optimal performance. As a result, academics have proposed 5G networks to address the above-mentioned challenges. In 5G networks, a 
combination of well-known and efficient technologies such as device- to-device (D2D) communication, ultra dense networks (UDNs), spectrum 
sharing, centimetre wave (cmWave) or millimetre wave (mmWave), the internet of things (IoT), and massive multiple-input multiple output (MMIMO) 
will be deployed (MIMO). MIMO is a major technique that has been utilized to improve the performance of wireless transceivers from the third 
generation (3G) wireless networks. The objective is to maximize spectral efficiency, range, and/or connection reliability by using numerous antennas in 
the transmitter and receiver. Because many interfering signals are sent from various antennas, the MIMO receiver is intended to use a detection system 
to identify the symbols that have been distorted by interference and noise. During the last 50 years, the MIMO detector has piqued people's interest. 
Massive MIMO systems with hundreds of antennas at the base station (BS) or access point are a natural development of traditional small- scale MIMO 
systems. The same frequency band, the huge MIMO BS can serve a high number of user terminals. The number of BS antennas is clearly more than the 
total number of antennas in the user equipment inside the cell or service area in the typical massive MIMO system operating below 6 GHz carrier 
frequency[1]. As a result, multiuser interference averages out to look like increased additive noise, along with channel estimation issues caused by pilot 
contamination. For fifth generation (5G) communication systems below 6 GHz, where radio channels have a lot of scattering and multipath 
propagation, the traditional massive MIMO technology has been used. As a result of the huge number of antenna elements, interference averaging 
makes conventional matched filter (MF) based receivers’ approximation optimum. At higher carrier frequencies, such as cmWave or mmWave bands, 
and beyond toward the THz band, very massive antenna arrays are also required. However, propagation pathways are far more directed, resulting in 
quite different interference circumstances. As a result, the term huge MIMO has not been traditionally applied to those communications ideas, but 
terminology varies from paper to paper. Because antennas are smaller, large arrays are easier to construct and pack in higher frequencies. Because of 
the channel attribute   of   asymptotical   orthogonality, linear signal detection approaches with 
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made to minimize the complexity of linear signal detection techniques. To avoid matrix inversion, we implement a low complexity signal detection 
algorithm. 

LITERATURE REVIEW: 

This section contains a formal specification of the huge MIMO system model. The goal is to give readers a useful backdrop for the next sections. Since 
the emergence of huge MIMO systems, there has been a renewed interest in classic linear detectors. As a result, the linear detection process is also 
discussed in this section. We’ll pretend that a large multi-user MIMO base station (BS) is supporting K single-antenna customers. The BS has a total of N 
antennas, where K is more than N. The channel coefficients between K users and N BS antennas create a matrix (H) in the case of a frequency-flat 
channel. 

ℎ11 ℎ12 … ℎ1𝑗𝑗 
H = ℎ21    ℎ22    …    ℎ2𝑗𝑗 

 
lower complexitycan also achieve capacity-approaching  performance in 

 

[   . . … .] 
ℎ𝑖𝑖1 ℎ𝑖𝑖2 … ℎ𝑖𝑖𝑗𝑗 

 
massive MIMO systems, making them more appealing for massive MIMO systems. Unfortunately, most linear signal detection approaches, such as 
zero-forcing (ZF) signal detection, necessitate large- scale matrix inversion, which still leads to significant complexity when MIMO channel 
dimensions expand in huge MIMO systems. Some attempts have recently been 
The channel gain or loss from the jth 

broadcast antenna to the ith receive antenna is hi j. In Figure 3, the channels are depicted as lines between the BS and the users. The 

elements of the channel matrix H € CNXK are frequently considered to be Gaussian random variables with zero mean and unit variance 

that are independent and identically   distributed   (i.i.d).   In   truly 

 

directive channels, however, this is not always the case. We can build a symbol vector x=[x1; x2;::::; xK]T broadcast by all the users in the uplink or 

reverse direction by combining the symbols of the K users. The BS gets a vector y=[y1; y2;::::; yN]T that has been distorted by noise and channel effects. 

The relationship between x and y can be defined as follows: 

y = Hx + n       (2) 
 
where n denotes N X 1 additive white Gaussian noise (AWGN) with i.i.d entries. The CSI and synchronisation are considered to be flawless at the BS in 

this model, which is commonly used to build a detection technique. Higher computing complexity comes at a cost. In the event of a small-valued 

coefficient channel, however, the ZF detector and the MF may induce noise enhancement. As a result, the MMSE detector is proposed to account for 

noise in the equalization process. A MIMO detector's job is to figure out the transmitted vector x from the received vector y. The ideal solution for solving 

the MIMO detection problem is maximum likelihood sequence detection (MLSD). As shown in the diagram, it does a thorough search and checks all 

possible signals. 

XML      =       arg      min      ||      y-HX       ||22 (3) 

• MF detector 
By setting A = H, MF treats interference from other sub-streams as pure noise. Using MF, the estimated received signal is given by  

XMF=S(HHy), (4) 
 
When K is substantially smaller than N, it operates properly, but it performs poorly when compared to more complicated detectors.  By ignoring the 

influence of multiuser interference, MF, also known as maximum ratio combining (MRC), tries to maximize the received SNR of each stream. A square 

MIMO system's performance is substantially harmed if the channel is ill- conditioned. 

• Linear ZF detector 
 
The ZF detector outperforms the MF detector, with the goal of increasing the received signal-to-interference ratio (SINR). The ZF mechanism works by 
inverting the channel matrix H and therefore eliminating the channel's effect.  
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The Moore-Penrose pseudo-inverse of a matrix is H+. 

Because H is not necessarily a square matrix, i.e. the number of users at BS is not equal to the number of antennas, the pseudo-inverse is utilized. 
The estimated signal can be represented as follows: 
 

XZF=S(AHZFy) (6) 

The ZF detector clearly ignores the effect of noise, and it performs well in interference- limited circumstances at the cost of increased computing 

complexity. In the event of a small-valued coefficient channel, however, the ZF detector and the MF may induce noise enhancement. As a result, the 

MMSE detector is proposed to account for noise in the equalization process. 

Existing System 

• Detection Techniques for Massive MIMO 

The fundamental disadvantage of using a large number of antennas is the increased complexity, yet the suggested detector provides near-ML 
performance with little complexity. Researchers proposed near- ML detectors based on local search and belief propagation algorithms during the 
following few years[12]. The complexity of the matrix inversion necessary for linear detectors grows exponentially as the number of antennas grows. 
 
Massive MIMO detectors in this category are developed for specific massive MIMO arrangements, such as when the number of antennae is large in 
comparison to the number of users. For such huge MIMO systems, the effect of channel hardening is stronger, allowing low-complexity detectors to 
achieve great performance. Since their launch in 2013, approximate inversion-based detectors have become the most popular type of detectors. Symbol 
detectors that use sparsity and machine learning have also gained popularity for huge MIMO systems. In this part, we look at all of the new detectors 
that have been proposed for massive MIMO. 
 
The channel hardening phenomenon may be used to cancel the features of small-scale fading with a large number of transmit antennas , and it becomes 
dominant when the number of served users (K) is significantly lower than the number of receive antennas (N). This can be thought of as a 
diagonalization of the entries in the Gram matrix, or Gramian G = HHH, in which non-diagonal terms converge to zero and diagonal terms approach N. To 
equalize the received signal, a matrix inversion of the Gramian matrix is required, as illustrated. One of the most complex procedures in the linear and 
simple non- linear MIMO detectors, it has a significant computational complexity. 

• Neumann Series 
 
The Neumann series (NS) is a popular method for estimating matrix inversion and therefore reducing the linear detector's complexity. G = D+E, where 
D is the primary diagonal matrix and E is the non- diagonal matrix. 
additional matrix multiplication in each step, it converges faster than the NS method[13]. The NI method approaches a matrix inverse with astonishing 
precision in a few iterations, whereas the NS method requires more iterations to get the same results. The computational complexity 
reduced from O(K3) to O(K2). 
 

2.2.3 Newton Iteration Method 
 
The Newton iteration (NI), commonly known as the Newton-Raphson method, is an iterative method for determining the matrix inverse approximation. 

The nth iteration estimation of the matrix inversion for G is given by which converges quadratically to the inverse matrix if 

||I-GX0-1||<|1 
 
With quadratic convergence, NI can attain high precision. It uses the same simple computation as the NS technique to speed up the detecting procedure. 

Despite the fact that the NI technique requires one 

where n = 1,2,…., and w denotes the relaxation parameter, which is important in determining the convergence rate. By setting w=1, 

we may get from using the GS technique, which is a particular case of the SOR method. When the relaxation parameter w fulfils 

0<w<2 for uplink large MIMO systems, the signal detection methodology employing the SOR method is convergent. 

In terms of efficiency and complexity reduction, the SOR technique surpasses the NS approximation method. The detection technique 

employing the GS approach, on the other hand, is less difficult than the SOR method. In an iterative initial solution and an ideal 

relaxation parameter were proposed for a detector based on the SOR method. When the ratio of BS antennas to 

 

user terminal antennas, b, is modest, the suggested detector achieves a significant improvement in detection performance. Here the complexity reduced 

from O(K3) to O(K2). 
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2.4 Proposed System 

We analyse a typical massive MIMO system in which the BS uses N antennas to serve K single-antenna customers at the same time, and N is frequently 

much greater than K. 

N >> K . The received signal vector y € C 
K × 1 for K users is defined as 
 
y = √ρf Hx + n, (11) 
 
where f is the downlink transmit power, H 

€ C K × N denotes the flat Rayleigh fading channel matrix, and n € C K×1 denotes the additive white Gaussian noise vector. When using a linear signal 

detection method like ZF signal detection, we can write 

x = Gs,      (12) 
 
where G € C N×K signifies the linear signal detection matrix and s € C K×1 specifies the source signal vector for K distinct users. 

We'll go over the basics of ZF signal detection first. The typical ZF signal detection matrix G ZF, can be represented as 

G ZF = αZF HH P-1 (13) 
 

Where αZF denotes the power normalization factor and P = HHH . 
As shown in (13), ZF signal detection requires the matrix inversion of large size, so its complexity O(K3) rises rapidly as the dimension of expansion of 
massive MIMO. In consideration of (12) and (13), the transmitted signal vector x can be rewritten as 

x = αZF HH P-1 s = αZF HH t (14) 
 

where t = P-1 s, equivalently we have 
 

Pt = s (15) 
 
The proposed method can iteratively produce the expected precoded vector t in (15) without the use of a large-scale matrix inversion P-1. The 
Hermitian positive definiteness of the matrix P is required for this method to work. To begin with, the matrix P is clearly Hermitian because P = (HHH) 
according to the specification. Second, we have an arbitrary nonzero vector denoted as u. 

3.1 Content diagram of Project 
 
Due to the enormous number of antennas in massive MIMO systems, uplink signal recognition becomes computationally demanding, lowering the 
possible throughput. Furthermore, all the signals transmitted by users superimpose at the base station, resulting in interference, which reduces 
throughput and spectrum efficiency. Figure 3.3.1 depicts a huge MIMO system with N user terminals and M 
 

base station antennas. Signal detection at the base station is complicated and inefficient since all of the signals transmitted by N user terminals travel 
over a distinct wireless path and superimpose at the base station. There has been a lot of work done to determine the best signal detection approach for 
huge MIMO systems that can deliver improved throughput with less computing complexity[17]. Nonetheless, as the number of antennas increases, the 
computational complexity increases, making huge MIMO systems unfeasible. For uplink detection in massive MIMO, several linear detectors have been 
studied, including ML, ZF, and MMSE. Although 

 
 

Figure : 3.3.1 Content Diagram of Massive MIMO 
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4.1 Computational Analysis 
 

We analyse the computational complexity of the suggested signal detection in terms of the required number of complex 

multiplications   in   this   subsection.   For 

proposed signal detection we can write as 

 
ML is an ideal detector in massive MIMO 

(i+1/2) 

•  𝑘𝑘−1 𝐾𝐾 
 

and minimizes the chance of error, the tk = tk  
𝑝𝑝𝑖𝑖𝑖𝑖 

 ( si - ∑𝑗𝑗=1 𝑝𝑝𝑘𝑘𝑗𝑗𝑡𝑡𝑗𝑗(k+1/2) - ∑𝑗𝑗=𝑘𝑘 𝑝𝑝𝑘𝑘𝑗𝑗𝑡𝑡𝑗𝑗(𝑘𝑘)) 
(16) 

 
technique is prohibitively complex for big antenna systems[18]. The ZF approaches reduce inter-antenna interference, but additive noise increases for 
ill-conditioned channel matrices . The MMSE detector outperforms the ZF detector because it considers noise power during detection. Although the 
ML, MMSE, and ZF detection algorithms provide the best throughput, they need matrix inversion during processing, making them computationally 
inefficient for huge MIMO systems with many antennas. 
The kth element in a vector is denoted by the subscript k. The channel coherence interval Tc should be taken into account while comparing complexity. 
Because the vector t has K elements (where K is frequently big in massive MIMO systems; for example, a genuine demo of massive MIMO can handle 
K = 32 people simultaneously, the complexity of ZF signal detection inside Tc is O(K3) + TcN K, whereas the suggested signal detection is TcO(K2+ N 
K). Tc is 7 OFDM symbols, which is less than K at 100 km/h. The overall complexity so increases[19]. Signal detection with SSOR is less expensive 
than signal detection with ZF. 

TABLE 4.1.1 
 

COMPUTATIONAL COMPLEXITY COMPARISON 

 

 
 
 
By taking the channel coherence interval Tc into account, we compare the complexity of the proposed SOR based signal detection to that   of   Neumann-
based    signal detection and   TPE-based   signal detection in Table I. The proposed SOR- based signal detection has a lower complexity than 
Neumann-based signal detection and TPE-based signal detection because the number of users K is large in massive MIMO systems, while Tc is small 
in fast time-varying channels, and the number of BS antennas N is usually much larger than the number of users K in massive MIMO systems. 

4.2 Output Screens and Result Analysis 
In this part, we compare the proposed SOR- based signal detection to the recently proposed Neumann-based signal detection in terms of bit error rate 
(BER). As a contrast, the BER performance of traditional ZF signal detection with exact matrix inversion is also presented. 
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Massive MIMO systems have a configuration of N × K = 128 × 16 and a modulation technique of 64 QAM. The BER performance comparison in 
Rayleigh fading channels is shown in Figure 1, with I denoting the number of repetitions. Although conjugate beamforming [20] is deemed near-
optimal in massive MIMO systems when the number of BS antennas goes to infinity, the BER performance of conjugate beamforming suffers from 
considerable performance loss in actual systems due to the restricted number of BS antennas. 
 
 
 

The BER performance of SOR-based signal detection with I = 2 is thus clearly superior to that of Neumann-based signal detection 

[3] with I = 4 and TPE-based signal detection [4] with I = 4. When I = 4, for example, the performance difference between ZF and SOR-based signal 
detection is insignificant, indicating that the proposed detection can reach near-optimal performance in a small number of repetitions. 
 

 
Figure 4.2.2 : SNR vs BER relation in Massive MIMO 

5.1 Conclusion 

 
We propose a low-complexity SSOR-based signal detection strategy in this paper to attain near-optimal performance of the system. Signal detection in 
the ZF style, but with a lot less complexity. This is accomplished by employing the SSOR method to iteratively address the problem. In ZF signal 
detection, the exact matrix inversion of enormous size is used. 
Furthermore, by utilizing the asymptotical channel characteristic, we offer a straightforward approach to approximate the optimal relaxation parameter 
of huge MIMO systems using orthogonality. SSOR-based signal detection, which is only affected by the size of huge MIMO systems. The findings of 
the simulation reveal that the suggested SSOR-based signal detection outperforms the recently proposed SSOR-based signal detection. proposed signal 
detection techniques and comes close to achieving near-optimal results. 
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In Rayleigh fading channels, ZF signal detection performs well. Massive MIMO is a critical technology for meeting future user needs. To avoid the 
complicated matrix inversion that will be utilized to reduce the complexity, the minimum mean squared error (MMSE) and zero forcing approaches are 
applied. We propose a low-complexity signal detection technique based on the SOR method that achieves near-optimal performance of the standard 
MMSE approach without the need for expensive matrix inversion. 
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