

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Increase in Cost and Delays in Construction

S. Divya Sankar¹*, Dr.K.Shashikanth^{2,3}, S. Mahender⁴

¹Department of Civil Engineering, Lincoln University College, Selangor, Malaysia

²Department of Civil Engineering, Lincoln University College, Selangor, Malaysia

³Department of Civil Engineering, University College of Engineering, Osmania University, Hyderabad, TS, India

⁴Master of Engineering, Department of Civil Engineering, University College of Engineering, Osmania University, Hyderabad, TS, India

* divyasankar@lincoln.edu.my

DOI: https://doi.org/10.55248/gengpi.2022.3.5.29

ABSTRACT:

Taking place a number of varieties of constructional plans, cost as well as schedule overruns happening owing towards extensive reasons. Presently, in constructional industry, scheduling being existent very significantly for lowering as well as controlling the delaying of constructional projects. Using scheduling directly above an expecting or else allowing time otherwise cost i.e. mostly, constructional delaying now in India remains assorted. In place of attaining desires of new familiarized fiscal principle of the Indian Government, infrastructure transporting progression accurately public highways developments are remaining as the most important device. Going on with ineffective performance of the constructional project w.r.t. timing, costing and quality which remains straight exposing near constructional project towards schedules delaying, costs overrun then scarcity of quality complications, the consequence of these constructional industries as well as it's influencing by taking place the nation-wide budget, worries remained raising frequently.

The study aim remains towards identifying life-threatening factors which affects costing overrun then delay by means of recognizing with questionnaires surveying likewise the analysing, frequency is via by means of SPSS software now in constructional firm. In this study, the foremost vital factors effecting the costing overrun as well as delay in the constructional firms are delaying in quality assurance, accident during construction, delay in shifting, late issue of instruction, unclear and inadequate, delay due to subsurface and conflicts among parties. Likewise, they remain lacking communications in project executions, absence of skilled staff in the owner's and contractor's teams in that order. On behalf of avoiding as well as disabling consequences negatively, these factors are the approvals taking place on the act of highway projects publicly. The analysis is done by using the software Statistical Package for Social Sciences Software Version 20. The study is helping towards identifying life-threatening factors meant for timing as well costing overruns then, by also finding explanations by recommending which factors are considered towards controlling.

Keywords: Increase of cost, delays, construction industry, SPSS.

Introduction:

Cost and schedule over runs appear as main hurdles in civil engineering projects. Infrastructural facilities have major difficulties of cost over run. Even the government sources are affected by such considerations. An important baseline for cost over runs is theoptimum related to least possible expenditure. Behind disorganizing and the acceptance of the work ability of shifting funds in the middle of the project shortfalls take place. Such intermediate steps increase the cost. In such conditions, some methods of cost over runs remain as the main hurdles for developing projects. The linkage between schedule delaying and cost overrun is multidimensional. Schedule delays are convertible for cost over runs. Such scheduling impediments. Investigation based on variable, experimental or observed information regarding skills can highlight the actual position. In many emerging national scenario, importance of time and costs remain important factors for contractors & managers. Generally, construction development ensure complication in avoiding delays and cost over runs.

Objectives of the Project

- To observe the presence of cost as well as time increasing variables, affecting in hugeconstructional projects.
- To observe the facts meant for costs as well time overrunning in constructional project.
- To evaluate as well as tabularizing the facts of delay as well costs overrunning over analysingvariables.

The key objective is towards recognizing the most important reasons of delays of projects byusing survey.

Project Delays

The time is increasing externally, and also concluding date in identifying contracts beyond date, through which the parties are deciding upon delivering a project may possibly be well-defined as constructions delay. By means of a project loss, constructional projects remaining on top of planning schedules, is carefully considered as mutual problems. An owner understands delaying as loss of incomes over lacking of manufacturing amenities as well as providing space or different dependencies which are happening on existing daytime facilities. In place of contractor delaying means, larger overhead expenses for the reason of extending work time, owing towards increasing physical labor costs as well as, larger material expenditures directly above price increase. Projects taking place on the given period are displaying efficiency, on the other hand, construction procedure remains focusing towards more than few variables, in addition factors which are present inconstantly, which ends results on or after varioussources. These sources enclose the party act, environmentally friendly circumstances, and as well taking part of additional party, contractual associations and also resources accessibility. On the other hand, frequently it's not happening that a project remains finished by definite given period. The difficulties now inside constructional industries are time intervals as well as, costs increase. They are happening in every single constructional project and also these postponements like delaying, costs overrun will be different obviously on or after projects. Now, towards lessening as well as avoiding delays, in addition growing costs in the construction projects, this one remains vital towards explaining existent reasons of time as well as cost overruns. This part is reviewing literature concerning towards the most important problems of time and cost overrun permissible towards recognizing the interrelated factsregarding those problems.

Costs Escalation

The additional cost above the budgets is well-defined as costs overrun. Every now and then, it is furthermore so-called 'costs escalation' or else 'costs increase' or else 'budgets overrun'. The definition of costs overrun is changing in contracts quantity dividing by means of original contracts prize quantity. This estimates change towards a percentage designed for valuations. This is avoiding project teams on or after estimating authentic costs, scheduling as well technical risk towards the projectcommencement. Overvaluing technical difficulty with determination or else lacking of satisfactory scope explanation. The major indistinct scope elevates the costs and schedules. Continuous lacking of steady funding plans, funding variability's and also solid facts of funding meant for constructional projects strength, project managers towards making judgments that remain frequently are not well-organized, towards bringing about schedulegrowths and costs. Chances remain inadequate for developing project managers.Costs escalation as well as schedule delaying remains thoroughly relating towards the awareness of numerous studies and very well explainedby supporting certain factors which are causing impacts on the happenings of costs and schedules, also regular problems resolving the first noticed time delay leading towards costs growth. Construction costs overrun life-threatening factors are:Irregularmeteorological conditions,Materialscosts which are booming.Materialevaluations remain imprecise, Complication of the project development, the sitenatural features of the data are missing, Contractor's involvement on definite sort of projects, remains missing, Unusualness with localguidelines.

As of starting the projects, probable reasons of costs overrun containing old-fashioned costing estimations, as well as omissions of particular items are done. The evidences of costs as equipment's rates, materials costs as well as laborcharges using in estimation need to be right. These can be accomplished from ancient data, proprietary record, previous projects, or else up-to-date materials costs. It remained initially at the informal conversation taken by means of projects participants, involving towards employers, contractors system of government and consultants that are changing instructions as well as guidelines, faults in the tendering brochures, delays in transferring services, delays in making early payment expenditures and further expenditures, delay in supplying orders, endorsements, land procurement problems, not enough time for purchasers towards arranging tenders, managing low documentation and faults inside the foremost quantities remaining insufficient of the substantial causes, that are influencing the costs overruns in the construction of projects.

% Cost Overrun =
$$\frac{Cost Overrun}{Estimated Project Cost} \ge 100$$

Cost overrun = actual project cost - estimated project cost

Time Escalation

The time postponement away from planned finishing date is visible towards the contractors, is recognized as Time overruns. Delays are occurrences that are affecting a development of projects as well as rescheduling project happenings; delays affecting occurrences possibly will enclose resources which are not approaching the designing delays and meteorological conditions delays. Project delays commonly take place as a consequence of project happenings, which ought towards external, as well internal causes and bond of effects. Information on behalf of project time overruns over life cycle projects remains different categories of phases as the following: In the Pre-planning phase, the problems externally occurring are delays happening in regulating agreements, site location delivery, and unapproachability. Otherwise, delaying accessibility of funding's as well as, the internal problem remains lacking of Project Managers or else, commercial managers, lacking of costs manager, lacking of safety officers and environmentally friendly experts. In the Planning and design phase, the problems externally are unsuccessful procurement planning's. Also, delaying in regulating endorsements problems internally are lacking of planning engineers or else, commercial managers and also lacking MEP engineers. In the Execution and monitor phase, unsuccessful project manager, site manager, planning engineer or else quantity supervisor. In closuring and delivering phase, the problems externally presenting contractual disagreements later, the problems internally are lacking of ordering projects in addition, site manager's auditing and also, overall managing quality professionals.

Time overrun = actual project duration - estimated project duration % Time Overrun = $\frac{Time \ Overrun}{Estimated \ Project \ Time} \ge 100$

Literature Review

Ahmed (2003) gathered delays into 2 categories: internal as well as external reasons. Internal reasons are appeared from parties towards the contracts (e.g. contractors, consultants as well clients). Now, on other hand, external reasons escalate through actions away from controlling of parties. These will consist of the God's act, materialproviders in addition government's action.

<u>Assaf, (2006)</u> performed a performance on time survey of huge organizations in Saudi Arabia and found 73 delay causes. From contractors view point, he studied vital causes of owners, contractors and alos consultants. Change order is identified as most common delay and also revealed that 70% construction projects are facing time overrun.

<u>Sambasvian (2007)</u> recognized the delay factors and also their influence on finishing of project in Malaysian industry and concluded 28 delay factors through the results and few are listed as subcontractors problems, supply of labour, improper planning of contractors, poor site management of contractor.

Sweis et al. (2008) considered delay of causes in Jordan residential building projects and later concluded that, financial problems are being faced by the contractor and the owner asking for change orders more times so, its leading to delay.

Abd El-Razek et al. (2008) found important causes of delay and during construction they are financed by contractor, changes in design by owner, only paying half payments, and not using construction contractual management professionally.

Ibrahim Mahamid (2012) conducted a survey in Saudi Arabia relating to the time performance in construction projects and determined the significance of delay causes by relating to the project participants and finally concluded the average time overrun is between 10% - 30% of original duration and also found 70% that 70% projects are experiencing time overrun esp. in Saudi.

HemantaDoloi et al (2012) analyzed the factors which are effecting Indian construction and examined the importance of factors by using factor analysis and regression modeling.

Murat Gunduz et al. (2013) identified delay factors of 83 and ranked the factors which are causing delay.

Anu V. Thomas et al (2014) mentioned that, if the productivity will be leading to delays then the identified factors are affecting the labour productivity with the project managers, site engineers, supervisors and craftsmen, in the state of Kerala, India and also mentioned timely availability of materials at the worksite etc.

Mr.Salim, S.Mulla et al (2015) observed that, successful management of construction projects is based on three major factors i.e. time, cost and quality. The successful completion of construction projects within the specified time has become the most valuable and challenging task for the Managers, Architects, Engineers and Contractors.

JesperKranker Larsen et al (2016) analyzed the factors impacting project managers w.r.t. time, cost and also quality. He concluded that project schedule, budget as well as quality are playing vital roles in different ways.

From the literature overview, we can conclude that in any construction organization, increase in cost and time can be minimized. The placing of activities of the projects along with time order remains implementing towards allocating the start and finish dates towards several actions and assigning resources is known as Scheduling. The scheduling is the last opportunity for defining, preparing, making financial arrangements as well as procedures that base in contrast towards which entire activities remains measured. Project controlling can't be an expert which is lacking an upright planning and scheduling. By preparing in advance, constructional projects scheduling, the owner and the builder remains capable of scheduling subcontractor's material distributions to facilitate the suitable actions and the essential materials reaching as soon as they desire, which will permit towards saving time, annoyance and currency. Constructional project scheduling might be more appropriately called as 'Construction Schedule Planning'. This remains wherever, the plans are created. It indicates basically the arrangement of building actions, as well as the ones which will be successfully going on at similar time.

Research Methodology

Factor Analysis

Factorisation: It is important to examine the variables, which are leading mostly cost overrun and can be found by this factorization. It gives communality's and its corresponding variance extraction.

Table 1. Communalities

Initial

Extraction

Incomplete Drawing	1.000		.686
Late Issue of Instruction		1.000	.594
Mistakes and Discripencis		1.000	.660
Unclear and Inadequate		1.000	.755
Delay in quality assurance		1.000	.610
Late in approving		1.000	.706
Delay due to subsurface		1.000	.474
Unavaiabilitys of utilities		1.000	.469
Accedents during		1.000	.655
construction			
Problems with Neighbours		1.000	.706
Limited space of construction		1.000	.692
Delay of Shifting		1.000	.644
Quantity Increase		1.000	.597
Terraine Condition		1.000	.681
Soil and Rock Stability		1.000	.615
Material related		1.000	.632
Payment related		1.000	.552
Poor communication		1.000	.622
Climate Condition		1.000	.629
Lack of Experience		1.000	.560
Involvement of more parties		1.000	.551
Lack of Efficiency		1.000	.621
Thickness of various layers		1.000	.644
Conflicts among parties		1.000	.670
Unreliable sources of		1.000	.645
material			

Extraction Method: Principal Component Analysis.

Table 2. Total Variance Explained

Component		Initial Eigenvalues		Extraction Sums	of Squared Loadings	
-	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.039	12.158	12.158	3.039	12.158	12.158
2	2.253	9.013	21.170	2.253	9.013	21.170
3	1.859	7.437	28.607	1.859	7.437	28.607
4	1.792	7.169	35.777	1.792	7.169	35.777
5	1.590	6.360	42.137	1.590	6.360	42.137
6	1.471	5.883	48.019	1.471	5.883	48.019
7	1.374	5.497	53.516	1.374	5.497	53.516
8	1.248	4.994	58.510	1.248	4.994	58.510
9	1.045	4.178	62.688	1.045	4.178	62.688
10	.988	3.951	66.639			
11	.944	3.774	70.413			
12	.791	3.164	73.578			
13	.759	3.034	76.612			
14	.696	2.784	79.396			
15	.668	2.673	82.069			
16	.629	2.516	84.584			
17	.606	2.425	87.010			
18	.548	2.191	89.201			
19	.508	2.031	91.231			
20	.462	1.847	93.079			
21	.453	1.810	94.889			
22	.366	1.466	96.354			
23	.346	1.382	97.736			
24	.296	1.184	98.920			
25	.270	1.080	100.000			

Extraction Method: Principal Component Analysis.

Table 3. Component Matrix^a

		Con	ponent				
1		2	3	4	5	6	7
Incomplete Drawing	.438	454	010	.044	.097	.372	.056
Late Issue of Instruction	.500	063	191	.293	.148	156	214

Mistakes and Discripencis	.068	.589	345	.049	278	.146	.233
Unclear and Inadequate	.083	.246	.125	102	.535	.198	.282
Delay in quality assurance	.523	326	.217	.277	027	113	222
Late in approving	.282	.020	.016	.596	.153	.030	.462
Delay due to subsurface	.220	.123	.249	372	.055	.293	132
Unavaiabilitys of utilities	.124	.582	.277	085	.101	003	036
Accedents during construction	.517	393	095	.354	.033	289	.086
Problems with Neighbours	.377	.051	.430	024	342	.388	.292
Limited space of construction	.474	.225	.006	490	.317	085	153
Delay of Shifting	.151	.281	.187	.166	.250	128	571
Quantity Increase	.388	004	.001	108	602	.207	.038
Terraine Condition	.321	367	.326	237	.440	.079	.203
Soil and Rock Stability	.044	.458	.237	.348	.024	338	.252
Material related	.100	.209	129	.349	.121	.428	125
Payment related	.484	097	218	408	040	250	.120
Poor communication	.334	045	.066	226	.053	357	.151
Climate Condition	.341	.141	.032	.021	.028	.423	244
Lack of Experience	.343	.337	.411	.303	158	115	084
Involvement of more parties	.397	036	496	192	130	080	.219
Lack of Efficiency	.447	.090	143	.047	.089	.184	.078
Thickness of various layers	.159	.516	463	041	.318	055	.179
Conflicts among parties	.317	.245	.407	239	344	342	.029
Unreliable sources of material	.429	.143	475	.045	177	.012	393

Table 3. Component Matrix^a

	Component		
	8 9		
Incomplete Drawing	.260	258	
Late Issue of Instruction	.349	.068	
Mistakes and Discripencis	.128	.137	
Unclear and Inadequate	.473	.182	
Delay in quality assurance	.175	.117	
Late in approving	052	171	
Delay due to subsurface	.286	.147	
Unavaiabilitys of utilities	.045	134	
Accedents during construction	.014	.082	
Problems with Neighbours	084	.125	
Limited space of construction	052	206	
Delay of Shifting	183	.203	
Quantity Increase	024	.166	
Terraine Condition	196	040	
Soil and Rock Stability	124	180	
Material related	023	.475	
Payment related	105	.073	
Poor communication	258	.483	
Climate Condition	330	378	

Lack of Experience	.090	119
Involvement of more parties	.138	138
Lack of Efficiency	581	.065
Thickness of various layers	006	.000
Conflicts among parties	.210	085
Unreliable sources of material	.081	144

Table 4: Reliabilitystatistics

Cronbach's	N of Items
Alpha	
.668	25

Table 5:Descriptive Statistics

	NMinimum		Maximum	Mean	Std. Deviation
Incomplete Drawing	134	1	5	3.50	.964
Late Issue of Instruction	134	2	5	3.51	.847
Mistakes and Discripencis	134	2	5	3.32	.772
Unclear and Inadequate	134	2	5	3.78	.853
Delay in quality assurance	134	1	5	3.92	1.034
Late in approving	134	1	5	3.55	.906
Delay due to subsurface	134	2	5	3.50	.847
Unavaiabilitys of utilities	134	2	5	3.40	.981
Accedents during construction	134	2	5	3.71	.744
Problems with Neighbours	134	1	5	3.23	.909
Limited space of construction	134	1	5	3.39	.892
Delay of Shifting	134	1	5	3.59	.895
Quantity Increase	134	1	5	3.28	.953
Terraine Condition	134	2	5	3.37	1.016
Soil and Rock Stability	134	2	5	3.31	.960
Material related	134	1	5	3.70	1.026
Payment related	134	1	5	3.23	1.033
Poor communication	134	2	5	3.50	.838
Climate Condition	134	2	5	3.51	.987
Lack of Experience	134	1	5	3.49	.994
Involvement of more parties	134	2	5	3.31	.937
Lack of Efficiency	134	1	5	3.36	.937
Thickness of various layers	134	2	5	3.32	.986
Conflicts among parties	134	1	5	3.56	.970
Unreliable sources of material	134	2	5	3.35	.968
Valid N (listwise)	134				

			Table 6: Statistics			
ıcom	bleteDrawing				nclear and adequate	Delay in quality assurance
Ν	Valid Missing	134 0	134 0	134 0	134 0	134 0

Table 7: Frequency analysis for incomplete drawing given by the consultant

Frequency	Percent	Valid Percent	ımulativePercent

Table 8: Frequency analysis for Late Issue of Instruction

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	2	11	8.2	8.2	8.2
	3	63	47.0	47.0	55.2
	4	40	29.9	29.9	85.1
	5	20	14.9	14.9	100.0
	Total	134	100.0	100.0	

Figure 2: Graph shows the late issue of instruction Table 9: Frequency analysis for Unclear and Inadequate

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	2	7	5.2	5.2	5.2
	3	45	33.6	33.6	38.8
	4	52	38.8	38.8	77.6
	5	30	22.4	22.4	100.0
	Total	134	100.0	100.0	

Figure 3: Graph shows the Unclear and Inadequate Table 11: Frequency analysis for Delay in quality assurance

Figure 4: Graph shows the Delay in quality assurance

Table 12: Frequency analysis for late in approving					
		Frequency	Percent	Valid Percent	
Valid	1	1	.7	.7	
	2	14	10.4	10.4	
	3	50	37.3	37.3	
	4	48	35.8	35.8	
	5	21	15.7	15.7	
	Total	134	100.0	100.0	

Figure 5: Graph shows the late in approving

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	2	21	15.7	15.7	15.7
	3	35	26.1	26.1	41.8
	4	68	50.7	50.7	92.5
	5	10	7.5	7.5	100.0
	Total	134	100.0	100.0	

Table 13: Frequency analysis for Delay due to subsurface

Figure 6: Graph shows the Delay due to subsurface Table 14: Frequency analysis for accidents during construction

4	79	59.0	59.0	90.3
5	13	9.7	9.7	100.0
Total	134	100.0	100.0	

Figure 7: Graph shows the accidents during construction

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	1	2	1.5	1.5	1.5
	2	6	4.5	4.5	6.0
	3	62	46.3	46.3	52.2
	4	39	29.1	29.1	81.3
	5	25	18.7	18.7	100.0
	Total	134	100.0	100.0	

Table 15: Frequency analysis for Delay of Shifting

Figure 8: Graph shows the Delay of Shifting

		Frequency	Percent	Valid Percent	Cumulative	
					Percent	
Valid	1	2	1.5	1.5	1.5	
	2	16	11.9	11.9	13.4	
	3	45	33.6	33.6	47.0	
	4	47	35.1	35.1	82.1	
	5	24	17.9	17.9	100.0	
	Total	134	100.0	100.0		

Conclusion

This investigation is required for cases related to construction field with significant variables like project delays. The factors predicted by the organization including project groups are affected by schedule effect on delay and costs with phases for reduction. The influence on project development is an important aspect. Several factors remain in vague condition in diverse hazards conditions. However, some factors like conflicts of team playsremain less noticeable.

Recommendations

When significant adverse events occur, then we need to know the occurrence of that gap and also canconduct few workshops towards educating the

employees or else, later we need to evaluate after the action takes place and investigate the explanations about the consequences which occurred for important schedule delays and cost overruns on projects. Standardized planning as well as controlling follows can be implemented as well noteworthy and also used by the whole organization.

References:

List all the material used from various sources for making this project proposal

Research Papers:

- Ahmed, S.M., Azhar, S., Kappagntula, P. and Gollapudil, D. (2003), "Delays in construction: a brief study of the Florida construction industry", Proceedings of the 39th Annual ASC Conference, Clemson University, Clemson, SC, pp. 257-266.
- Assaf.S.A. and Al Hejji, S. (2006), "Causes of delay in large construction projects", International Journal of Project Management, Vol. 24 No. 4, pp. 349-357.
- Sambasvian.M. and Soon, Y.W. (2007), "Causes and effects of delays in Malaysian construction industry", International Journal of Project Management, Vol. 25 No. 5, pp. 522-531.
- Sweis, G., Sweis, R., Abu Hammad, A. and Shboul, A. (2008), "Delays in construction projects: the case of Jordan", International Journal of Project Management, Vol. 26 No. 6, pp. 665-674.
- Abd El-Razek, M.E., Bassioni, H.A. and Mobarak, A.M. (2008), "Causes of delays in building construction projects in Egypt", Journal of Construction Engineering and Management, Vol. 134 No. 11, pp. 831-841.
- Ibrahim Mahamid (2012) "Causes of Delay in Road Construction Projects", Journal of Management in Engineering 28(3):300-310
- HemantaDoloi et al (2012), "Analysing factors affecting delays in Indian construction projects", International Journal of Project Management 30(4)
- Murat Gunduz et al. (2013), "Quantification of Delay Factors Using the Relative Importance Index Method for Construction Projects in Turkey", Journal of Management in Engineering 29(2):133-139.
- Anu V. Thomas et al (2014), "Factors Influencing Construction Labour Productivity: An Indian Case Study", Journal of Construction in Developing Countries, 19(1), 53–68, 2014.
- Mr.Salim, S.Mulla et al (2015), "Analysis of Delay In Execution of Construction Projects", Journal of Civil Engineering, Science and Technology 9(1):41-49.
- JesperKranker Larsen et al. (2016), "Factors Affecting Schedule Delay, Cost Overrun, and Quality Level in Public Construction Projects", Journal of Management in Engineering 32(1):04015032.