
International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

* Corresponding author: Le Ngoc Giang. Tel.: +84969896136

E-mail address: lengocgianglinh@gmail.com

Design of a custom frequency divider for aviation equipment using the

Kit FPGA Altera DE2

Phan Hien
1
, Vuong Thuy Linh

2
 , Le Ngoc Giang

3*

1Master, Head of the Radar Basics Department, Faculty of Fundamental Technics, AD-AF Academy of Viet Nam, Ha Noi, Vietnam
2Master, Lecturer, Department of Information Technology, Faculty of General Education, University of Labour and Social Affairs, No. 43, Tran Duy

Hung Street, Trung Hoa Ward, Cau Giay District, Hanoi City, Vietnam
3Doctor, Head of the Metrology Department, Faculty of Fundamental Technics, AD-AF Academy of Viet Nam, Ha Noi, Vietnam

* Email: lengocgianglinh@gmail.com

DOI: https://doi.org/10.55248/gengpi.2022.3.4.15

A B S T R A C T

When operating aviation equipment or when working on test benches, test tables, etc., it is necessary to choose the right frequency to use. The custom

frequency divider was designed by the author with the purpose of giving the right frequency to the desired frequency. A custom frequency divider was

installed on Kit Altera DE2. The frequency selection is set by the user via push buttons.

Keywords: Kit FPGA Altera DE2, custom frequency divider, aviation equipment, Quartus II.

1. Introduction

Due to the simple refactoring ability and possessing a large block of logic resources, FPGA is applied to many classes of problems, such as: digital

signal processing and digital filtering; signal modulation and demodulation; encoding, decoding, and speech recognition; audio signal processing and

digital image processing; applications in information systems such as voice IP systems, voice mail, modems, mobile phones, communication in LAN,

WIFI, television, and radio; applications in controlling electronic devices: hard drives, printers, industrial machines, navigation, positioning, and robots.

Using the DE 2 Kit is especially important in the design of electronic circuits such as frequency dividers and failure detectors used on aircraft. Design

a failure warning and a pilot instruction circuit on the aircraft: when a failure signal is sent to the warning unit, it will perform a warning process by sound,

image, and failure indicator light on the aircraft. When building a program, we can use the DE2 Kit to check the working process of the system with the

hardware integrated into the Kit. Design a frequency divider circuit: Create a frequency divider circuit to generate corresponding frequencies in

aeronautical engineering to meet test requirements and frequency value requirements.

In addition, modern aircraft have used FPGA technology and applied Altera microchips in automatic control systems, remote control systems, inertial

guidance systems, and weapons control systems to solve the problems of aiming and guiding, optimal selection of aeronautical lethal vehicles, and image

processing to display on the screen to notify the pilot. Altera's FPGA components such as FLEX8000, FLEX10K, CYCLONE, and STRATIX are used

very effectively in RAM and ROM program memories in computers. Altera components are also used a lot in ground test vehicles, missile test equipment

design, etc., and have demonstrated technological superiority, such as: integration ability and working accuracy, the ability to check and replace when

there is a breakdown.

https://doi.org/10.55248/gengpi.2022.3.4.15

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022 2477

2. Design of a custom frequency divider

2.1. Structure of a custom frequency divider

The self-tuning frequency divider uses the DE2 Kit, which is designed for the user to set the desired output frequency by pressing the 1÷4 Buttons.

After pushing the Start switch to start dividing the frequency, the output of the Clk-Out pin will have the desired frequency in the range of 1÷9999Hz. The

self-tuning frequency divider is designed with modules as shown in Figure 1.

Fig. 1- Structure diagram of a custom frequency divider

-Button-Num: The module identifies the button, converts it to the corresponding integer value.

-Num-7seg: The module displays the output frequency value of the divider, converting it into 7-bit binary code for display on a 7-segment LED.

- Num-to-Result: The module calculates the output frequency value from the input number push button value.

- Divider-Clock: Frequency division module, with 3 inputs: Clk_in with a frequency of 50MHz, Result_div with a frequency value to be divided, Start;

Output is Clk_out.

- Result-Num: The module calculates and displays the set frequency value.

2.2. The general principle of custom frequency dividers

A frequency divider is an important component in digital circuit design and is used very commonly. The frequency divider is used to generate the

desired frequency by dividing the clock input pulse frequency by a certain factor. The frequency divider has the frequency of the input signal (fin) and the

frequency of the output signal (fout). They are related by the scale factor N:

fout = fin / N; or Tout = Tin * N

Fig.2 - Custom frequency divider pulse plot

2478 International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022

2.3. Custom Frequency Divider Main Program

LIBRARY IEEE;

USE IEEE.STD_LOGIC_1164.ALL;

USE IEEE.STD_LOGIC_UNSIGNED.ALL;

USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY Divider IS

 port(

 KEY: in std_LOGIC_vector(3 downto 0);

 Clk_in: in std_logic; - - CLOCK_50

 Start : in STD_LOGIC; - - SW0

 HEX0: out std_logic_vector(6 downto 0);

 HEX1: out std_logic_vector(6 downto 0);

 HEX2: out std_logic_vector(6 downto 0);

 HEX3: out std_logic_vector(6 downto 0);

 Clk_out: out std_logic;

 Clk_out2: out std_LOGIC);

END Divider;

ARCHITECTURE Structure OF Divider IS

 signal Num0: integer:=0;

 signal Num1: integer:=0;

 signal Num2: integer:=0;

 signal Num3: integer:=0;

 signal Result_div: integer:=0;

component button_num

 port(button: in std_logic;

 clk: in std_logic;

 number: out integer);

end component;

component num_seg_on

 port(number: in integer;

 clk: in std_logic;

 SEGMENT: out std_logic_vector(6 downto 0));

end component;

component num_seg_start

 port(number: in integer;

 clk: in std_logic;

 button_start: in std_logic;

 SEGMENT: out std_logic_vector(6 downto 0));

END component;

component button_result_div

 Port (num0,num1,num2,num3: in integer;

 clk: in std_LOGIC;

 start: in std_LOGIC;

 result_div: out integer);

end component;

component divider_clock

 Port (clk_in : in STD_LOGIC;

 start: in std_LOGIC;

 result_div: in integer;

 clk_out: out STD_LOGIC;

 clk_out2: out std_LOGIC);

end component;

BEGIN

-- -- Calculating of the number

Number0: button_num port map (button => KEY(0),clk => Clk_in, number => Num0);

Number1: button_num port map (button => KEY(1),clk => Clk_in, number => Num1);

Number2: button_num port map (button => KEY(2),clk => Clk_in, number => Num2);

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022 2479

Number3: button_num port map (button => KEY(3),clk => Clk_in, number => Num3);

-- -- Display the value of the frequency to divide

Display00: num_seg_on port map (number => Num0, clk=>Clk_in, SEGMENT => HEX0);

Display01: num_seg_on port map (number => Num1, clk=>Clk_in, SEGMENT => HEX1);

Display02: num_seg_on port map (number => Num2, clk=>Clk_in, SEGMENT => HEX2);

Display03: num_seg_on port map (number => Num3, clk=>Clk_in, SEGMENT => HEX3);

-- -- Calculating the value of the frequency to divide

Result_Divider: button_result_div port map (num3 => Num3, num2 => Num2, num1 => Num1, num0 => Num0, clk => Clk_in,start => Start,

result_div => Result_div);

-- -- Calculate the output frequency value

DIVIDER: divider_clock port map (clk_in => Clk_in,start => Start, result_div => Result_div, clk_out => Clk_out,clk_out2 => Clk_out2);

 END Structure;

3. Divider-Clock frequency division module

3.1. Design of a Custom Frequency Division Module

Divider-Clock: Frequency division module, with 3 inputs: Clk_in with a frequency of 50MHz, Result_div with a frequency value to be divided, Start;

Output is Clk_out. A custom frequency divider, designed to work only when started with the Start button. The output frequency has a pulse width of 50%.

The value (2*N) is the frequency division factor. The output frequency is calculated as follows:

FOUT = FIN /(2*N);

The flowchart of the custom frequency divider is shown in Figure 3.

Fig.3- The flowchart of the custom frequency divider

2480 International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022

3.2. Program code of the custom frequency division module

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity divider_clock is

 Port (

 clk_in : in STD_LOGIC;

 start: in std_LOGIC;

 result_div: in integer;

 clk_out: out STD_LOGIC;

 clk_out2: out std_LOGIC

);

end divider_clock;

architecture Behavioral of divider_clock is

 signal temporal: STD_LOGIC;

 signal counter : integer;

 signal value_div:integer;

begin

 value_div <= 50000000/(2*result_div);

 frequency_divider: process (start, clk_in)

 begin

 if(start = '1') then

 if rising_edge(clk_in) then

 if (counter = (value_div-1)) then

 temporal <= NOT(temporal);

 counter <= 0;

 else

 counter <= counter + 1;

 end if;

 end if;

 else

 temporal <= '0';

 counter <= 0;

 end if;

 clk_out <= temporal;

 clk_out2 <= temporal;

 end process;

end Behavioral;

4. Button-Num button recognition module

4.1. Flowchart of the button recognition program algorithm

The push button recognition module is responsible for recognizing the status of the buttons on the DE2 Kit (when the button is pressed, the

corresponding logic is 0). Convert the corresponding button's value to the integer value. The corresponding value of each button is 0÷9 and will be

displayed on the 7-segment LED, so we only need to recognize the state of the push buttons. The flowchart of the program to recognize the push buttons is

converted to corresponding integer values 0÷9, as shown in Figure 4.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022 2481

Fig.4- Flowchart of the button recognition program algorithm

4.2. Program code of the button recognition module

 LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

 USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY button_num IS

 port (

button: in std_logic;

 clk: in std_logic;

 number: out integer

);

END button_num;

ARCHITECTURE Behavioral OF button_num IS

 signal temp: integer range 0 to 9 := 0;

BEGIN

 process(clk)

 BEGIN

 if(falling_edge(button))then

 if(temp = 9) then

 temp <=0;

 else

 temp <= temp+1;

 end if;

 end if;

 number <= temp;

 END process;

END Behavioral;

2482 International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022

5. Num-to-Result Frequency Value Calculation Module

5.1. The Calculation of Frequency Value Principle

The frequency value calculation module has the task of calculating the output frequency value to be divided from the value of the buttons. With four

buttons, there will be four corresponding values: Num3, Num2, Num1, and Num0. The principle of calculating the output frequency value according to

the formula:

Result_div = (1000*Num3) + (100*Num2) + (10*Num1) + Num0.

5.2. The frequency value calculation module's program code

library IEEE;

use IEEE.STD_LOGIC_1164.ALL;

entity button_result_div is

 Port (num0,num1,num2,num3: in integer;

 clk: in std_LOGIC;

 start: in std_LOGIC;

 result_div: out integer);

end button_result_div;

architecture Behavioral of button_result_div is BEGIN

 process (clk,start)

 begin

 if rising_edge(start) then

result_div <= (1000*num3)+(100*num2)+(10*num1)+num0;

 end if;

 end process;

END Behavioral;

6. The module displays the frequency value on a 7-segment LED: Num-7seg

6.1. Operating principle

Module Num-7seg works on the principle of converting each number value into a 7-bit binary value for display on a 7-segment LED. On the DE2 Kit,

the 7-segment LED is connected to a common anode. When the LED input pin has bit 1, the LED is off. When the LED input pin has bit 0, the LED lights

up.

For example, if the value of Number = 0, then the 7-bit code on the 7-segment LED is: "1000000"; if Number = 1, then the 7-bit code on the 7-

segment LED is: "1111001".

6.2. Program code of the 7-segment LED display module

LIBRARY IEEE;

 USE IEEE.STD_LOGIC_1164.ALL;

 USE IEEE.STD_LOGIC_UNSIGNED.ALL;

 USE IEEE.STD_LOGIC_ARITH.ALL;

ENTITY num_seg_on IS

 port(

 number: in integer;

 clk: in std_logic;

 SEGMENT: out std_logic_vector(6 downto 0)

);

END num_seg_on;

ARCHITECTURE Behavioral OF num_seg_on IS

BEGIN

 process(clk,number)

 BEGIN

 if (clk='1') then

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022 2483

case number is

when 0 => SEGMENT <= "1000000"; -- 0

when 1 => SEGMENT <= "1111001"; -- 1

when 2 => SEGMENT <= "0100100"; -- 2

when 3 => SEGMENT <= "0110000"; -- 3

when 4 => SEGMENT <= "0011001"; -- 4

when 5 => SEGMENT <= "0010010"; -- 5

when 6 => SEGMENT <= "0000010"; -- 6

when 7 => SEGMENT <= "1111000"; -- 7

when 8 => SEGMENT <= "0000000"; -- 8

when 9 => SEGMENT <= "0010000"; -- 9

when others => SEGMENT <= "1111111";

 end case;

 end if;

 END process;

END Behavioral;

7. Test and evaluate the custom frequency divider's quality

After programming, compiling, and simulating the custom frequency divider on Quartus II software, the program is loaded and tested experimentally

with the DE2 Kit.

Here are the simulation and experimental results:

Fig.5- RTL register transfer level design on Quartus 2

2484 International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022

Fig.6- Experimental test on the DE2 kit

Check the output frequency through 2 experiments:

- Observe the red LED status on the DE2 Kit;

- Measure the output frequency.

The test results show that the custom frequency divider meets the original design requirements. The output frequency is exactly the same as the

frequency set by the user via the push button.

4. Conclusion

In the article, the authors clarify the principle of building a frequency divider from the input frequency, programming, compiling, and loading it on the

FPGA Altera DE2 Kit. The authors designed a custom frequency divider that produces output frequency values in the range of 1–99,999 Hz. Simulation

results and experimental tests show that the custom frequency divider works well; the output frequency measured on the Clk-Out pin is correct with the

value set on the buttons. If the number of buttons is increased, a custom frequency divider can be set up with a larger frequency setting value.

ACKNOWLEDGEMENTS

This work is supported by: Department of Information Technology, Faculty of General Education, University of Labour and Social Affairs in

Hanoi Vietnam. Faculty of Fundamental Technics, AD-AF Academy of Viet Nam.

REFERENCES

Roger Lipsett, Carl F. Schaefer, Cary Ussery (1989). VHDL: Hardware Description and Design. Kluwer Academic Publishers, United States of

America.

Wayne Wolf (2004). FPGA-Based System Design. Prentice Hall.

Harold Thimble by (2013). Reasons to Question Seven Segment Displays. CHI 2013.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 2476-2485, April 2022 2485

Shengwei Meng, Zhenghuan Xia (2014). An FPGA-Integrated Time-to-Digital Converter Based on a Ring Oscillator for Programmable Delay Line

Resolution Measurement. Journal of Electrical and Computer Engineering.

K. J. Hong, E. Kim, J. Y. Yeom (2012). FPGA-based time-to-digital converter for time-of-flight PET detector. In Proceedings of the Nuclear Science

Symposium and Medical Imaging Conference (NSS/MIC '12), pp. 2463–2465.

S. S. Junnarkar, P. O'Connor, P. Vaska, (2009). FPGA-based self-calibrating time-to-digital converter for time-of-flight experiments. IEEE

Transactions on Nuclear Science, vol. 56, no. 4, pp. 2374–2379.

P. Chen, P.-Y. Chen, J.-S. Lai (2010). FPGA vernier digital-to-time converter with 1.58 ps resolution and 59.3 minutes operation range. IEEE

Transactions on Circuits and Systems, vol. 57, no. 6, pp. 1134–1142.

