
International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

* Corresponding author. Tel.: +91 7869849003.

E-mail address: info@diliprai.com

Invisible Unicode Programming

Dilip Kumar Rai

Dilip Rai,House-77,Phase-2,Kailash Nagar,Bhopal,(M.P.),Pin-462010,India

DOI: https://doi.org/10.55248/gengpi.2022.3.4.1

A B S T R A C T

Invisible Unicode programming (IUP) can be defined as the art and science of hiding information in data that can be read by the

computer. Invisible Unicode Programming (IUP) has the explicit goal of converting traditional character encodings to invisible encoding.

This paper presents a new method to hide text. This systematic method uses the binary format of invisible character to hide and extract

secret information. Creating a secret message involves four main steps, first using the binary format of the original letters in the

message.nextcreating the appropriate Binary Masking Value (BMV)to cover the text, and subtracting the Binary Value (BV) from the

Binary Masking Value (BMV)text to get Binary Invisible Unicode (BIU), and finally masking secret text using Binary Invisible Character

(BIU). This Invisible Unicode Programming (IUP) Concept uses the 54 Invisible Unicode characters to make the text invisible.

The results of the experiments show that this IUP method creates highly secured invisible information using the multi-level complexity

algorithm to avoid the hackers.

Keywords: Invisible Unicode, Invisible Coding, Hiding information, Invisible Characters

1. UNICODE STANDARD

Unicode is a universal character encoding standard that is used to support non-ASCII characters. Initially, all text editors were created based on

ASCII encoding, which contains characters of the English alphabet and consists of only 128 characters.

Unicode provides support for all the world's languages and their unique character sets. Unicode can support more than 1 million characters. The

reason is that Unicode can use more position bits to represent a character, which are units of information in computers. ASCII characters only

require 7 bits, while Unicode can use 16 bits. This is necessary because some languages, such as Chinese and Arabic, require more position bits.

At the same time, the Unicode table for characters in a language such as Arabic includes languages such as Persian, Urdu, Pashto, Sindhi, and

Kurdish. The standard provides detailed explanations of implementation methods, including the letter-join method, right-to-left text insertion,

and much more.

For our research, we will rely on the work, where we are interested in Unicode codes for spaces.

The Unicode Consortium

The Unicode Consortium develops the Unicode Standard. Their goal is to replace the existing character sets with its standard Unicode

Transformation Format (UTF). The Unicode Standard has become a success and is implemented in HTML, XML, Java, JavaScript, E-mail, ASP, PHP,

etc. The Unicode standard is also supported in many operating systems and all modern browsers. The Unicode Consortium cooperates with the

leading standards development organizations, like ISO, W3C, and ECMA.

The Unicode Consortium developed the UTF-8 and UTF-16 standards, because the ISO-8859 character-sets are limited, and not compatible a

multilingual environment.

The Unicode Standard covers (almost) all the characters, punctuations, and symbols in the world.

https://doi.org/10.55248/gengpi.2022.3.4.1

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 2

2. Introduction

With the ceaseless usage of web and other online services, it has turned out that copying, sharing, and transmitting digital media over the

Internet are amazingly simple. Since the text is one of the main available data sources and most widely used digital media on the Internet, the

significant part of websites, books, articles, daily papers, and so on is just the plain text Currently IUP technique is applied for saving privacy and

originality of HTML Source Code . Thereby, Invisible Unicode Programming considers as a challenging mission that tenuous adjustment in HTML

Source coding can be specified. Invisible character technique is used to hide the html source code without anyone can be seen the hidden

processing.

There are different techniques like steganography, cryptography; coding, etc have been utilized. Now we are using IUP to hide html source code.

There are 54 invisible Unicode characters are considering the flag of communicating in a hidden style.

In view of this digital invisible Unicode programming conceals even the evidence of encrypted messaging, many methods have been used to hide

information by using the recorder with tales of steganography and cryptography through times of war or peace, Moreover, IUP is the art and

science which hides information in any computer readable data in a way that an invisible Unicode character should be not distinguishable from

origin cover neither by a human nor by computer looking for statistical pattern.

3. Illustrations

Fig. 1 - (a) first picture; (b) second picture.

4. Related Work

4.1 Whitespace Programming Language, designed in 2003 by Edwin Brady and Chris Morris, is an imperative, stack-based, esoteric

programming language that uses only whitespace characters—space, tab, and linefeed—as syntax. All other characters are ignored.

Whitespace got a brief moment of fame when it was posted on Slashdot on April 1st, 2003. Most people took it as an April fool’s joke,

while it wasn’t. UP is superset of Whitespace programming Language because Whitespace Programming language only uses 4

characters, but IUP use 54 Invisible Unicode characters. Much more secure and powerful.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 3

4.2 Steganography is the practice of concealing a message within another message or a physical object. In computing/electronic contexts,

a computer file, message, image, or video is concealed within another file, message, image, or video. The word steganography comes

from Greek steganographia, which combines the words steganós (στεγανός), meaning "covered or concealed", and -graphia (γραφή)

meaning "writing".

4.3 Cryptography is the study of secure communications techniques that allow only the sender and intended recipient of a message to

view its contents. The term is derived from the Greek word kryptos, which means hidden.

4.4 Watermarking is the technique and art of hiding additional data (such as watermarked bits, logo and text message) in the host signal

which includes image, video, audio, speech, text, without any perceptibility of the existence of additional information

5. Hiding processing

1. ASCII BINARY + INVISIBLE UNICODE BINARY = Masking Binary Value (MBV)

2. ASCII BINARY – Masking Binary Value = INVISIBLE UNICODE BINARY

3. MBV – IUB = ASCII Character.

TABLE - I
Invisible Unicode in the Algorithm

ENCODE INVISIBLE UNICODE CHARSET
UTF-8,UTF-16 & UTF-32 ENCODE

SNO Space Unicode ENCODE
TYPE

hex dec(bytes) dec binary HTML

1 CHARACTER TABULATION U + 0009 1 byte 09 9 9 00001001 	
2 SPACE U+0020 1 byte

20 32 32 00100000
3 NO-BREAK SPACE U+00A0 2 byte

 C2 A0 194 160 49824 11000010 10100000
4 SOFT HYPHEN U+00AD 2 byte

 C2 AD 194 173 49837 11000010 10101101 ­
5 COMBINING GRAPHEME JOINER U+034F 2 byte

 CD 8F 205 143 52623 11001101 10001111 ͏
6 ARABIC LETTER MARK U+061C 2 byte

 D8 9C 216 156 55452 11011000 10011100 ؜
7 HANGUL CHOSEONG FILLER U+115F 3 byte

 E1 85
9F

 225 133
159 14779807

 11100001
10000101
10011111 ᅟ

8 HANGUL JUNGSEONG FILLER U+1160 3 byte E1 85 A0 225 133 160 14779808 11100001 ᅠ

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 4

10000101
10100000

9 KHMER VOWEL INHERENT AQ U+17B4 3 byte E1 9E
B4

 225 158
180 14786228

 11100001 10011110

10110100 ឴
10 KHMER VOWEL INHERENT AA U+17B5 3 byte

 E1 9E
B5

 225 158
181 14786229

 11100001
10011110
10110101 ឵

11 MONGOLIAN VOWEL SEPARATOR U+180E 3 byte

 E1 A0
8E

 225 160
142

14786702

11100001

10100000

10001110 ᠎
12 EN QUAD U+2000 3 byte

E2 80

80
 226 128
128 14844032

 11100010

10000000

10000000  
13 EM QUAD U+2001 3 byte

 E2 80
81

 226 128
129 14844033

 11100010
10000000

10000001  
14 EN SPACE U+2002 3 byte

E2 80

82
 226 128
130

14844034

 11100010
10000000

10000010  
15 EM SPACE U+2003 3 byte

E2 80

83
 226 128
131 14844035

 11100010
10000000

10000011  
16 THREE-PER-EM SPACE U+2004 3 byte E2 80

84
 226 128
132 14844036

 11100010 10000000
10000100  

17 FOUR-PER-EM SPACE U+2005 3 byte E2 80
85

 226 128
133 14844037

 11100010 10000000
10000101  

18 SIX-PER-EM SPACE U+2006 3 byte E2 80
86

226 128

134 14844038
 11100010 10000000
10000110  

19 FIGURE SPACE U+2007 3 byte E2 80
87

 226 128
135 14844039

 11100010 10000000
10000111  

20 PUNCTUATION SPACE U+2008 3 byte E2 80
88

 226 128
136 14844040

 11100010 10000000
10001000  

21 THIN SPACE U+2009 3 byte E2 80
89

 226 128
137 14844041

 11100010 10000000
10001001  

22 HAIR SPACE U+200A 3 byte E2 80
8A

 226 128
138 14844042

 11100010 10000000
10001010  

23 ZERO WIDTH SPACE U+200B 3 byte E2 80
8B

 226 128
139 14844043

 11100010 10000000
10001011 ​

24 ZERO WIDTH NON-JOINER U+200C 3 byte

 E2 80
8C

 226 128
140 14844044

 11100010
10000000
10001100 ‌

25 ZERO WIDTH JOINER U+200D 3 byte E2 80
8D

 226 128
141 14844045

 11100010 10000000
10001101 ‍

26 LEFT-TO-RIGHT MARK U+200E 3 byte E2 80
8E

 226 128
142 14844046

 11100010 10000000
10001110 ‎

27 RIGHT-TO-LEFT MARK U+200F 3 byte E2 80
8F

 226 128
143 14844047

 11100010 10000000
10001111 ‏

28 NARROW NO-BREAK SPACE U+202F 3 byte E2 80
AF

 226 128
175 14844079

 11100010 10000000
10101111  

29 MEDIUM MATHEMATICAL SPACE U+205F 3 byte E2 81
9F

 226 129
159 14844319

 11100010 10000001
10011111  

30 WORD JOINER U+2060 3 byte E2 81
A0

 226 129
160 14844320

 11100010 10000001
10100000 ⁠

31 FUNCTION APPLICATION U+2061 3 byte E2 81
A1

 226 129
161 14844321

 11100010 10000001
10100001 ⁡

32 INVISIBLE TIMES U+2062 3 byte E2 81
A2

 226 129
162 14844322

 11100010 10000001
10100010 ⁢

33 INVISIBLE SEPARATOR U+2063 3 byte E2 81
A3

 226 129
163 14844323

 11100010 10000001
10100011 ⁣

34 INVISIBLE PLUS U+2064 3 byte E2 81
A4

 226 129
164 14844324

 11100010 10000001
10100100 ⁤

35 INHIBIT SYMMETRIC SWAPPING U+206A 3 byte E2 81
AA

 226 129
170 14844330

 11100010 10000001
10101010 ⁪

36 ACTIVATE SYMMETRIC SWAPPING U+206B 3 byte E2 81
AB

 226 129
171 14844331

 11100010 10000001
10101011 ⁫

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 5

Example: Suppose after APPLYING Server side Analysis Algorithm we got UNIQUE ID 10024 result using JavaScript AI

(invisibleCGIvisible.ai) AI File use in Image D above on www.god.com Domain.

Suppose after APPLYING Server side Analysis Algorithm we got UNIQUE ID 10024 result.

1. UID – 10024
2. Now Shuffling UNICODE CHARSET Table – 1 based on

UID in Loop and rearrange and generate new customized Array
Set for www.god.com and Generate TABLE-2

TABLE-2

37 INHIBIT ARABIC FORM SHAPING U+206C 3 byte E2 81
AC

 226 129
172 14844332

 11100010 10000001
10101100 ⁬

38 ACTIVATE ARABIC FORM SHAPING U+206D 3 byte E2 81
AD

 226 129
173 14844333

 11100010 10000001
10101101 ⁭

39 NATIONAL DIGIT SHAPES U+206E 3 byte E2 81
AE

 226 129
174 14844334

 11100010 10000001
10101110 ⁮

40 NOMINAL DIGIT SHAPES U+206F 3 byte E2 81
AF

 226 129
175 14844335

 11100010 10000001
10101111 ⁯

41 IDEOGRAPHIC SPACE U+3000 3 byte E3 80
80

227 128

128 14909568
 11100011 10000000
10000000 　

42 BRAILLE PATTERN BLANK U+2800 3 byte E2 A0
80

 226 160
128 14852224

 11100010 10100000
10000000 ⠀

43 HANGUL FILLER U+3164 3 byte E3 85
A4

 227 133
164 14910884

 11100011 10000101
10100100 ㅤ

44 ZERO WIDTH NO-BREAK SPACE U+FEFF 3 byte EF BB
BF

 239 187
191 15711167

 11101111 10111011
10111111 ﻿

45 HALFWIDTH HANGUL FILLER U+FFA0 3 byte EF BE
A0

 239 190
160 15711904

 11101111 10111110
10100000 ﾠ

46 MUSICAL SYMBOL NULL NOTEHEAD U+1D159 4 byte F0 9D 85
99

 240 157 133
153 4036855193

 11110000 10011101
10000101 10011001 𝅙

47 MUSICAL SYMBOL BEGIN BEAM U+1D173 4 byte F0 9D 85
B3

 240 157 133
179 4036855219

 11110000 10011101
10000101 10110011 𝅳

48 MUSICAL SYMBOL END BEAM U+1D174 4 byte F0 9D 85
B4

 240 157 133
180 4036855220

 11110000 10011101
10000101 10110100 𝅴

49 MUSICAL SYMBOL BEGIN TIE U+1D175 4 byte F0 9D 85
B5

 240 157 133
181 4036855221

 11110000 10011101
10000101 10110101 𝅵

50 MUSICAL SYMBOL END TIE U+1D176 4 byte F0 9D 85
B6

 240 157 133
182 4036855222

 11110000 10011101
10000101 10110110 𝅶

51 MUSICAL SYMBOL BEGIN SLUR U+1D177 4 byte F0 9D 85
B7

 240 157 133
183 4036855223

 11110000 10011101
10000101 10110111 𝅷

52 MUSICAL SYMBOL END SLUR U+1D178 4 byte F0 9D 85
B8

 240 157 133
184 4036855224

 11110000 10011101
10000101 10111000 𝅸

53 MUSICAL SYMBOL BEGIN PHRASE U+1D179 4 byte F0 9D 85
B9

 240 157 133
185 4036855225

 11110000 10011101
10000101 10111001 𝅹

54 MUSICAL SYMBOL END PHRASE U+1D17A 4 byte F0 9D 85
BA

 240 157 133
186 4036855226

 11110000 10011101
10000101 10111010 𝅺

A CHARACTER TABULATION U + 0009

B SPACE U+0020

C NO-BREAK SPACE U+00A0

D SOFT HYPHEN U+00AD

E COMBINING GRAPHEME JOINER U+034F

F ARABIC LETTER MARK U+061C

 G HANGUL CHOSEONG FILLER U+115F

H HANGUL JUNGSEONG FILLER U+1160

I KHMER VOWEL INHERENT AQ U+17B4

J KHMER VOWEL INHERENT AA U+17B5

K MONGOLIAN VOWEL SEPARATOR U+180E

UNIQUE ID FLOWCHART

http://www.god.com/

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 6

1 2 3

G O D

01000111 01001111 01000100

5.2 Binary Adder and Subtractor for Above Calculation

We are going to look at the Binary Adder and Subtractor Circuits. We will learn about the Half Adder, Full Adder,
Parallel Adder (using multiple Full Adders), and Half Subtractor, Full Subtractor and a Parallel Adder / Subtractor
combination circuit.

Binary Addition Circuits
Addition and Subtraction are two basic Arithmetic Operations that must be performed by any Digital Computer. If
both these operations can be properly implemented, then Multiplication and Division tasks become easy (as
multiplication is repeated addition and division is repeated subtraction).
Consider the operation of adding two binary numbers, which is one of the fundamental tasks performed by a digital
computer. The four basic addition operations two single bit binary numbers are:

 0 + 0 = 0
 1 + 0 = 1
 0 + 1 = 1
 1 + 1 = (Carry)1 0

L EN QUAD U+2000

M EM QUAD U+2001

N EN SPACE U+2002

O EM SPACE U+2003

P THREE-PER-EM SPACE U+2004

Q FOUR-PER-EM SPACE U+2005

R SIX-PER-EM SPACE U+2006

S FIGURE SPACE U+2007

T PUNCTUATION SPACE U+2008

U THIN SPACE U+2009

V HAIR SPACE U+200A

W ZERO WIDTH SPACE U+200B

X ZERO WIDTH NON-JOINER U+200C

Y ZERO WIDTH JOINER U+200D

Z LEFT-TO-RIGHT MARK U+200E

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 7

In the first three operations, each binary addition gives sum as one bit , i.e., either 0 or 1. But for the fourth addition
operation (where the inputs are 1 and 1), the result consists of two binary digits. Here, the lower significant bit is
called as the ‘Sum Bit’, while the higher significant bit is called as the ‘Carry Bit’.

For single bit additions, there may not be an issue. The problem may arise when we try to add binary numbers with
more than one bit.

The logic circuits which are designed to perform the addition of two binary numbers are called as Binary Adder
Circuits. Depending on how they handle the output of the ‘1+1’ addition, they are divided into:

 Half Adder
 Full Adder

Let us take a look at the binary addition performed by various adder circuits.

Half Adder
A logic circuit used for adding two 1-bit numbers or simply two bits is called as a Half Adder circuit. This circuit has
two inputs and two outputs. The inputs are the two 1-bit binary numbers (known as Augend and Addend) and the
outputs are Sum and Carry.

The following image shows the block diagram of Half Adder.

The truth table of the Half Adder is shown in the following table.

INPUT OUTPUT
A B Sum Carry
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

If we observe the ‘Sum’ values in the above truth table, it resembles an Ex-OR Gate. Similarly, the values for ‘Carry’ in
the above truth table resembles an AND Gate.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 8

So, to properly implement a Half Adder, you need two Logic Gates: an XOR gate for ‘Sum’ Output and an AND gate for
‘Carry’ output. The following image shows the Logic Diagram of a Half Adder.

In the above half adder circuit, inputs are labeled as A and B. The ‘Sum’ output is labeled as summation symbol (∑)
and the Carry output is labeled with CO.

Half adder is mainly used for addition of augend and addend of first order binary numbers i.e., 1-bit binary numbers.
We cannot add binary numbers with more than one bit as the Half Adder cannot include the ‘Carry’ information
from the previous sum.

Due to this limitation, Half Adder is practically not used in many applications, especially in multi-digit addition. In
such applications, carry of the previous digit addition must be added along with two bits; hence it is a three bit
addition.

Full Adder
A Full Adder is a combinational logic circuit which performs addition on three bits and produces two outputs: a Sum
and a Carry. As we have seen that the Half Adder cannot respond to three inputs and hence the full adder is used to
add three digits at a time.

It consists of three inputs, of which two are input variables representing the two significant bits to be
added, whereas the third input terminal is the carry from the previous addition. The two outputs are a Sum and
Carry outputs.

The following image shows a block diagram of a Full Adder where the inputs are labelled as A, B and CIN, while the
outputs are labelled as ∑ and COUT.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 9

Coming to the truth table, the following table shows the truth table of a Full Adder.

From the above truth table, we can obtain the Boolean Expressions for both the Sum and Carry Outputs. Using those
expressions, we can build the logic circuits for Full Adder. But by simplifying the equations further, we can derive at
a point that a Full Adder can be easily implemented using two Half Adders and an OR Gate.

The following image shows a Full Adder Circuit implemented using two Half Adders and an OR Gate. Here, A and B
are the main input bits, CIN is the carry input, ∑ and COUT are the Sum and Carry Outputs respectively.

INPUT OUTPUT

A B CIN Sum COUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 10

Parallel Binary Adders
As we discussed, a single Full Adder performs the addition of two one bit numbers and also the carry input. For
performing the addition of binary numbers with more than one bit, more than one full adder is required and the
number of Full Adders depends on the number bits. Thus, a Parallel Adder, is a combination of Multiple Full Adders
and is used for adding all bits of the two numbers simultaneously.
By connecting ‘n’ number of full adders in parallel, an n-bit Parallel Adder can be constructed. From the below
figure, it is to be noted that there is no carry at the least significant position, hence we can use either a half adder or
make the carry input of full adder as zero at this position.

The following figure shows a Parallel 4-bit Binary Adder, which has three full adders and one half adder. The two
binary numbers to be added are ‘A3 A2 A1 A0‘ and ‘B3 B2 B1 B0‘ , which are applied to the corresponding inputs of the
Full Adders. This parallel adder produces their result as ‘C4 S3 S2 S1 S0‘ , where C4 is the final carry.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 11

In the 4 bit adder, first block is a half-adder that has two inputs as A0 B0 and produces a sum S0 and a carry bit C1.
The first block can also be a full adder and if so, then the input Carry C0 must be 0.

Next three blocks should be full adders, as there are three inputs applied to them (two main binary bits and a Carry
bit from the previous stage).

Hence, the second block full adder produces a sum S1 and a carry C2. This will be followed by other two full adders
and thus the final result is C4 S3 S2 S1 S0.

Commonly, the Full Adders are designed in dual in-line package integrated circuits. 74LS283 is a popular 4-bit full
adder IC. Arithmetic and Logic Unit or ALU of an unit computer consist of these parallel adders to perform the
addition of binary numbers.

Binary Subtraction Circuits
Another basic arithmetic operation to be performed by Digital Computers is the Subtraction. Subtraction is a
mathematical operation in which one integer number is deducted from another to obtain the equivalent quantity.
The number from which other number is to be deducted is called as ‘Minuend’ and the number subtracted from the
minuend is called ‘Subtrahend’.

Similar to the binary addition, binary subtraction is also has four possible basic operations. They are:

 0 – 0 = 0
 0 – 1 = (Borrow)1 1
 1 – 0 = 1
 1 – 1 = 0

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 12

The above figure shows the four possible rules or elementary operations of the binary subtractions. In all the
operations, each subtrahend bit is deducted from the minuend bit.

But in the second rule, minuend bit is smaller than the subtrahend bit, hence 1 is borrowed to perform the
subtraction. Similar to the adder circuits, basic subtraction circuits are also of two types:

 Half Subtractor
 Full Subtractor

Half Subtractors
A Half Subtractor is a multiple output Combinational Logic Circuit that does the subtraction of two 1-bit binary
numbers. It has two inputs and two outputs. The two inputs correspond to the two 1-bit binary numbers and the
two outputs corresponds to the Difference bit and Borrow bit (in contrast to Sum and Carry in Half Adder).

Following table shows the truth table of a Half Subtractor.

INPUT OUTPUT

A B Difference Borrow

0 0 0 0

0 1 1 1

1 0 1 0

1 1 0 0

From the above truth table, we can say that the ‘Difference’ output of the Half Subtractor is similar to an XOR output
(which is also same as the Sum output of the Half Adder). Thus, the Half Subtraction is also performed by the Ex-OR
gate with an AND gate with one inverted input and one normal input, requiring to perform the Borrow operation.

The following image shows the logic circuit of a Half Adder.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 13

This circuit is similar to that of the Half Adder with only difference being the minuend input i.e., A is complemented
before applied at the AND gate to implement the borrow output.

In case of multi-digit subtraction, subtraction between the two digits must be performed along with borrow of the
previous digit subtraction, and hence a subtractor needs to have three inputs, which is not possible with a Half
Subtractor. Therefore, a half subtractor has limited set of applications and strictly speaking, it is not used in practice.

Full Subtractor
A Full Subtractor is a combinational logic circuit which performs a subtraction between the two 1-bit binary
numbers and it also considers the borrow of the previous bit i.e., whether 1 has been borrowed by the previous
minuend bit.

So, a Full Subtractor has three inputs, in which two inputs corresponding to the two bits to be subtracted (minuend
A and subtrahend B), and a borrow bit, usually represented as BIN, corresponding to the borrow operation. There
are two outputs, one corresponds to the difference D output and the other Borrow output BO.

The following image shows the block diagram of a full subtractor.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 14

The following table shows the truth table of a Full Subtractor.

INPUT OUTPUT

A B BIN D BOUT

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

By deriving the Boolean expression for the full subtractor from above truth table, we get the expression that tells
that a full subtractor can be implemented with half subtractors with OR gate as shown in figure below.

By comparing the adder and subtractor circuits and truth tables, we can observe that the output D in the full

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 15

subtractor is exactly same as the output S of the full adder. And the only difference is that input variable A is
complemented in the full subtractor.

Therefore, it is possible to convert the full adder circuit into full subtractor by simply complementing the input A
before it is applied to the gates to produce the final borrow bit output Bo.

Parallel Binary Subtractors
To perform the subtraction of binary numbers with more than one bit, we have to use the Parallel Subtractors. This
parallel subtractor can be designed in several ways, including combination of half and full subtractors, all full
subtractors, all full adders with subtrahend complement input, etc.

The below figure shows a 4 bit Parallel Binary Subtractor formed by connecting one half subtractor and three full
subtractors.

In this subtractor, 4 bit minuend ‘A3 A2 A1 A0‘ is subtracted by 4 bit subtrahend ‘B3 B2 B1 B0‘ and the result is the
difference output ‘D3 D2 D1 D0‘ . The borrow output of each subtractor is connected as the borrow input to the next
subtractor.

It is also possible to design a 4 bit parallel subtractor using 4 full adders as shown in the below figure. This circuit
performs the subtraction operation by considering the principle that the addition of minuend and the complement
of the subtrahend is equivalent to the subtraction process.

We know that the subtraction of A by B is obtained by taking 2’s complement of B and adding it to A. The 2’s
complement of B is obtained by taking 1’s complement and adding 1 to the least significant pair of bits.

Hence, in this circuit 1’s complement of B is obtained with the inverters (NOT gate) and a 1 can be added to the sum
through the input carry.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 16

Parallel Adder / Subtractor
The operations of both addition and subtraction can be performed by a one common binary adder. Such binary
circuit can be designed by adding an Ex-OR gate with each full adder as shown in below figure. The figure below
shows the 4 bit parallel binary adder/subtractor which has two 4 bit inputs as ‘A3 A2 A1 A0‘ and ‘B3 B2 B1 B0‘ .

The mode input control line M is connected with carry input of the least significant bit of the full adder. This control
line decides the type of operation, whether addition or subtraction.

When M= 1, the circuit is a subtractor and when M=0, the circuit becomes adder. The Ex-OR gate consists of two
inputs to which one is connected to the B and other to input M. When M = 0, B Ex-OR of 0 produce B. Then, full
adders add the B with A with carry input zero and hence an addition operation is performed.

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 17

When M = 1, B Ex-OR of 0 produce B complement and also carry input is 1. Hence the complemented B inputs are
added to A and 1 is added through the input carry, nothing but a 2’s complement operation. Therefore, the
subtraction operation is performed.

6. Experimental Result

Practical Example of Invisible Unicode Programming
Normal HTML Webpage Example

Screenshot OUTPUT ON BROWSER Screenshot Source Code of HTML Webpage (Ctrl + U)

IUP - HTML Webpage Screenshot Source Code of HTML Webpage (Ctrl + U)

Implementation Algorithm of IUP
First: Suppose after APPLYING Server side Analysis Algorithm we got UNIQUE ID 10024 result using
JavaScript AI (invisibleCGIvisible.ai) AI File use in Image D above on www.god.com Domain.

3. UID – 10024
4. Now Shuffling UNICODE CHARSET Table – 1 based on

UID in Loop and rearrange and generate new customized Array
set for www.god.com and Generate TABLE-2

Logic to get MBV (Masking Binary Value)
And Logic to make Visible and Invisible character using (MBV)

1. ASCII BINARY + INVISIBLE UNICODE BINARY = Masking Binary Value (MBV)
2. ASCII BINARY – Masking Binary Value = INVISIBLE UNICODE BINARY
3. MBV – IUB = ASCII Character

B

D

A B

C D

view-source:https://www.diliprai.com/diliprai/invisibleCGIvisible.ai
http://www.god.com/
http://www.god.com/

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 18

 ‘G’
ASCII BINARY + INVISIBLE UNICODE BINARY = Masking Binary Value (MBV)
01000111 (‘G’ From Table - 3) + 11100001 10000101 10011111 (‘G’ From Table - 2) =
0111000011000010111100110

 ENCODE ‘G’ to Invisible ‘G’
0111000011000010111100110 – 01000111 = 11100001 10000101 10011111

 DECODE Invisible ‘G’ to Visible ‘G’
0111000011000010111100110 – 111000011000010110011111 = 01000111

 ‘O’
 Characters Binary
‘O’ 01001111
Masking Binary Value 0111000101000000011010010
U+ 2003 (Unicode Invisible Character) 11100010 10000000 10000011

 ‘D’
Characters Binary
‘D’ 01000100
Masking Binary Value 01100001011110001
U+ 00AD (Unicode Invisible Character) 11000010 10101101

7. Conclusion

IUP is revolutionary technology and science to add additional invisible obfuscation layer, it is a built-in security
method, sometimes referred to as application self-protection, it is also an additional layer of security in digital
world, so that we can Create Computer Document like word file, Excel file, PowerPoint File, Video File, Audio File,
Images etc all type of File is convert into invisible file.

Reference:
[1] D. Parnas, “On the Criteria to Be Used in

Decomposing Systems Into Modules”,

Communication of the ACM , vol. 15, no. 12,

December 1972, pp. 1053-1058.

[2] W. Bender, D. Gruhl, N. Morimoto, and A.

Lu, “Techniques for data hiding”, IBM syst. J.,

vol. 35, nos. 3 – 4, 1996, , pp. 313 – 336.

[3] J. Brassil, S. Low, N. F. Maxemchuk, and L.

O'Garman., “Marking Text Features of

Document Images to Deter Illicit

Dissemination”, IEEE, 1994, pp. 315-319.

[4] J. Brassil, S. Low, N. F. Maxemchuk, and L.

O'Garman, “Electronic Marking and

Identification Techniques to Discourage

Document Copying ”, IEEE, Oct. 1994, pp.

1278-1287.

[5] J. Brassil, S. Low, N. F. Maxemchuk, and L.

O'Garman. “Electronic Marking and

Identification Techniques to Discourage

Document Copying”. IEEE Journal on

Selected Areas in Communications , Vol. 13,

Oct. 1995, pp. 1495-1504.

[6] J. Brassil, S. Low, N. F. Maxemchuk, and L.

O'Garman, “Copyright Protection for the

Electronic Distribution of Text Documents”,

Proceedings of IEEE, Vol. 87, July 1999.

 Characters Binary
‘G’ 01000111
Masking Binary Value 0111000011000010111100110
U+ 115F (Unicode Invisible Character) 11100001 10000101 10011111

MBV –‘G’
‘G’

INVISIBLE UNICODE CHARACTER of ‘G’

‘G’ MBV –‘G’ INVISIBLE UNICODE CHARACTER of ‘G’

International Journal of Research Publication and Reviews, Vol 3, no 4, pp 1-19, April 2022 19

[7] J. Brassil, S. Low, N. F. Maxemchuk, and L.

O'Garman. “Document Marking and

Identification using Both Line and Word

Shifting,” Proc. Infocom95, IEEE CS Press,

Los Alamitos, Calif., 1995.

[8] Chen Chao, Wang Shuozhong, Zhang

Xinpeng. “Information Hiding In Text Using

Typesetting Tools with Stego-Encoding”,

ICICIC, 2006.

[9] P. Wayner, “Mimic functions”, Cryptologia

archive, vol. 16, Issue 3, July 1992, pp.193 –

214.

[10] P. Wayner. “ Strong Theoretical

Steganography”. Cryptologia, XIX (3), July

1995, pp. 285-299.

[11] M. Chapman, G. Davida. “Hiding the Hidden:

A Software System for Concealing Ciphertext

as Innocuous Text ”. Master Thesis,

Milwaukee: University of Wisconsin-

Milwaukee, 1998.

[12] “Spammimic”, 2000. [Online] Available:

http://www.spammimic.com [Accessed: March

8, 2008].

[13] N. F. Johnson, S. Jajodia, “Exploring

Steganography: Seeing the Unseen,” IEEE

Computer, February 1998, pp.26−34.

[14] P. Wayner, Disappearing Cryptography: Being

and Nothingness on the Net, Academic Press,

Inc., 1996.

[15] Richard Bergmair, “Towards Linguistic

Steganography: A Systematic Investigation of

Approaches”, Systems, and Issues, Technical

Report, Nov 2004.

[16] “Spy Gadgets in World War II: Microdots”,

2007. [Online]. Available:

http://www.mi5.gov.uk/output/Page303.html

[Accessed: Feb. 15, 2008].

[17] N. Provos, P. Honeyman, “Hide and Seek: An

Introduction to Steganography”, The IEEE

Computer Security, 2003.

[18] Fabien A. P. Petitcolas, Ross J. Anderson and

Markus G. Kuhn. “Information Hiding – A

Survey”, Proceedings of the IEEE, special

issue on protection of multimedia content, July

1999, pp. 1062 – 1078.

[19] Bret Dunbar, “ A Detailed Look At

Steganographic Techniques and Their Use in

Open-Systems Environment”, SANS Institute,

2002.

[20] B. Pfiztzmann, “Information Hiding

Terminology." pp. 347-350, ISBN 3-540-

61996-8, results of an informal plenary

meeting and additional proposals, 1996.

[21] K. Bennett, "Linguistic Steganography:

Survey, Analysis, and Robustness Concerns

for Hiding Information in Text", Purdue

University, CERIAS Tech. Report, 2004.

[22] Dr. Mohammed Al-Mualla and Prof. Hussain

Al-Ahmad, “Information Hiding:

Steganography and Watermarking”. [Online].

Available:

http://www.emirates.org/ieee/information_hidi

ng.pdf [Accessed: March 12, 2008].

[23] Matthew Kwan, “The SNOW Home Page”,

1998. [Online].Available:

http://www.darkside.com.au/snow/ [Accessed:

March 12, 2008].

[24] Sabu M. Thampi. “Information Hiding

Techniques: A Tutorial Review”, ISTE-STTP

on Betwork Security & Cryptography, LBSCE

2004.

[25] M. Chapman, G. Davida, and M. Rennhard,

“A Practical and Effective Approach to Large-

Scale Automated Linguistic Steganography”,

Proceedings of the Information Security

Conference, October 2001, pp. 156-165.

[26] Nursery Rhymes - lyrics and origins.

[Online].Available:http://www.famousquotes.

me.uk/nursery_rhymes/nursery_rhymes_index.

htm [Accessed: March 31, 2008]

[27] M. Hassan Shirali-Shahreza, Mohammad

Shirali-Shahreza. “Text Steganography in

Chat”, IEEE, 2007.

[28] M. Hassan Shirali-Shahreza, Mohammad

Shirali-Shahreza. “Text Steganography in

SMS”, International Conference on

Convergence Information Technology, 2007.

[29] K. Beare, "SMS-Texting", English as 2nd

Language. [Online]. Available:

http://esl.about.com/ [Accessed: March 10

2008].

[30] “Bits, Bytes and Bandwidth Reference Guide”.

[Online]. Available:

http://www.speedguide.net/read_articles.php?i

d=115 [Accessed: 22 April 2008].

[31] Osamu Takizawa, Akihiro Yamamura, Hiroshi

Nakagawa, Tsutomu Matsumoto, Ichiro

Murase, Kyoko Makino, Shingo Inoue and

Hiroyuki Ohno, "A Proposal of Steganography

on Plain Text and XML", The 1st NLP and

XML Workshop, Nov 2001.

[32] Chen Chao, Wang Shuozhong, Zhang

Xinpeng. “Information Hiding In Text Using

Typesetting Tools with Stego-Encoding”,

ICICIC, 2006.

