

International Journal of Research Publication and Reviews

Journal homepage: www.ijrpr.com ISSN 2582-7421

Linguistic Neutrosophic Somewhat semi-open and hardly semi-open functions in Linguistic Neutrosophic Topological Spaces

N.Gayathri^{*,a}and M.Helen^b

^aResearch Scholar, Nirmala College for Women, Coimbatore,Tamilnadu, India. ^bAssociate Professor, Nirmala College for Women, Coimbatore,Tamilnadu, India.

ABSTRACT

An entirely new category of functions referred to as somewhat semi-open and nearly semi-open is defined and illustrated with a novel topological space using linguistic neutrosophic numbers. Moreover semi-open set, semi-closed set and semi-sense set are defined in linguistic neutrosophic topological space to carry over the work.

Keywords:Linguistic neutrosophic topology; Linguistic neutrosophic somewhat semi-open function; Linguistic neutrosophic hardly semi-open functions; Linguistic neutrosophic semi-open sets; Linguistic neutrosophic semi-closed sets; Linguistic neutrosophic semi-dense set.

1. Main text

Norman Levine[7] introduce the idea of semi-open sets and semi-continuity in topological spaces. Gentry and Hoyle[6] have introduce somewhat continuous functions in 1971. Recently Caldas[2] have worked on hardly open functions and proved many results. A novel topological space namely linguistic neutrosophic topological space which was invented by Helen and Gayathri[5] in 2021. Throughout the paper, LNCl, LNInt, LNSCl, LNSInt, LNOS, LNCS, LNSOS, LNSCS and LNTS represents linguistic neutrosophic closure, linguistic neutrosophic semi-interior, linguistic neutrosophic closure, linguistic neutrosophic semi-open set, linguistic neutrosophic closed set, linguistic neutrosophic semi-open set, linguistic neutrosophic semi-closed set and linguistic neutrosophic topological space respectively.

2. Preliminaries

Definition 2.1:^[4]Assume that $L = \{l_0, l_1, \dots, l_t\}$ is a linguistic term set with odd cardinality t + 1. If $e = \langle l_p, l_q, l_r \rangle$ is defined for $l_p, l_q, l_r \in L$ and $p, q, r \in [0, t]$, where l_p, l_q and l_r express independently the truth degree, indeterminacy degree and falsity degree by linguistic terms, respectively, then e is called an LNN.

Definition 2.2:⁵ For a LNTS τ , the collection of linguistic neutrosophic sets(LNSs in short) should satisfy the following:

1. 0_{LN} , $1_{LN} \in \tau$ 2. $K_1 \cap K_2 \in \tau$ for any $K_1, K_2 \in \tau$ 3. $\bigcup K_i \in \tau, \forall \{K_i : i \in J\} \subseteq \tau$.

We call, the pair (S_{LN}, τ) , a Linguistic Neutrosophic Topological Spaces(LNTS in short).

* Corresponding author. E-mail address: gayupadmagayu@gmail.com **Definition 2.3:**^[5]Let (S_{LN}, τ) be a LNTS. Then,

- $(S_{LN}, \tau)^c$ is the dual LNTS, whose elements are K^c_{LN} for $K_{LN_{LN}} \in (S_{LN}, \tau)$.
- Any open set in τ is known as linguistic neutrosophic open set(LNOS in short).
- Any closed set in τ is known as linguistic neutrosophic closed set(LNCS in short) if and only if it's complement is LNOS.

Definition 2.4:^[5]The LN closure and LN interior are given by,

- 1. $LNInt(K_{LN}) = \bigcup \{O_{LN}/O_{LN} \text{ is a } LNOS \text{ in } S_{LN} \text{ where } O_{LN} \subseteq K_{LN} \}$ and it is the largest LNO subset of K_{LN} .
- 2. $LNCl(H_{LN}) = \bigcap \{J_{LN}/J_{LN} \text{ is a } LNCS \text{ in } S_{LN} \text{ where } H_{LN} \subseteq J_{LN} \}$ and it is the smallest LNCS containing H_{LN} .
- Linguistic Neutrosophic Somewhat Semi-Open Function

Definition 3.1: A function $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ is said to be LN somewhat semi open if there exists a non-void LNSO set H_{LN} of T_{LN} such that $H_{LN} \subseteq f_{LN}(K_{LN})$, where K_{LN} is a non-void LNOS in S_{LN} .

Example 3.2: Let the universe of discourse be $U = \{a, b, c, d, e\}$ and let $S_{LN} = \{c, d, e\}$. The set of all LTS be L={no healing(l_0), deterioting(l_1), chronic(l_2), some what chronic(l_3), extremely chronic(l_4), very ill(l_5), ill(l_6), no healing(l_7), healing(l_8), slowly healing(l_9), fastly healing(l_{10})}. Let $\tau_{LN} = \{0_{LN}, 1_{LN}, K_{LN}\}$ and $\eta_{LN} = \{0_{LN}, 1_{LN}, F_{LN}, F_{LN}\}$ be two LNTS's with $K_{LN} = (\langle b, (l_6, l_6, l_1) \rangle, \langle c, (l_4, l_3, l_1) \rangle, \langle d, (l_9, l_8, l_4) \rangle), E_{LN} = (\langle b, (l_5, l_6, l_1) \rangle, \langle c, (l_4, l_3, l_1) \rangle, \langle d, (l_9, l_8, l_4) \rangle)$, be the meaning f_{LN} he an identity mapping. Here the set K_{LN} is LNO in (S_{LN}, τ_{LN}) and

 $(\langle b, l_3, l_5, l_4 \rangle), \langle c, (l_1, l_3, l_2) \rangle, \langle d, (l_7, l_5, l_8) \rangle)$. Let the mapping f_{LN} be an identity mapping. Here the set K_{LN} is LNO in (S_{LN}, τ_{LN}) and the set $H_{LN} = (\langle b, l_4, l_5, l_2 \rangle, \langle c, (l_3, l_3, l_1) \rangle, \langle d, (l_9, l_8, l_4) \rangle)$ is LNSO in (T_{LN}, η_{LN}) . Then the mapping f_{LN} is LN somewhat semi-open.

Theorem 3.3: The composition of any two LN somewhat semi open mappings is need not be a LN somewhat semi open mapping, which can be given in the following example.

Example 3.4: Let $S_{LN} = T_{LN} = P_{LN} = \{u, v, w\}$ and Let the set of all LTS be L={quite extremely weak(l_0), extremely weak(l_1), slightly weak(l_2), weak(l_3), neither weak or nor strong(l_4), strong(l_5), slightly strong(l_6), extremely strong(l_7), quite extremely strong(l_8)}. The LNTSs be $(S_{LN}, \tau_{LN}) = \{0_{LN}, 1_{LN}, A_{LN}\}, (T_{LN}, \eta_{LN}) = \{0_{LN}, 1_{LN}, \nu_{LN}\}, (P_{LN}, \nu_{LN}) = \{0_{LN}, 1_{LN}, C_{LN}\}$ with $A_{LN} = (\langle w, (l_4, l_1, l_3) \rangle), B_{LN} = (\langle w, (l_6, l_3, l_2) \rangle), C_{LN} = (\langle w, (l_8, l_3, l_6) \rangle)$. The LN somewhat semi-continuous mappings $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ and $g_{LN}: (T_{LN}, \eta_{LN}) \to (P_{LN}, \nu_{LN})$ be defined by $f_{LN}(a) = b, f_{LN}(b) = a$ and $g_{LN}(a) = c, g_{LN}(b) = a, g_{LN}(c) = b$ respectively. The composite mapping is given by $(g_{LN} \circ f_{LN}) = (S_{LN}, \tau_{LN}) \to (P_{LN}, \nu_{LN})$. Let C_{LN} be LNOS in P_{LN} . Let $K_{LN} = (\langle w, (l_3, l_1, l_3) \rangle)$ be LNSO in (S_{LN}, τ_{LN}) . Then, the composite mapping is not LN somewhat semi-continuous.

Theorem 3.5: A LN function f_{LN} : $(S_{LN}, \tau_{LN}) \rightarrow (T_{LN}, \eta_{LN})$ is LN somewhat semi-open if and only if the inverse image of a LNS dense set in T_{LN} is LND in S_{LN} .

Proof: Necessity Part: Let us assume that the set E_{LN} is LND in T_{LN} and $(f_{LN})^{-1}(E_{LN})$ is not LND in S_{LN} . Then, there exists a LNCS $K_{LN} \subset S_{LN}$ such that $(f_{LN})^{-1}(E_{LN}) \subseteq K_{LN} \subset S_{LN}$. Then, $S_{LN} \setminus K_{LN}$ is non-empty LNOS in S_{LN} . By assumption, there exists a non-empty set $U_{LN} \in LNSO(T_{LN})$ such that $U_{LN} \subseteq f_{LN}(S_{LN} \setminus K_{LN})$ or $T_{LN} \setminus (f_{LN}(S_{LN} \setminus K_{LN})) \subseteq T_{LN} \setminus U_{LN}$. Also, $S_{LN} \setminus K_{LN} \subseteq S_{LN} \setminus (f_{LN})^{-1}(E_{LN}) = (f_{LN})^{-1}(T_{LN} \setminus E_{LN})$, then, $f_{LN}(S_{LN} \setminus K_{LN}) \subseteq T_{LN} \setminus E_{LN}$. Thus, it is proved that there exists a LNCS $T_{LN} \setminus U_{LN}$ in T_{LN} such that $E_{LN} \subseteq T_{LN} \setminus U_{LN}$ as a LNS dense set in T_{LN} . Thus, $(f_{LN})^{-1}(E_{LN})$ is LND in S_{LN} .

Sufficiency Part: Assume that the function f_{LN} is not LN somewhat semi-open, then for every non-empty LNOS A_{LN} in S_{LN} , there is no non-empty LNSO set B_{LN} in T_{LN} such that $U_{LN} \subseteq f_{LN}(B_{LN})$. Then, no proper LNSCS $T_{LN} \setminus U_{LN}$ is such that $T_{LN} \setminus f_{LN}(B_{LN}) \subseteq T_{LN} \setminus U_{LN} \subseteq T_{LN}$. Thus, $T_{LN} \setminus f(B_{LN})$ is LND in T_{LN} . By assumption, $(f_{LN})^{-1}(T_{LN} \setminus f_{LN}(B_{LN}))$ is LND in S_{LN} or $S_{LN} \setminus (f_{LN})^{-1}(f_{LN}(B_{LN}))$ is LND in S_{LN} . Thus, $T_{LN} \setminus f(B_{LN})$ is LND in $S_{LN} \setminus (f_{LN})^{-1}(f_{LN}(B_{LN})) = S_{LN}$. Also, $B_{LN} \subseteq (f_{LN})^{-1}(f_{LN}(B_{LN}))$, which implies $S_{LN}(f_{LN})^{-1}(f_{LN}(B_{LN})) \subseteq S_{LN} \setminus B_{LN}$. Then, $S_{LN} = LNCl(S_{LN} \setminus (f_{LN})^{-1}(f(B_{LN}))) \subseteq S_{LN} \setminus LNInt(B_{LN})$ and therefore $LNInt(B_{LN}) = \phi$, which is a contradiction to the fact that B_{LN} is non-empty in S_{LN} .

Theorem 3.6: If the LN function $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ is LNO and $g_{LN}: (T_{LN}, \eta_{LN}) \to (P_{LN}, \mu_{LN})$ is LN somewhat semi open mapping, then the composition $(g_{LN} \circ f_{LN}): (S_{LN}, \tau_{LN}) \to (P_{LN}, \mu_{LN})$ is LN somewhat semi open.

Proof: Suppose if A_{LN} is LNOS in S_{LN} , then $f_{LN}(A_{LN})$ is LNOS in T_{LN} , since f_{LN} is LNO mapping. Then, as the mapping g_{LN} is LN somewhat semi open, there exists a non-empty set $B_{LN} \in LNSO(P_{LN}, \mu_{LN})$ such that $B_{LN} \subseteq (g_{LN} \circ f_{LN})(A_{LN})$. Thus, the composition is LN somewhat semi open mapping.

Theorem 3.7:Let LN function $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ is one to one and onto, then f_{LN} is LN somewhat semi open if and only if every LNCS A_{LN} in S_{LN} such that $f_{LN}(A_{LN}) \neq T_{LN}$, there exists a LNSCS K_{LN} such that $f_{LN}(A_{LN}) \subseteq K_{LN}$.

Proof: Necessity Part: Let $A_{LN} \in LNC(S_{LN})$ such that $f_{LN}(A_{LN}) \neq T_{LN}$. Then, $S_{LN} \setminus A_{LN}$ is non-empty LNOS in S_{LN} . By assumption, there exists $U_{LN} \in LNSO(T_{LN})$ such that $U_{LN} \subseteq f_{LN}(S_{LN} \setminus A_{LN})$ or $T_{LN} \setminus f_{LN}(S_{LN} \setminus A_{LN}) \subseteq T_{LN} \setminus U_{LN}$. As the mapping f_{LN} is one to one and onto, $f_{LN}(A_{LN}) \subseteq T_{LN} \setminus U_{LN}$. If $K_{LN} = T_{LN} \setminus U_{LN}$, then $K_{LN} = \phi$, $K_{LN} \in LNC(T_{LN})$ such that $f_{LN}(A_{LN}) \subseteq K_{LN}$. Sufficiency Part: If V_{LN} is any non-empty set in S_{LN} , then $S_{LN} \setminus V_{LN}$ is a proper LNCS in S_{LN} . If $f_{LN}(S_{LN} \setminus V_{LN}) = T_{LN}$, then it is clear that, $V_{LN} = \phi$, which is a contradiction. Thus, $f_{LN}(S_{LN} \setminus V_{LN}) \neq T_{LN}$. From the assumption, there exists a LNCS D_{LN} in T_{LN} such that $f_{LN}(S_{LN} \setminus V_{LN}) \subseteq D_{LN}$, (i.e) $T_{LN} \setminus D_{LN} \subseteq T_{LN} \setminus f_{LN}(S_{LN} \setminus V_{LN}) = f_{LN}(V_{LN})$, where $T_{LN} \setminus D_{LN} \neq \phi$, $(T_{LN} \setminus D_{LN})$ which is LNSO set. Therefore, f_{LN} is LN somewhat semi-open mapping. A LN subset A_{LN} of (S_{LN}, τ_{LN}) is called LNS dense if $S_{LN} = LNSCl(A_{LN})$.

Definition 3.8: A LN function $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ is LN hardly semi-open if for each LNSDS A_{LN} in T_{LN} which is contained in a proper LNSOS in $T_{LN}, (f_{LN})^{-1}(A_{LN})$ is LN semi-dense in S_{LN} .

Example 3.9: Let the universe be $U = \{a, b, c, d, e\}$ and let the LTS be L={ very salty, salty, very sour, sour, bitter, sweety, very sweety } where, $L = \{l_0, l_1, l_2, l_3, l_4, l_5, l_6\}$. And let the set $I_{LN} = \{\langle a, (l_4, l_5, l_2) \rangle, \langle b, (l_3, l_6, l_1) \rangle, \langle c, (l_9, l_6, l_8) \rangle\}$. Let $S_{LN}, \tau_{LN} \rangle = \{0_{LN}, 1_{LN}, A_{LN}\}$ with $A_{LN} = \{\langle a, (l_5, l_6, l_1) \rangle, \langle b, (l_4, l_3, l_1) \rangle, \langle c, (l_9, l_8, l_5) \rangle\}$ and the set $B_{LN} = \{\langle a, (l_2, l_4, l_5) \rangle, \langle b, (l_1, l_1, l_2) \rangle, \langle c, (l_6, l_5, l_8) \rangle\}$ is LNSOS in S_{LN} . Now, I_{LN} is LNSDS in (T_{LN}, η_{LN}) where $\eta_{LN} = \{ \langle a, (l_4, l_6, l_2) \rangle, \langle b, (l_4, l_7, l_1) \rangle, \langle c, (l_9, l_6, l_8) \rangle\}$. Then the mapping f_{LN} is LN hardly semi-open.

Remark 3.10: The composition of any two LN hardly semi open mappings is need not be a LN hardly semi open mapping, which can be given in the following example.

Example 3.11: Let the universe and LTS are as in example (3.9). Let the topologies and the composite mapping be defined as $(S_{LN}, \tau_{LN}) = \{\mathbf{0}_{LN}, \mathbf{1}_{LN}, A_{LN}\}, (T_{LN}, \eta_{LN}) = \{\mathbf{0}_{LN}, \mathbf{1}_{LN}, \mathbf{0}_{LN}\}, (P_{LN}, \nu_{LN}) = \{\mathbf{0}_{LN}, \mathbf{1}_{LN}, C_{LN}\}$ and $(g_{LN} \circ f_{LN}): (P_{LN}, \nu_{LN}) \rightarrow (S_{LN}, \tau_{LN})$ respectively with $A_{LN} = (\langle c, (l_6, l_2, l_1) \rangle), B_{LN} = (\langle c, (l_6, l_4, l_5) \rangle), C_{LN} = (\langle c, (l_4, l_3, l_3) \rangle)$. The function f_{LN} and g_{LN} are LN hardly semi open. The sets $K_{LN} = (\langle c, (l_7, l_6, l_2) \rangle)$ and $H_{LN} = (\langle c, (l_6, l_5, l_3) \rangle)$ are LNSO in (S_{LN}, τ_{LN}) and (P_{LN}, ν_{LN}) respectively. Here the composite mapping is not LN hardly semi open as $(g_{LN} \circ f_{LN})^{-1}(H_{LN})$ is not LNSDS in (S_{LN}, τ_{LN}) .

Theorem 3.12: The LN function f_{LN} : $(S_{LN}, \tau_{LN}) \rightarrow (T_{LN}, \eta_{LN})$ is LN hardly semi open if and only if $LNInt((f_{LN})^{-1}(A_{LN})) = \phi$, for every LN subset A_{LN} of T_{LN} such that $LNSInt(A_{LN}) = \phi$ contains a non-empty LNCS.

Proof: Necessity Part: Let f_{LN} be LN hardly semi open and $LNSInt(A_{LN}) = \phi$ for every LN subset A_{LN} , where $A_{LN} \subseteq T_{LN}$ and a non-empty LNCS E_{LN} in T_{LN} such that $E_{LN} \subseteq A_{LN}$. Then, $LNSCl(T_{LN} \setminus A_{LN}) = T_{LN} \setminus LNSInt(A_{LN}) = T_{LN}$. As $E_{LN} \subseteq A_{LN}$, $T_{LN} \setminus A_{LN} \subseteq T_{LN} \setminus E_{LN} \neq T_{LN}$. Thus, $T_{LN} \setminus ALN$ is LNS dense in T_{LN} which is contained in a proper LNOS $T_{LN} \setminus E_{LN}$. By assumption, $(f_{LN})^{-1}(T_{LN} \setminus A_{LN})$ is LNS dense in S_{LN} . Thus, $S_{LN} = LNSCl((f_{LN})^{-1}(T_{LN} \setminus A_{LN})) = S_{LN} \setminus LNInt((f_{LN})^{-1}(A_{LN}))$. Therefore, $S_{LN} \setminus LNSInt((f_{LN})^{-1}(A_{LN})) = S_{LN}$ and thus $LNSInt((f_{LN})^{-1}(A_{LN})) = \phi$.

Sufficiency Part: If D_{LN} is any LNS dense in T_{LN} such that $D_{LN} \subset LNO(T_{LN})$, let it be U_{LN} . As $U_{LN} \neq \phi, T_{LN} \setminus U_{LN}$ is LNCS contained in $T_{LN} \setminus D_{LN}$ and it is non-empty. From the assumption, $LNSInt((f_{LN})^{-1}(T_{LN} \setminus D_{LN})) = \phi$. Then, $S_{LN} \setminus ((f_{LN})^{-1}(D_{LN})) = \phi$ and $LNSCl((f_{LN})^{-1}(D_{LN})) = S_{LN}$, (i.e) $(f_{LN})^{-1}(D_{LN})$ is LNS dense set in S_{LN} .

Theorem 3.13:Let $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ be any LN function. Let A_{LN} be a LN subset of S_{LN} having the property that $LNSInt(A_{LN}) \neq \phi$ and $LNSInt(f_{LN}(A_{LN})) \neq \phi$. Also, there exists LNCS $B_{LN}(\neq \phi)$ in S_{LN} such that $(f_{LN})^{-1}(B_{LN}) \subseteq A_{LN}$, then f_{LN} is LN hardly semi open.

Proof: Let $D_{LN} \subset U_{LN}$, where D_{LN} is any LNS dense set in T_{LN} and $U_{LN} \in LNO(T_{LN})$. As $U_{LN} \neq \phi$, $T_{LN} \setminus U_{LN} \neq \phi$ and hence $T_{LN} \setminus U_{LN}$ is a non-empty LNCS contained in $T_{LN} \setminus D_{LN}$. If $A_{LN} = (f_{LN})^{-1}(T_{LN} \setminus D_{LN})$, $B_{LN} = T_{LN} \setminus U_{LN}$, then $(f_{LN})^{-1}(B_{LN}) \subseteq A_{LN}$. Also, $LNSInt(f_{LN}(A_{LN})) = LNSInt(f_{LN}((f_{LN})^{-1}(T_{LN} \setminus D_{LN}))) \subseteq LNSInt(T_{LN} \setminus D_{LN}) = \phi$. From the

assumption, $LNSInt(A_{LN}) = \phi$, (i.e) $LNSInt((f_{LN})^{-1}((f_{LN})^{-1}(T_{LN} \setminus D_{LN}))) = \phi$. Thus, $S_{LN} \setminus LNSCl((f_{LN})^{-1}(D_{LN})) = \phi$ and therefore, $(f_{LN})^{-1}(D_{LN}) = S_{LN}$. Hence $(f_{LN})^{-1}(D_{LN})$ is LNS dense set in S_{LN} and hence f_{LN} is LN hardly semi open.

Theorem 3.14: If the function $f_{LN}: (S_{LN}, \tau_{LN}) \to (T_{LN}, \eta_{LN})$ is LN hardly semi open, then $LNSInt(f_{LN}(A_{LN})) \neq \phi$ for each LN subset A_{LN} of S_{LN} with $LNSInt(A_{LN}) \neq \phi$ and $f_{LN}(A_{LN})$ contains a non-void LNCS.

Proof: If A_{LN} is any LNS such that $LNSInt(A_{LN}) \neq \phi$ and B_{LN} be any LNCS in T_{LN} such that $B_{LN} \subseteq f_{LN}(A_{LN})$. If $LNSInt(f_{LN}(A_{LN})) \neq \phi$, then $T_{LN} \setminus f_{LN}(A_{LN})$ is LNSdense in T_{LN} . Then, $T_{LN} \setminus f_{LN}(A_{LN}) \subset T_{LN} \setminus B_{LN}$. As the mapping f_{LN} is LN hardly semi open, $(f_{LN})^{-1}(T_{LN} \setminus f_{LN}(A_{LN}))$ is LNSdense in S_{LN} , (i.e) $LNSCl((f_{LN})^{-1}(T_{LN} \setminus f_{LN}(A_{LN}))) = S_{LN}$ or $S_{LN} \setminus LNSInt((f_{LN})^{-1}(f_{LN}(A_{LN}))) = S_{LN}$. Thus, $LNSInt((f_{LN})^{-1}(f_{LN}(A_{LN}))) = \phi$ and it implies $LNSInt(A_{LN}) = \phi$, which is a contradiction to the assumption. Hence, $LNSInt(A_{LN}) \neq \phi$.

REFERENCES

- [1] Atanassov.K.T, Intuitionistic fuzzy sets. Fuzzy Sets and Systems, 20,1986, 87-96.
- [2] Caldas.M, A note on hardly open functions, Comptes rendus de l'Academie bulgare des Sciences, 54(12),2001,L5-L7.

- [4] Fang.Z, Ye.J, Multiple attribute group decision-making method based on linguistic neutrosophic numbers. Symmetry, 2017,9,111.
- [5] Gayathri.N, Helen M. Linguistic Neutrosophic Topology; Neutrosophic Sets and Systems, 46, 254-267, 2021.
- [6] Gentry.K.R. and Hoyle.H.B, Somewhat continuous functions, Czechoslovak Mathematical Journal, 21 (96), 1971, 5-12.
- [7] Levine.N, Semi-Open Sets and Semi-Continuity in Topological Spaces, American Mathematical Monthly, LXX, 1963, 36-41.
- [8] Smarandache F. A unifying field in logics. Neutrosophy: Neutrosophic probability, set and logic. American Research Press, Rehoboth, 1999.
- [9] Wang H, Smarandache F, Zhang T Q, Sunderraman R. Interval neutrosophic sets and logic: Theory and applications in computing. Hexis, Phoenis, AZ, 2005.
- [10] Zadeh, L.A. Fuzzy Sets. Information and Control, 8,pp. 338-353, 1965.
- [11] Zadeh.L.A, The concept of a linguistic variable and its application to approximate reasoning Part I. Inf. Sci.8, 1975, 199-249.

^[3] Chang, C.L, Fuzzy topological spaces, Journal of Mathematical Analysis and Applications, 24,1968,182-190.