Structural Analysis of Rectangular Clarifier by STAAD-PRO software

Ankit Umakant Tayde, Prof. P. O. Modani

Department of Civil Engineering, Pankaj Laddhad Institute of Technology & Management Studies, Buldana, (M.S), India-443001

ABSTRACT:

Water purifiers (also called sediment tanks or settlers) are an integral part of every treatment plant. These treatment plants are used to remove solids from wastewater by gravitational deposition in calm conditions. All cleaners have two functional zones - a refinement zone, where the process of settling gravity occurs, and a thickening zone, where settled solids accumulate, forming a dense layer of sludge (blanket). Low-concentration solid wastewater cleaners are collected from the top of the explanation zone, which is poured into collection channels that transport wastewater to the tank outlet. In the present work the analysis and design of rectangular clarifier is to be carried out in the STAAD-PRO software.

Keywords: rectangular clarifier, reinforcement, analysis & moments

1 INTRODUCTION

The main purpose of the cleaners in the purification scheme is to remove solids from liquids by settling, removing scale from the liquid by flotation and thickening solids for removal and further treatment. The specific application of the refinement functions will depend on the treatment process used. This study discusses what previous researchers have taken into account on drainage as well as the development of cleaners. This review focuses on five main topics that repeatedly arise in the literature in question. These topics are: wastewater industry, conventional wastewater treatment processes, cleaners, explanatory chambers, rectangular tank facilities and FEM applications. Theories and principles behind the different methods of designing cleaners play a role in optimizing structures.

Upholting agents (also called sedimentary tanks or settlers) are an integral part of each treatment plant. These treatment plants are used to remove solids from wastewater by gravitational deposition in calm conditions. All cleaners have two functional zones - a refinement zone, where the process of settling gravity occurs, and a thickening zone, where settled solids accumulate, forming a dense layer of sludge (blanket). Low-concentration solid wastewater cleaners are collected from the top of the explanation zone, which is poured into collection channels that transport wastewater to the tank outlet. The sludge collected at the bottom of the cleaner is removed for further processing at treatment plants. The depth of the explanation zone is usually called the depth of the pure water zone (CWZ), while the depth of the sludge accumulation zone is called the depth of the sludge blanket (SBD). The sum of the depth of CWZ and SBD is usually defined as the depth of the side water (SWD).

Conventional wastewater treatment processes

Conventional wastewater treatment consists of physical, chemical and biological processes and operations to remove solids and organic matter from wastewater. The following sections are general terms used to describe the different degrees of treatment, in order to increase the level of treatment are preliminary, primary, secondary and tertiary and / or advanced wastewater treatment.

2 LITERATURE REVIEW

A.D.Bhosale et al. Secondary cleaners are equipment used in treatment plants for the gravitational separation of solid particles from water. Because this process is chemically activated by adding flocculants to improve sedimentation, a mathematical model can be developed taking into account the model of the mixture and taking into account the relative velocity between the solid phase and the liquid. The author studied the issues of mathematical modeling of the sedimentation process in secondary clarifiers [1].

Ali G. Ghawi et al 2011 To assess the proposed modification of tanks and to estimate the maximum power of existing and modified cleaners, a three-dimensional fully mass conservative model of the cleaner was used, based on modern theory of computational fluid dynamics. To describe the performance of the tank, the computational fluid dynamics (CFD) was formulated, and the design parameters were obtained on the basis of experimental results [2].

Aman, Manjunat Nalvadgi, etc. The study found this speed and (suspended solids) SS is the best parameter, than TS (total solids) (Biochemical demand for oxygen) BOD, (Demand for chemical oxygen) COD to assess the performance of sediment tanks and the effectiveness of removal of suspended solids, biochemical oxygen demand, and the need for chemical oxygen was higher in the septum [3].
Tests Anoop.A and others. Dye showed that only the front three of the seven slots received an inflow of 0.57 m3 / m2 • h, which is the highest SOR (surface overflow speed). Three different SORs with 12 different SS concentrations (suspended solids) at each overflow rate were fed to both clarifiers. However, the frayer with inclined plates could not show an improved removal rate for the SS [4].

Arif, A.U.A. etc. In order to enable the Boycott effect within the slot, it is suggested that each slot created by inclined plates receive an aligned tide. In addition, the collision of the tide with the settled sludge at the bottom of the cleaner should be avoided. These provisions, which can maximize the effect of Boycott, should be added to the Water Standards approved by the Korean government [6].

Brouckaert C.J. etc. 2018 Mathematical models and modeling are considered a powerful tool in engineering practice. These tools are increasingly used to improve the design of treatment plants, as the conceptual design is complex and clearly defined. In this study, three alternatives: 1) completely mix the activated sludge without removing nitrogen (CAS) 2) completely mix activated sludge with nitrogen removal (CAS-N) and; 3) membrane bioreactor (MBR) processes were developed in two stages: the first design concept to calculate the size of technological units, then the second to implement modeling and modeling to improve the accuracy of conceptual design [8].

Byonghi Lee, in short, the design of the processing process was confirmed using the activated sludge model №. 1 (ASM1) in GPS-X modeling software (v.7). This program helps not only in the location of treatment plants, but also in understanding the capacity of the plant. At the same time, it can help explore future expansion work needed to increase hydraulic and organic loads. To this end, Tikrit WWTP was selected as a case study [9].

3 METHODOLOGY

The water tank is modeled using STAAD-PRO software and the different models are analyzed as follows:

1. Model-1: Rectangular Clarifier with Earthquake zone-II
2. Model-2: Rectangular Clarifier with Earthquake zone-III
3. Model-3: Rectangular Clarifier with Earthquake zone-IV
4. Model-4: Rectangular Clarifier with Earthquake zone-V

Fig.1: Geometry of the model
Fig. 2: Property assignment of the model

Fig. 3: Support given to the model
5. RESULTS

The results for the all models are completed using the STAAD-PRO software as follows.
Fig. 6: Vertical Displacement for all the models

Fig. 7: Resultant Displacement for all the models
Fig. 8: Horizontal Reactions for all the models

Fig. 8: Vertical Reactions for all the models
Fig. 9: Moment (Mx) for all the models

Fig. 10: Moment (My) for all the models
Fig. 11: Shear Stress for all the models

Fig. 12: Principal Stress for all the models
5. CONCLUSIONS

The above results shows the following conclusions:

i. As the zone of the Earthquake is increasing from zone-II to zone V then the displacement also increases.

ii. The maximum reactions is for the model-4 and the minimum reactions is in the model-1.

iii. Plate stresses are obtained for the models, the plate stress includes shear stress, membrane stress, principal stress and von-mis stress.

iv. The maximum stress is observed in the model-4.
REFERENCES

