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ABSTRACT  

 

Data science is the field of applying advanced techniques and scientific principles to extract valuable information from data. User-generated multi-media content, 

such as images, text, videos, and speech, has recently become prominent on social media platforms like Twitter during the COVID-19 period. The suggested 

emotion from the text can be successfully mined for many situations using sentiment analysis. The proposed system is a hybrid framework that combines a 

lexicon-based technique for analysis of sentiments in tweets and labeling with supervised Machine Learning techniques for tweet classification. The long short-

term memory (LSTM) has been identified as the preferred ML technique in the framework because to its high accuracy and recall score. The evaluated and final 

results indicate that our hybrid framework has the potential to automatically classify large tweet volumes, like the tweets on COVID-19, according to the 

sentiments in society. 
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1. Introduction  

The unique virus disease known as COVID-19, or coronavirus disease, first appeared in the year of 2019. The ubiquitous outbreak inflated social 

media updates in the form of tweets, messages, and posts. People adopted widely used social media and microblogging channels such as Facebook 

and Twitter, to share their ideas, thoughts, and reactions. Twitter, one of the most popular social networking sites, is a quickly expanding and 

intrusive online platform where users can do a variety of tasks, including writing, publishing, updating, and reading tweets, which are brief text 

messages. The user tweets that reflect our society's attitudes and thoughts throughout the pandemic make the examination of tweets regarding 
COVID-19 extremely insightful. Fear, anxiety, and other unpleasant symptoms were created by the shifts in sentiment that occurred throughout 

epidemic periods.  

 

Fig-1: -Hybrid classification framework pipeline: automated lexicon-based labeling using the vader is combined with supervised ml 

techniques for classifier training. 
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Therefore, it is important to develop automated methodologies for analyzing and classifying tweets that represent the sentiments in society. On the 

other side, sentiment analysis (SA) is the method of recognizing and classifying a specific text‘s polarity in terms of document, sentence, and 

phrase. This work is a hybrid framework that combines a lexicon-based technique for tweet sentiment analysis and labeling with supervised ML 

techniques for tweet classification. VADER lexicon-based technique has been used to extract the sentiments that are utilized to label the tweets and 
the long short-term memory (LSTM) neural network has been selected as the preferred ML technique in the framework due to its high accuracy and 

high recall score. 

Fig-1 shows an overview of the whole process. This work employs the VADER sentiment analysis which is a lexicon-based technique to extract the 

sentiments that are utilized to label the tweets. These labelled tweets feed into a supervised ML technique, such as Gaussian Naïve Bayes (GNB), 
multinomial Naïve Bayes (MLNB), logistic regression (LR), decision tree (DT), random forest (RF), and long short-term memory networks 

(LSTM), to predict the sentiments for novel unlabelled test datasets. To achieve the objective of automatic classification of people‘s sentiments, this 

novel hybrid approach combines a natural language processing (NLP) lexicon-based technique with a supervised ML technique. This work also 
involves a DL-based LSTM neural network to enhance the scope of our work. With the implementation of this framework in day-to-day lives 

people can automatically classify large tweet volumes, such as the tweets on COVID-19, according to the sentiments in the society. 

 

 

2.  Literature Survey  

In paper [1] P. Gupta, S. Kumar, R. R. Suman, and V. Kumar Proposed a method using NLP and machine learning classifiers. Eight distinct 

classifiers (Multinomial Naive Bayes, Bernoulli Naive Bayes, Logit Regression, Linear Support Vector Classifier, AdaBoost Classifier, Ridge 

Classifier, Passive Aggressive Classifier, and Perceptron) are employed to effectively identify the data. The combined output of the Text Blob and 
VADER libraries is used to increase accuracy. On the basis of accuracy, precision, recall, F1-Score, and receiver operating characteristic (ROC) 

curves with various gramme sizes, the results of all classifiers have been analysed. Additionally, they used the k-fold cross-validation method to 

validate the chosen data for each model using unigrams, bigrams, and trigrams. The Linear SVC classifier and unigram exhibit the best 
performance, according to their observations. 

In paper [2] WHA, S analyzed tweets by Indian citizens during the COVID-19 pandemic situation.The Bidirectional Encoder Representations from 

Transformers (BERT) model, a new deep-learning model for text analysis, was used to analyse the data. In order to compare the model performance 

with BERT, performance was also tested with three more models, including logistic regression (LR), support vector machines (SVM), and long-
short term memory (LSTM). In this study, we focused on four Indian internet users' feelings—fear, sadness, anger, and joy—that are connected to 

both positive and negative emotional categories. 

In paper [3] U. Naseem, I. Razzak, M. Khushi, P. W. Eklund and, J. Kim introduced a latest large-scale sentimental data set COVIDSENTI. It 
consists of 90, 000 COVID-19-related tweets collected. The data set that consists of tweets has been collected by using Tweepy, an official Python 

Twitter API library.For evaluation and generalization reasons, it is further separated into three identically sized subsets called COVIDSENTI-A, 

COVIDSENTI-B, and COVIDSENTI-C in each sentiment class.The tweets were divided into three emotion categories: Positive, negative, and 
neutral. The emotional sentiment was divided into positive, negative, and neutral categories using the Text Blob tool3. We investigate the topic 

distributions utilizing LDA in order to statistically examine the themes in our data set. The text is constructed from a variety of themes using the 

topic modelling technique linear discriminant analysis. For vectorization, the phrase frequency-inverse document frequency (TF-IDF) has been 

utilised. Traditional approaches like TF-IDF, word embeddings, and hybrid approaches that integrate non-contextual word representation methods 

perform worse than BERT and its variations. 

In paper [4] Zhang, X., Saleh, H., Younis, E. M., Sahal, R., & Ali, proposed system for real-time sentiment prediction. It consists of two primary 
parts: the creation of an offline sentiment analysis model and an online pipeline for sentiment prediction. Using Twitter streaming data, this work 

creates a real-time method to forecast public opinion towards the coronavirus pandemic. It gathers tweet data regarding the coronavirus using the 

hashtags #COVID-19 and #Coronavirus before retraining the tweet data with Text Blob. Afterward, uses the TF-IDF feature selection approach 
with various n-gram sizes. After comparing five machine learning classifiers, the best model for real-time coronavirus sentiment prediction is 

found.Spark Streaming API receives tweets from Kafka's topic for the analysis step and carries out the preprocessing operations, such as noise 

removal, tokenization, normalization, and stemming. The best model is then selected after features are extracted and sent to it in a vector structure. 
In order to classify each tweet's attitude concerning the coronavirus into three distinct classes—positive, negative, and neutral—Spark employs the 

best prediction model discovered during the offline phase. 

In paper [5] Kandasamy, V., Trojovský, P., Machot, F. A., Kyamakya, K., Bacanin, N., Askar, S., &Abouhawwash, M. designed pandemic 

prediction using deep learning architecture in social media.For implementation details, they used the tweets‘ dataset collected and filtered by 
#COVID-19, #Coronavirus, and #COVID‘19 hashtags.They have explored the deep learning concept in the real-time system for predicting COVID-

19, and it has been developed into two phases. First, they perform Sentiment analysis with Latent semantic analysis pre-diction in offline mode. 

Secondly, they Exhibit a model in the online mode.In this work, they are using the most standard classifiers: DT, KNN, RF, and SVM. The 
proposed N-gram stack autoencoder incorporated inside an ensemble system getting-to-know scheme has been developed, validated, and 

benchmarked with competing schemes from the maximum current and applicable literature.Here, the streaming API of Twitter, apache-spark, and 

Kafka were involved. 

 

3. Data Collection 

The work has utilized the publicly available tweet dataset from Kaggle.com that consists of the COVID-19-related tweets along with other 

associated information, such as location, retweets, followers, friends, the number of tweets, and hashtags. The analyzed tweet data cannot be 

attributed to individuals. Therefore, ethics review and approval are not applicable. The utilized dataset has 179 108 tweets collected for 36 days over 
July and August 2020. This dataset follows the code of CC0 1.0 Universal (CC0 1.0) Public Domain Dedication, which implies free usage of data 

without any credits. Since the Twitter API restricts daily data collection, the data have been collected for a limited period, i.e., between July and 

August 2020. During this period, COVID-19 cases were at their peak in many countries, prompting people to express their sentiments on social 
media platforms. Applying ML techniques to textual data is computationally demanding, requiring significant time and cost. We utilized the Google 

Cloud Platform (GCP) to implement our classification framework pipeline. Our configured compute engine consisted of 2 vCPUs, 1 tesla K80 GPU 

unit, 13-GB RAM, and 100-GB SD. 
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4. Automated Hybrid Tweet Classification 

We used an unsupervised technique for sentiment analysis to get around the traditional requirement of a labelled sentiment dataset. We use a lexicon-

based method, which links words with emotions like positive, negative, and neutral (all possible worlds of the English dictionary). For classifying 

words according to a polarity score lexicon-based technique is straightforward and effective. After the dataset has been labelled, we applied and 

compared a number of supervised machine learning approaches to identify the one that produces the highest accuracy and recall. We tuned the 

parameters using fivefold cross-validation to get the optimum performance out of the ML algorithms.We then go on to discuss the pipeline for our 

proposed hybrid categorization framework as shown in fig1. 

4.1. Data Pre-processing: 
Starting with the unprocessed tweet text data, we used NLP to clean the text and remove redundant information and anomalies to make it more 

informative. 

1) Stop Word Removal: Using the Python-based NLP toolset, we have eliminated stop terms such "over," "under," "again," "further," "then," "once," 

and "there.‖ Using regular expressions, we further deleted URLs, user mentions, special characters (*, $,! ), and hashtags (#). 

2) Case Folding: A word's polarity can be significantly impacted by its upper- and lowercase usage (positive, negative, and neutral). Depending on 

the nature of the corpus and the intended use of the corpus, words in the text may be changed from uppercase to lowercase or vice versa. Our dataset 

consists of tweets with a small word count that are frequently written in lowercase and in the typical communication style. Because there are few 

capital words in tweets, we have created case-folding. 

3) Tokenization: We converted each twitter sentence into tokens (words) using tokenization, which enables machine learning (ML) algorithms to 

understand the meaning of each word. 

4) Lemmatization: In NLP, lemmatization is the process of locating the vocabulary's base words in order to group all a word's variations into a single 

category (i.e., lemma). As an illustration, the fundamental word "stop" includes several variations, including "stopped," "stopping," and "stops." All 

these forms derive from the stop base class. To make the ML effective, we conducted the lemmatization.  

 

4.2. Feature Selection: 
Semantic and syntactic properties are extracted through text classification. While the syntactic feature consists of unigrams, bigrams, and n-grams 

(i.e., groups of associated words), the semantic feature consists of the sentiment associated with a word. A tweet's single words, such as "corona," 

"virus," and "death," are referred to as unigrams. As in "corona virus," "covid vaccination," and "positive cases," bigrams are the combining of two 

words. All n-grams, which are frequently used to classify texts, include Unigrams, Bigrams, Trigrams, and Quadgrams, which are all word chains. 

4.3. Sentimental Analysis: 
Twitter has a limited amount of textual data, and analysis of sentiments is the process of separating out a piece of information, like a tweet, that 

contains positive, neutral, and negative attitudes. When referring to sentiment analysis, the term "polarity-based analysis" is frequently used because 

polarity indicates a range of emotions. A popular sentiment analysis method is VADER. Because it can assess the sensitivity of messages, the rule-

based VADER model was created especially for the sentiment analysis of social media posts. Although there are alternative methods, including the 

General Inquirer and linguistic inquiry and word count (LIWC), VADER beats them. As a result, VADER was utilised in our system for sentiment 

analysis. The compound scores that VADER provides can be used as a threshold value to distribute the tweets across the three sentiment classes, 

together with the polarity scores of the positive, negative, and neutral classes. 

4.4. Data Labelling: 
Before using supervised ML algorithms, tweet labelling is a crucial step. Based on the sentiment scores of the raw tweets, we have assigned labels. 

Following the sentiment analysis, we have produced a new dataset with all of the tweets' associated sentiment values (labels). By utilising Python's for 

loop and if-else conditional statements, the entire process of data tagging is automated. We have given a score of 0 to all tweets with a positive 

sentiment, 1, for tweets with a neutral sentiment, and 2, for tweets with a negative feeling. 

 

4.5. Classifiers: 
Since we employed supervised ML and DL methods to categorise the tweets automatically based on feelings, these methods are known as classifiers. 

As a classifier, we have specifically used GNB, MLNB, LR, DT, RF, and LSTM. 

 

4.6. Evaluation: 
By the support of performance metrics accuracy, precision, recall, and F1-score classification, we assessed the effectiveness of the used ML 

approaches. Formally, let TP stand in for the total number of true positives, or the total number of positively identified samples. TN stands for true 

negatives. The term "false positive" (FP) refers to the number of negative samples that were mistakenly labelled as positive. The term "false 

negatives" (FN) refers to the quantity of positive samples that were mistakenly categorised as negatives. Accuracy gauges total effectiveness. The 

accuracy of the results generated is measured. Recall counts the number of tweets that were properly categorised, and the F1-Score is a weighted 

average of recall and precision ratings. Formally, 

Precision = TP/(TP + FP) 

Recall = TP/(TP + FN) 

 

F1 score = (2(precision × recall))/(precision + recall) 
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Accuracy = (TP + TN)/(TP + FP + FN + TN) 

 

5. Methodology 

This paper consists of lexicon-based automated tweet sentiment analysis and labeling in conjunction with state-of-the-art DL techniques for tweet 

classification.VADER as a sentiment analysis tool would likely not suffice to process these enormous text volumes. Therefore, in order to advance 

the scalability of text processing for sentiment analysis, we propose a hybrid of VADER with ML techniques. VADER provides the data labels 
according to a polarity score, i.e., score for positive, negative, and neutral sentiments and the labeled data form the basis for the training of the ML 

techniques. To obtain the best performance from the ML techniques, we have used fivefold cross-validation to tune the parameters. keeping in mind 

an unbalanced dataset scenario, we have also generated other evaluation measures namely, recall, precision, and F1 score. The LSTM technique 
outperformed all other ML techniques, achieving a high-test accuracy. 

Gaussian Naïve Bayes: 

Naive Bayes is a probabilistic ML algorithm which will be utilized in several classification tasks. Typical applications of Naive Bayes are 
classification of documents, filtering spam, prediction and then on. This algorithm relies on the discoveries of mathematician and hence its name. 

The name ―Naïve‖ is employed because the algorithm incorporates features in its model that are independent of every other. Any 

modifications within the value of 1 feature do not directly impact the worth of the other feature of the algorithm. the most advantage of the Naïve 
Bayes algorithm is that it is an easy yet powerful algorithm.  

Multinomial Naïve Bayes: 

Multinomial Naive Bayes is one amongst the variations of the Naive Bayes algorithm in machine learning which is incredibly useful to use 

on a dataset that is distributed multinomially. When there are multiple classes to classify, this algorithm may be used because to predict the label of 
the text it calculates the probability of every label for the input text and so generates the label with the best probability as output. 

The multinomial Naive Bayes algorithm may be a probabilistic learning method that is mostly employed in linguistic communication 

Processing (NLP). The algorithm relies on the Bayes theorem and predicts the tag of a text like a bit of email or news article. It calculates the 
probability of every tag for a given sample so gives the tag with the very best probability as output. 

RandomForest: 

Random Forest is a widespread machine learning algorithm that belongs to the supervised learning technique. Classification and 

Regression problems in ML be done by using it. it is supported the concept of ensemble learning, which may be a process of joining multiple 
classifiers to unravel an intricate problem and to extend the performance of the model. 

Random Forest is a classifier that encompasses several decision trees on various subsets of the given dataset and takes the common to 

improve the predictive accuracy of dataset. The larger number of trees within the forest ends up in higher accuracy and avoids the matter of 
overfitting. 

Decision Tree: 

Decision Tree is a supervised ML technique that is used for both classification and regression problems, but frequently it is chosen for 
solving classification problems. It is called Decision tree, because just like a tree, it starts with a root node, which expands on further branches and 

constructs a tree-like structure. 

By calculating what quantity accuracy each split will cost us, employing a function. The split that costs least are chosen, this algorithm is 

recursive in nature because the groups formed will be sub-divided using same strategy. because of this process, this algorithm is additionally called 
the Greedy Algorithm, as we've an more desire of lowering the price. This makes the foundation node as finest predictor/classifier. 

Logistic Regression: 

For binary classification issues, the suitable supervised ML algorithm, logistic regression is applied. A logistic function is used to model 
the probabilities that indicate the probable outcomes of a single test. In essence, logistic regression classifies the data and reduces outliers using a 

logistic function. 

 

      Multinomial logistic regression is capable of modelling in conditions like with two or more than two discrete potential outcomes. A model 
cannot fit new data or forecast observations that have not yet occurred if the training data are learned too carefully. Overfitting is the term for this 

situation. The overfitting will be reduced using the logistic function. 

Long Short-term memory: 

 Long Transient Memory (LSTM) networks are a kind of Intermittent Brain Organization that can learn request reliance. The result of the past step is 
utilized as contribution to the ongoing move toward RNN. Hochreiter and Schmidhuber made the LSTM. It resolved the issue of RNN long haul 

reliance, in which the RNN cannot foresee words put away in long haul memory however can make more precise expectations considering current 

information. RNN does not give a productive presentation as the hole length rises. The LSTM might save data for quite a while naturally. It is 
utilized for time-series information handling, expectation, and arrangement. 

 

 

 

 

 

6. Results & Discussions 
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Most of the examined tweets were very near the historic 140-character limit for tweets. This shows that COVID-19-related tweets are relatively 

lengthier than the overall average tweet length of around 90 characters. The relatively high character count of the COVID-19-related tweets could 

also be because of the gravity and complexity of the COVID-19 pandemic and the resulting inherent desire of individuals to precise their feelings in 
relatively rich detail in long tweets. Importantly, these long tweets increase the text volume that needs processing, intensifying the requirement for 

automated sentiment analysis with ML. At the identical time, the long tweets are rich in content and will convey nuanced sentiments that are 

necessary for gaining insights into societal sentiments. The VADER sentiment analysis gave the subsequent distribution of the user sentiments: 
38.5% of tweets belong to the positive sentiment class, 34.7% belong to the neutral sentiment class, and 26.6% of tweets belong to the negative 

sentiment class. Thus, most sentiments were positive or neutral, indicating an optimistic opinion toward the pandemic. Table I illustrates some 

example tweets from all three sentiment classes, together with their polarity scores, whereby the contextual meaning of tweets indicates the user‘s 
sentiments. 

 

Table I: - example tweets of all sentiment classes with polarity scores 

Sentiments Example tweets Scores 

Positive ―@brookbanktv the one gift 

#COVID19 has given me is an 

appreciation for the simple things that 

were always around me.‖ 

{‗neg‘: 0.0, ‗neu‘: 0.754, ‗pos‘: 0.246, 

‗compound‘:0.7351} 

Negative ―#coronavirus #covid19 deaths 

continue to rise. It is almost as bad as it 

ever was.‖ 

{‗neg‘:   0.152, ‗neu‘: 0.848,      ‗pos‘:0.0, 

‗compound‘: -0.4976} 

Neutral ―Holy water in times of #COVID19‖ {‗neg‘:      0.0,       ‗neu‘: 1.0,      

‗pos‘:0.0, 

‗compound‘: -0.4976} 

 

We compare all the mentioned techniques in to identify the best and required model for the automatic classification of societal sentiments. Below 

Table II shows the percentage values of the different evaluation measures for all examined ML techniques. 

 

Table II: -evaluation measure scores for model performances 

Models Test Accuracy Recall Precision F1 Score 

Gaussian NB 68% 68% 70% 68% 

Multinomial NB 70% 70% 70% 70% 

Decision Tree 64% 64% 72% 63% 

Logistic Regression 79% 79% 80% 78% 

Random Forest 77% 77% 78% 76% 

LSTM 83% 83% 82% 82% 

 

We observe from Table II that DT and Gaussian NB perform relatively poorly with performance metrics generally under 70%, while multinomial NB 

consistently achieved 70% across all metrics. The RF technique achieves somewhat improved performance with metrics between 76% and 78%, while 

LR performed 2% better than RF for every metric. However, only the LSTM technique achieved consistent performance within the 82%–83% range for 

all performance metrics. The LSTM technique thus outperformed all other ML techniques, achieving a test accuracy of 83% and a recall score of 83%. 

 

 

 

 

 

 

 



 International Journal of Research Publication and Reviews, Vol 3, no 11, pp 266-272, November 2022                            271 

 

Fig-1: Graphical representation evaluation measure scores 

 

 

 

7. Conclusion 

For the goal of sentiment analysis in the COVID-19 topic area, we created a novel hybrid framework that combines a lexicon method for twitter 

sentiment analysis and labelling with a DL technique for tweet categorization. We specifically extracted the positive, negative, and neutral emotions 

by using the VADER lexicon technique to identify the COVID-19-related tweets based on their associated feelings in order to automatically classify 
the social sentiments on Twitter. We employed many ML and DL methods for the classification challenge. LSTM surpassed all other methods with 

a classification test accuracy of 83%. In comparison to the VADER method, the trained ML classifier was able to handle data up to an order of 
magnitude faster. 

We should also consider that the diagnostic analysis of society sentiments was the main emphasis of this study. Analysing the purposeful 

manipulation of society sentiments is the most important aspect of related social media research. Examining how sentiment analysis and sentiment 

manipulation interact, for example, to discover intentional attempts to push public sentiments in a particular direction, is a significant area for future 
research. 
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