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A B S T R A C T 

These days, the world is putting more effort into reducing carbon emissions from conventional automobiles. Electric vehicles have so been introduction to 

replace conventional vehicles in an effort to cut carbon emissions. However, the motor and battery are the two components that matter most in an electric vehicle. 

The battery and its management are the key points of this review. Lithium-ion batteries are used in EVs the most frequently, although they have a good 

temperature range. Outside of this range, however, can result in capacity and power fading, which speeds up ageing. So, we discuss about how temperature 

affects operational conditions as well as battery performance and health. Various techniques to get around temperature dependence are also included. This article 

examines how temperature dependence and heat generation are managed in battery state parameter estimation. And various methods to overcome from 

temperature dependence on battery.  
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1.Introduction: 

The automotive sector has grown to become one of the most significant global industries, both economically and in terms of research and Development. In 

order to improve the safety of both passengers and pedestrians, additional technical components are being added to the vehicles. In addition to shared 

mobility, public transportation, etc., EVs will play a significant role in smart cities. More work is therefore required to improve batteries and the charging 

process. The primary disadvantage of EVs is their autonomy. To boost driving range while reducing weight, cost, and charging time, scientists are 

developing better battery technology. LIBS is a prominent electric car battery technology.LIB performance, health, and safety are, however, hindered by 

thermal management issues. Low temperatures reduce energetic anode material, reducing capacity and power, while high temperatures drain lithium, 

reducing capacity. Both accelerate battery deterioration. High temperatures can cause distortion, burning, and combustion, which damage battery 

components and vehicles.This helps with EV battery heat management. Affordable and effective thermal management solutions must take into account 

inside a battery pack and the temperature's impact on health and performance, particularly when non-uniform speeded up aging process of battery packs as a 

result of variation between cells is considered. Battery health management (BHM), also called a battery management system (BMS), is crucial in complex 

systems. BMS controls a battery's utilization, extends its lifespan, saves maintenance expenses, and avoids safety issues. It estimates battery condition using 

SoC and SOH in power management modules. To accomplish these functions, the BMS must perform battery modelling, state monitoring, and 

management.This study provides a thorough examination of the variable temperature change in battery packs observed using battery monitoring systems, 

which can be crucial for cold climatic issues, high thermal security concerns, and overall lifespan and performance. 

 

2.Literature review: 

2.1) Methods for Estimating Battery State: 

Given the nonlinear electrochemical reactions and operational parameters, battery state estimation methods are used to represent the inner battery state, 

which is essential for operating a battery-powered system properly, sustainably, and safely. State parameters explain three battery characteristics. SoC, SoH, 

and SoF signify the amount of accumulated charge, the drop in peak performance respect to a new battery, and the battery's power. Three groups. A quick 

introduction to traditional methodology groups experimental, model-based, and data-driven approaches. 
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2.1.1) Experimental Methods: 

 The term "experimental methods" refers to methods that use non-destructive experimental techniques to investigate battery properties. 

Coulomb-counting combines the current transmitted to or through the battery over time to calculate the residual charge (SoC), maximum capacity (SoH), or 

aging of maximum capacity compared to a new battery. Beginning value error and sensor error make this online technique inaccurate. Due of its simplicity, 

Coulomb-counting is often used with model-based methods. Electrochemical Impedance Spectroscopy (EIS) and Hybrid Pulse Power Characterization 

(HHPC) are non-destructive electrical response testing methods. HPPC experiments observe voltage changes during higher current charge/discharge cycles 

separated by rest intervals. The cell voltage response is impacted by power loss, dual layers capacity, and lithium-ion diffusion. EIS uses the impedance 

spectrum to describe variable battery functions and estimate carrier’s movement and reaction rates. EIS investigates current and voltage at variable 

frequency. 

To determine changes in electrochemical parameters, incremental capacity analysis (ICA) and differential voltage analysis (DVA) examine the changes in  

charge (Q) and battery voltage (V) in a cell at equilibrium during  charging/discharging [30]. By identifying feature points from IC and DV curves and 

analysing change-over ageing, numerous degradation patterns can be determined. ICA/DVA analysis in live application must differentiate arbitrary noise, 

assume equilibrium conditions, and create IC-DV curves when operating conditions affect discharge. 

The experimental approaches by themselves are best for offline mode SoH determination due to full cycles, consistent temperatures, and a disconnected 

battery. Online SoH detection with partially ICA charging data or online EIS for fueling cell EVs have been attempted. Experiments are often combined with 

prototype methods like HPPC to determine model parameters. 

2.1.2)Methods Based OnModels: 

An approximate equivalent model isused to depict battery dynamics in the model-based approach, and available sensor data is adaptively filtered to estimate 

unobservable state parameters. 

2.1.2.1) Equivalent Circuit Models: 

ECMs for LiB cells are used to characterise battery Voltage-Current characteristics. ECMs can be designed for accuracy, computational burden, parameter 

estimates, and reliability. Experimentation and optimization can determine model parameters. No obvious way exists to determine the best ECM given a 

battery's technology, sort, and application. If multiple studies on computational load use different optimization methodologies, their conclusions and 

suggestions may not be equivalent. When balancing accuracy, performance, and reliability, simple models are usually preferred. Table-1 displays many 

approaches. 

 

TABLE-1: ECM RECOMMENDATIONS 

2.1.2.2)Adaptive Systems: 

Adaptive filters aren't merely signal-processing tools. It's a self-designing system with an adaptivealgorithmfor updating settings and autonomous system 

changes. Cars use this filter. Hybrid and electric vehicle (HEV) rate profiles are dynamic, and current as a function of time is stochastic. KF, ANN, FL, and 

their variations are the most utilised adaptive filters. 

2.1.2.2.1) Kalman Filter (KF): 

Kalman Filter (KF) helps reduce measurement noise and approximate a system's condition that cannot be directly observed (i.e SOC or SOH). KF combines 

a measuring set and a data base. The approach consists of many equations that calculate a value. KF adjusts the prediction by comparing it to the actual 

measurement. When compared to the actual measured value, this value is corrected by the Kalman filter estimation. KF is modelled as a state space with a 

processing equation and a measuring equation. Here's the discrete-time linear model. Processing equation is a linear function that calculates xk from xk1-1. 

Measuring formulas get the estimated value closer to the genuine value. 

XK = AXK−1 + BUK−1 + wK-1--------------------------------------------------------------(1) 

ZK = CXK + DUK + VK   --------------------------------------------------------------------(2) 

Kalman Filter has five equations, two for predicting and three for correction. To explain, v^ means estimated V value and V- means a priori V value. 

Prediction equations are: 

xˆ− k = AX^K-1 + BUK-1 + wK-1-------------------------------------------------------------- -(3) 

P − k = APK-1AT + Q------------------------------------------------------------------------(4) 

 Correction equations are given by:  

KK= P − k HT (H P − k HT + R) −1;-(5) 

X^k = ˆX-K + KK (ZK– HX^K-1);-(6) 

PK = (I – KK H) P -K;-(7) 

2.1.2.2.2)Artificial Neural Network (ANN): 

  ANNs are data-based models whose paradigm is taken from the brain. This paradigm shows how ANN can model complex nonlinear networks like State-

S.NO  WORK         optimisation    Battery Type Recommended ECM 

   1. Heetal.2011 Initial Regression+(unspecified) 

Genetic Algorithm 

LIMN2O4 2RC 

    2.  Huet.al Multi particle-swarm optimisation LINMC,LIFePO4 1RC 

    3. Westeroffet al Initial Regression+trust-region LIN1/3Mn1/3Co1/3O2 For EV:>=3RC or 1RCPE 

   4.  Laietal Non-linear programming physics-evolution    LINMC >=2RC-H is not suited for online 
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of-Charge or State-of-Health. Neurons in an ANN are linked to connect inputs and outputs. 

n = p1 w1,1 + p2 w1,2 + b; a = f (n)-(8) 

The activation function could be sigmoid, nonlinear, or another function. There are three layers for ANN. They are Input, hidden, and output layers. 

Like the human brain, ANN must learn. The neural network is training. This phase sets the best neuron weight. Training uses a number of algorithms. ANN 

learning used back propagation. It examines Lithium-ion battery discharge trends. ANN's paradigm can provide battery information (SOC and SOH). This 

adaptive system's training phase requires a lot of data to be useful.An evaluation phase using a final sample is utilised to verify the ANN accuracy.State-of-

Charge and State-of-Health are quite difficult to define with a straightforward ANN. This is a result of both the system's complexity and the training process. 

An ANN can only be used for one type of application at a time. Input conditions change fast in hybrid electric vehicles, making testing difficult. Adaptive 

neural networks can evaluate prediction results. 

 
a   b 

  
 

 

 

 

 

 

                   fig-1:(a) AThree Layer of Artificial Neutral Network;(b) Three Layer of Artificial Neutral Network 

 

2.1.2.2.3)Fuzzy Logic(FL): 

            An adaptive system called fuzzy logic (FL) can determine a genuine value based on actual input and by applying arbitrary rules. In [36], fuzzy logic 

is used to estimate a person's state of health and charge. The bases of fuzzy logic are discussed here with a summary that applies to SOH. Crisp or fuzzy sets 

can be used to categorise data. Data are concretely categorised by crisp sets. State-of-Health evaluation results range from 0% to 100%. The State-of-Health 

for fuzzy data sets is low. Low's eligibility function defines it as a subset of all values. A set element's degree of membership specifies how much it belongs 

to fuzzy subset low. Figure shows three State-of-Health subsets characterised by weak, correct, and new. Fuzzification of real-valued data determines fit 

values. Figure below demonstrates a fuzzy system with real-valued input and output. There are four conceptual parts to the fuzzy system: 

1.A defuzzification block that turns fuzzy output to crisp, 

2.An inference-making method 

3.A data that defines output and input variable membership functions, and  

4.A rule base that characterises their relationship. 

 
a                                                                                                                                                          b 

 

 

 

 

 

 

 

FIG-2:(a) Membership Function for State-Of-Health; (b) Fuzzy Logic System 

 

2.1.3) Data-Driven Methods: 

          Data-driven strategies can give reliable and rapid results with enough training data. When innovation on battery technologies were released, it can be 

hard to gather failure data for commercial training. Battery dynamics make straight recycling of trained models difficult. Collecting adequate training data is 

critical, but it may be problematic if battery pack structure, layout, cell chemistry, etc. modifications render old data unrepresentative and require obtaining 

new data. Over- or underfitting can cause problems. Is the data set representative of all relevant scenarios, or are some missing? Model-based techniques and 

experimental procedures for SoH, as stated by You et al., often rely on limited hypothesis such as complete cycling with fixed current, which is not reflective  

of partial and variable cycling in real-world operation.
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3.)Methodology: 

3.1)Temperature-Dependent Methods Criteria: 

The three categories of temperature are addressed by the examined battery monitoring techniques: 

1) Avoid temperature fluctuations and battery heat. 

2) Update model parameters often if they're temperature-dependent. 1) Validate the model for a larger range of temperature or update model parameters 

when battery temperature drifts. 

3.) Use existing sensor data (e.g temperature, voltage, current). Present cycle temperature, historic charge/discharge cycle statistics, or real-time 

temperature. 

There are three types of methods to overcome the battery management and its’ behaviour. They are: 

3.1.1)Online Prediction  

3.1.2)Battery Pack 

3.1.3)Dynamic Profiles 

3.1.1) Online Prediction:  

The approach must be able to forecast SoC/SoH or other state parameters while driving and integrate with the battery management systems. Non-

destructive, fast, accurate, and controllable computational intensity are required. Stationary charging allows concessions. On a static shut-down vehicle, 

more detailed offline diagnostic procedures may be performed, such as full/partial battery charge cycle measurements. 

 

3.1.2)Battery Pack: 

From a solitary cell to a battery pack challenging needs scalability to an application-dependent number of cells with layout cell interaction. One ECM can 

be linked to every cell, but based on the number of cells, the model may require customization of many different parameters, additional measurement and 

testing dataset, and be computationally expensive.On the other hand, if the collection of linked cells is taken into the number of parameters is one 

equivalent model with one parameter.It will be manageablebut unable to record inter-cell variance. The behaviour of newly formed cells with the same 

chemical is consistent. Subsets of cells cycled at severe temperatures enhance non-uniform ageing. Fabrication procedures, battery pack layout, and heat 

management might cause this. Aged batteries generate heat (see Figure), which can accelerate cell degradation. Temperature affects decay. When 

considering thermal management and equalize solutions for cells with various SoH and SoC, it's necessary to consider how heat generation inside the 

cells, transfer heat among cells, and heat transmission with environment relate to SoH.  

3.1.3) Dynamic Profiles: 

Even with a fixed ambient temperature, battery cell temperature will change due to energy saving. since electrochemical reactions are temperature-

dependent. Cell temperatures can predict SoC, SoH, and SoP. In real-world applications, conditions are rarely optimal and often unknown in advance, 

such as fluctuating ambient temperature and part battery pack discharge based on travel distance, traffic, and road conditions. 

 

TABLE-2: Battery State Estimation 

 

S.NO WORK  METHOD PARAMETER A       B        C BATTERY 

 

 TEMPERATURE APPROACH 1 

1. Duong etal.2018    HKF-PF-R      RUL    _  _ _ NASA 

2. Yang etal.2018   ECM-R    SOH  X   _ _ 2.5Ah LiFePO4batteries 

3. Yuetal.2017   PF-R    SOH X _ X NASA 

4. Dai etal.2018 ICA:FE-NN-MCC     SOH _ _ _ NASA+IFP1865140 type LiFePO4 

battery 

5. Chang etal.2017 UKF-EMD-RVM   RUL ~ _ _ NASA,CALCE 

6. Chen etal.2018 ECM-RLS   SOH X _ X ICR18650-26FLiNMC 
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 7. Dubarry etal.2017 ICA:FE-LUT    SOH X _ X  

8. Lietal.2018 (GF):ICA:FE-R    SOH X _ _ 31.5AhLiNM 

9. Zhang etal.2017 UKF:UPF:MCMC-R     RUL _ _ _ 0.9Ah battery,CALCE 

 

 TEMPERATURE APPROACH 2 

10. Shenetal.2018 ECM-EKF-RLS SOC/SOH/SOF X - X 20Ah LiB 

11. Wangetal.2017 ICA:FE-GP:GA SOH _ _ _ 10Ah pouch LiNMC 

12. Zhangetal.2018 ECM:GA-PF-RLS SOC/SOH X X X NEDC,38Ah Li(Ni1/3Co1/3Mn1/3)O2 

13. Zhangetal.2016 ECM-UKF SOC X _ X 2Ah 18650 LiB 

14. Linetal.2017 ECM-UKF  SOC X _ X 25Ah LiNMC,20Ah(LFP)battery 

 

TEMPERATURE APPROACH 3 

15. Zouetal.2018 ECM-MPC SOP X _ X 2.3Ah cylindrical LFP battery 

16. Yangetal.2016 R SOH/RUL _ _ _       NASA 

17. Mejdoubietal.2016 ECM-AO/EKF SOC/SOH X _ X 20Ah LFP battery 

18. Dongetal.2016 ECM-EKF-PF-R SOE X _ X 9Ah LFP battery 

19. Wangetal.2017 ECM-PF-RLS SOE X X X 100Ah LFP Battery(1665130) 

20. Wangetaal.2017 ECM-NN SOC _ _ _ 20Ah LFP 

21. Altafetal.2017 ECM-MPC SOC X X X 2.3Ah ANR26650M1A 

22. Chemalietal. LSTM-RNN SOC X _ X 2.9Ah18650PF 

23. Faragetal.2017 EM:(GA) SOC X _ X 26Ah graphite-NMC LiB 

24. Lietal.2018 ECM-CC-LUT SOE X _ X 20Ah LTO 

25. Youetal.2016 SVM/NN SOC X X X 3.1Ah 18650 batteries 

 

4.Results and Discussions: 

Approaches 1 and 2 presume ambient temperature is a reference for battery temperature and the battery can function under fixed conditions. The NASA 

Ames Prognostics Center of Excellence battery dataset is used in such instances (see Table). NASA's data collection includes charging, discharging, and 

EIS operational profiles for 18650 Li-ion batteries cycled to 30% capacity. Figure 3 illustrates the charged and discharge temperature of battery B0005, 

which has been cycled at 24oC ambient temperature, charged at 1.5A till the battery voltage level achieved 4.2V and then at fixed voltage until the charge 

current fell to 20mA. At 2A constant load, discharged until 2.7V. Figure 3's charge and discharge temperatures show the link between temperature output 

and battery ageing. Starting condition is steady ambient temperature during discharge. 

 Sections 4.1-4.4 cover the four basic strategies for managing temperature dependence. 

4.1) Battery surface temperature: 

Figure shows how the Joule effect and internal resistance link battery surface temperature to capacity [61]. Surfaces temperature determines SoH and 

RUL. Yang et al. [61] determined RUL based on full-cycle temperature differential, which is insufficient for online and dynamic cycling. The system can 

be scaled to a group of thermally isolated, linked cells, but for cells in a packing, heat exchange among cells and the environment and temperature change 

make it impractical. 

4.2)Standard ECM, with temperature correction: 

A strategy focused on building an ECM and modelling temperature dependence. Dong et al employed SoE open-circuit voltage with 6 temperature-

dependent parameters. Wang et al. [45] modelled SoE and temperature to develop a nonlinear open-circuit voltage function. This method can 
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 accommodate variable battery temperature, but temperature dependence is applied retroactively. 

 

 

 

 

  

 

 

                 

   FIG-3:(a) Discharge Temperature;(b) Maximum Discharge Temperature Over All Discharge Cycles;(c) Charge Temperature, (d)Discharge Temperature 

Range and Capacity During Cycling. 

4.3.)Electrochemical and thermodynamic coupled ECM:A connected ECM combines the battery model and energetic balance model (3) to include 

measured temperature in (1) and (2). (2). Zou et al. [48] coupled a 2RC electric model with a thermal cell model for surface, core, average, and coolant 

temperature. Wang et al. [68] employed a 1RC model with a heat balance equation. Wang et al. directly compared Zou's cell temperature. Altaf et al. [69] 

used a simple cell model with open-circuit voltage and resistance, and a thermo modeling for cell surface temperature variations, involving heat generation 

within cells and convective heat movement between cells. Farag et al. incorporated electrochemical, heat-generating, and thermal models. Reversible, 

irreversible, and mingling losses were added by Farag et al. Core, housing, bottom, and endingtemperatures were modelled.The table-3 illustrates the 

problem's most thorough remedies, with pros and cons. Altaf et al. is the only solution that addresses cell variance and heat transmission. Farag et al. give 

the most thorough model for pouch cells, although expanding it to packed cells may be tricky. Wang et al. look more closely at reversible and irreversible 

heat than Zou et al. This may not impact estimations considerably, but it can adversely effect thermal management tactics (part II). B.2 surface battery 

cooling. 

TABLE-3: COUPLED ECM’S 

 

4.4.)Data-driven: 

     Data-driven techniques lack failure data.A neutral network received voltage, current, and temperature. Cycling profiles employed different ambient 

temperatures. This strategy proposed replicating it and providing more variables, not reducing data. Chemali et al.Employed a recurrent neural networks to 

generate time dependencies and performance at different temperatures. In intermediate situations, the trained network generalised. 

With the rapid growth of machine learning algorithms, technology, and the Internet of Things, fresh opportunities to tackle data scarcity challenges, such 

as: 

• Transfer learning: Applying machine learning to similar activities.Electric vehicle battery data is scarce.Normal EV use can provide training data, but it 

is too later in the development process; data must be accessible before product introduction. Data scarcity can be alleviated by adapting similar prior 

information to new system with less training data. 

4.4.1) Recurrent Networks: 

DRNN and LSTM-RNNs convey time dependency and nonlinearity well. This could be used instead of or in combination with model-aided learning or 

DRNN modelling of sophisticated nonlinear circuits to replace the traditional ECM model in the prediction phase of adaptive filtering and eliminate the 

necessity for online re-optimization of parameter as ageing occurs.Some offline methods require stable circumstances, full charge and discharge cycles, 

and no battery temperature. The best A-C approaches are: 

• ECM with adaptive filtering and unobservable parameter estimation: B) Battery packs aren't scalable. 

Altaf et al. [69], see Table, addressed battery cell convection and thermal coupling most practically. Using solely irreversible ohmic losses, they scaled 

cells to battery packs (1R). This demonstrates the issue of generalisation, which can be overcome in two ways. 

a.) Connect nK-parameter cell models to construct a battery pack model. 

b) Model the battery pack with k parameters. 

Both examples are likely limited by computational load. Non-uniform ageing is cell-level. 

• Neutral Network-based method: Data-driven systems can effectively capture battery ageing processes, be taught offline, and be applied online. The 

S.NO     WORK BATTERYMODEL THERMALMODEL HEATGENERATION 

1. Zouetal.    2RC Core avg surface irreversible,reversible 

2. Wangetal    1RC Uniform,coolant irreversible,reversible 

3. Altafetal    1R Uniform irreversible 

4. Faragetal     EM Terminal,core irreversible,reversible,mixing 
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 trade-off is accuracy versus available data. Data scarcity must be considered when training the technique. Chemali et al. indicated LSTM-networks can 

encode time-dependent functionality and required less data than other data-driven techniques. 

 

 

• Cell level – modelling of heat production [56] and temperature distribution inside cells with gets lumped thermal cell models 48], [59] in collaboration 

with proper cooling techniques, since strong temperature gradient in a cell can speed ageing [57], [58]. 

4.4.2) Model level: 

Heat transfer and accelerated ageingAccurate modelling and timely assessment of temperature's impact on battery health could improve battery 

management system status estimation. In the domain of thermal control, it is more suitable to consider it an optimum control issue where cell and modules 

level models regulate the cooling strategy,e.gintensive localised cooling to prevent accelerated cell cluster ageing. In practise, computing complexity is 

restricted by the number of equations needed to simulate cell   interaction without compromising dynamic accuracy. If accelerated ageing happens in 

clusters of localised cells, lumped models of clusters may be a halfway among representing particular cells and representing pack as unit. 

5.) Conclusions:  

This review covers contemporary literature on electric vehicle battery state parameter estimates and temperature, which affects battery Life and 

performance in cold areas.Due to structural and thermal design flaws or production errors, battery cells may have a temperature spread, as seen in Figure. 

Outside the ideal range, cells age and internal resistance increases, causing permanent heat loss. If imbalances occur in a fraction of cells, localized 

accelerated ageing may spread through heat transfer, cause early battery failure. Observing temperature distribution changes early can feed an active and 

involved thermal management system. Any implementation stage must analyse power consumption, cost, performance, and longer battery life to be 

economically viable. 
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