
International Journal of Research Publication and Reviews Vol (2)  Issue (7) (2021) Page 969-972 

 

International Journal of Research Publication and Reviews 

 

Journal homepage: www.ijrpr.com  ISSN 2582-7421 

 

 

 

Enhanced Object oriented metrics based Software Quality Analysing for 

Software Project 

a
Dr.T.Genish, 

b
T.Nagaraj 

 
a
Assiociate Professor, Department of Computer Science, Karpagam Academy of Higher Education 

b
PG Student, Department of Computer Science, Karpagam Academy of Higher Education 

 

 

 

A B S T R A C T 

The main aim of this paper is to create an analysis tool to find the quality of the software. The user can identify 

whether their program is a quality one or not. The project contains 5 modules, which are as follows Software project 

selection module, LOC (Lines of Count) calculation module, Methods and attribute extraction, Quality analysis and 
report. The first module in the project is the program/code selection process, which the user needs to test. The user 

can give any program file or software files to test the quality. The next module is calculating LOC ie, line of code 

calculation which calculates total number of lines used in the program and finding unused lines from that. This 

module extracts total functions/methods used in the program, using this process; user can get the details of the objects, 

variables and methods. Based on the above modules, the quality of the software has been tested. This gives the overall 

quality of the program in percentage. The report gives the graphical representation of the quality verification data. 

And also list of tests made by the user will be stored in the database for future references. 

 

 

 

Keywords: Lines of Code, Attribute extraction, Software fault. 

 

1. Introduction  

Improving unwavering quality of the ideal programming is quite possibly the most searched out exploration territories in 

computer programming. Programming engineers lay accentuation on planning dependable programming, so that 

inadequately planned programming can be recognized in the starter phases of the Software Development life cycle (SDLC) 
to try not to convey inferior quality programming item to the partner. In this manner, programming quality goes about as a 

significant factor in deciding the dependability of programming. In this way, there is a requirement for plan of forecast 

models to anticipate shortcoming inclined modules or classes in programming created dependent on item situated 

advancement system. 

2. Methodology 

MODULE DESCRIPTION 

1.Software project selection module: 



970 International Journal of Research Publication and Reviews Vol (2)  Issue (7) (2021) Page 969-972 

 

         The first module in the project is the program/code selection process, which the user needs to test. The user can give 

any program file or software files to test the quality. 

2.LOC (Lines of Count) calculation module: 

        The next module is calculating LOC ie, line of code calculation which calculates total number of lines used in the 

program and finding unused lines from that. 

3.Methods and attribute extraction 

       This module extracts total functions/methods used in the program, using this process; user can get the details of the 

objects, variables and methods. 

4.Clone detection using operation code sequences: 

      This module finds the duplication between the software’s using the operation code sequences. Using this module, the 

admin can detect duplicate projects and programs easily. 

5.Quality analysis  

       Based on the above modules, the quality of the software has been tested. This gives the overall quality of the program 

in percentage. The user can check whether the given program is efficient or not. Using this module two or more program 

will be compared with time and use of unique code features. 

 6.Report. 

     The report gives the graphical representation of the quality verification data. And also list of tests made by the user will 

be stored in the database for future references. 

 

The purpose of this proposed system is detection of code duplications and visualizing duplicate information in a 

significant way. Detecting duplicate code fragments can significantly decrease the time and effort therefore the 

maintenance cost. Duplicate code detection can be achieved via analyzing the source code of given software system. 

Detection of code in softwares, which constitute code duplicate, is a non­trivial task because it is neither predictable nor 
obvious under what condition the duplicate code may appear. As a result, detailed analysis of software is a must to be able 

to detect duplicate code. It extracts the code form the executable file and checks the duplication. The main aim of this 

project is to create an analysis tool to find the quality of the software. The user can identify whether their program is 

duplicate or not. 

          Some software defects leads to failure only when certain local or non-local program interactions occur. Such 

interactions are modeled by the closely related concepts of information flows, program dependences, and structure and 

program segments. Those concepts are important in testing because they reflect interactions between different program 

elements.  And there is a huge need to analyze the quality of the software. Existing software evaluation systems are only 

depends on the test cases where the tester should enter the expected and actual results. So the system needs to convert the 

code into machine language to get the structure of the program. Then the details will be verified by several testing and 

compilers. 
 

 

 
Fig-1 OP-code verification  

 

 

 



International Journal of Research Publication and Reviews Vol (2)  Issue (7) (2021) Page 969-972                                                      971 

 

 
Fig-2 count of OP-code 

 

 
 

 
fig-3 Results  

 

 

 



972 International Journal of Research Publication and Reviews Vol (2)  Issue (7) (2021) Page 969-972 

 

3. Conclusion 

The proposed SQA system used OpCode with sequence and frequency analysis patterns generated by disassembling the 

inspected executable files to extract features from the inspected files, the system extracts the methods and body content to 

get the opcodes. OpCode extraction algorithms with sequence analysis are used as features during the testing process with 

the aim of identifying unknown malicious code and quality of the program. The proposed system performed an extensive 
evaluation using a test collection comprising more than 30 methods with 4 assembly files. The evaluation consisted of three 

experiments. In the first experiment, this found that the frequency and sequence representation then it will count the 

opcodes and provides the results. The proposed tool has been named as SQA , which provides a time consuming test results 

for malicious data finding.  Every application has its own merits and demerits. The project has covered almost all the 

requirements. Further requirements and improvements can easily be done since the coding is mainly structured or modular 

in nature. Changing the existing modules or adding new modules can append improvements. Further enhancements we can 

integrate and check any type of application quality through our software more efficient manner 

 

REFERENCES 

 

1. Ahad, A., Yalavarthi, S. B., & Ali Hussain, M. (2016). A new approach for integrating social data into groups of interest 

doi:10.1007/978-81-322-2755-7_24 Retrieved from www.scopus.com  

2. Chandra Prakash, V., Sastry, J. K. R., Kantharao, V., Sriharshini, V., Sriram, G., & Ganesh, C. H. V. S. (2017). An 

expert system to assess memory power of a student for selection of a suitable career. Journal of Advanced Research in 

Dynamical and Control Systems, 9(Special Issue 6), 309-321. Retrieved from www.scopus.com  

3. Chaitanya Krishna, B., Sai Mounish, P., Vinay Kumar, U., &Divya Mallika, A. (2018). Online business site quality 

assessment. International Journal of Engineering and Technology(UAE), 7, 838-840. Retrieved from www.scopus.com 

 4. Sharma, N., &Yalla, P. (2016). Software engineering and natural language processing- how can they be together? 

International Journal of Software Engineering and its Applications, 10(12), 389-396. doi:10.14257/ijseia.2016.10.12.32 

 5. Preetham, C. S., Siva Ganga Prasad, M., Pratap Reddy, N., &SashankaTeja, L. (2016). Outage probability analysis of 

amplifyandforward and decodeandforward dual hop relaying with hardware defects. Journal of Theoretical and Applied 

Information Technology, 86(2), 290-298. Retrieved from www.scopus.com 

 6. Naga Malleswari, D., Suresh Babu, S., Moparthi, N. R., Mandhala, V. N., & Bhattacharyya, D. (2017). Hash based 

indexing in running high dimensional software systems. Journal of Advanced Research in Dynamical and Control 

Systems, 9(Special Issue 6), 34-43. Retrieved from www.scopus.com 

 7. Chandraprakash, V., Sastry, J. K. R., Sravani, G., Manasa, U. S. L., Khyathi, A., & Harini, A. (2017). Testing software 

through genetic algorithms – a survey. Journal of Advanced Research in Dynamical and Control Systems, 9(Special 

Issue 2), 1607-1633. Retrieved from www.scopus.com 

8.  M Praneesh and Jaya R Kumar. Article: Novel Approach for Color based Comic Image Segmentation for Extraction of 

Text using Modify Fuzzy Possiblistic C-Means Clustering Algorithm. IJCA Special Issue on Information Processing 

and Remote Computing IPRC(1):16-18, August 2012. Published by Foundation of Computer Science, New York, USA. 

 

http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/
http://www.scopus.com/

