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ABSTRACT :

The homogeneous cubic equation with five unknowns given by x® +y* =13(z + w) P?

is considered for obtaining its non-zero distinct integer solutions through employing

linear transformations.
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Introduction:

The theory of Diophantine equations offers a rich variety of fascinating problems. In
particular, cubic equations, homogeneous and non-homogeneous have aroused the interest of
numerous mathematicians since antiquity [1-3]. For illustration, one may refer [4-13] for
homogeneous and non-homogeneous cubic equations with three, four and five unknowns. This
paper concerns with the problem of determining non-trivial integral solution of the non-

homogeneous cubic equation with five unknowns given by x* +y® =13(z +w)P?.
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Method of analysis:
The homogeneous cubic equation with five unknowns to be solved is

x®+y® =13(z+w)p?

(1)

Substitution of the linear transformations
x=13(u+v),y=13(u-v),z=u+d,w=u—-d,p=13q 2
in (1) leads to

u?+3v?=q° (3)
Solving (3) through different ways, the corresponding values of u,v,q are obtained.
Substituting these values in (2), the respective solutions to (1) are determined.
The above process is illustrated below:
Way 1:
It is observed that (3) is satisfied by

v=2rs,u=3r>—s? q=3r%+s° 4)

In view of (2), the corresponding integer solutions to (1) are given by

X =13(3r° —=s® +2r5s)
y=13(3r? —=s* - 2rs)
z=3r"-s’+d
w=3r?-s’-d
p=13(3r? +s%)
Way 2:
Represent (3) as the system of double equations as in Table:1 below :

Table: 1 System of double equations

System I I i v

q+u 3v? v2 1 3

q-u 1 3 3v? v?
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Solving each of the above system of equations in Table:1, the values of g, u, v are obtained.

Using these values in (2), the corresponding integer solutions to (1) are found .For brevity,

the respective solutions to (1) are exhibited as below:

Solutions from system I:

x =13(6k* +8k+2)
y =13(6k? +4K)

z=6k*+6k+1+d
w=6k?+6k+1-d
p=13(6k* +6k+2)

Solutions from system I1I:

x =13(2k? + 4K)
y =13(2k? —2)
z=2k*+2k-1+d
w=2k?+2k-1-d
p=13(2k* + 2k+2)

Solutions from system I11:

x =13(-6k? — 4k)

y =13(-6k? -8k —2)
z=-6k?-6k-1+d

w =—6k*-6k—-1-d
p=13(6k* +6k+2)

Solutions from system 1V:

x =13(~2k? +2)
y =13(-2k* - 4k)
z=-2k*-2k+1+d
w =-2k?*-2k+1-d
p=13(2k* + 2k +2)
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Way 3:
Write (3) as
u?+3v?=qg°*1
Assume
q=a’+3b’

and 1 on the R.H.S. of (5) is written as

1

_ (1+i3)(1-i3)
4

Substituting (6) & (7) in (5) and employing the method of factorization ,define

Uty o (1+i\/§)(z;+i\/§b)2

Equating the real and imaginary parts in (8) ,the values of u and v are obtained.
In view of (2), the corresponding values of x ,y ,z ,w and p are determined and

they are as below:

x =13(a’ —3b* —2ab)
y =-52ab

2 2
Z:W—Sabm

2 _ap?
W:(a—;b)—Sab—d

p=13(a? +3b?)

()

(6)

(7)

(8)

(9)

As our interest is on finding integer solutions observe that both a and b should be of the same

parity in (9).

Note : 1 The integer 1 on the R.H.S. of (5) may also be represented as follows:
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_ (1+i4+/3)(1-i443)

- 49

_ (3r2—s? +i/32rs)(3r2 —s? —iv/32rs)
- (3r2 +5%)?

1

1

Following the above procedure two more sets of integer solutions to (1) are obtained.

Way 4:
Rewrite (3) as
q® -3v’ =u®*1 (10)
Assume
u=a’-3b? (11)
and take 1 on the R.H.S. of (10) as
1=(2+3)(2-3) (12)
Substituting (11) & (12) in (10) and applying the method of factorization, define
q++/3v =(a++/30)2(2++/3) (13)
Equating the rational and irrational parts, we have

v=a’+3b*+4ab
q=2a’+6b*+6ab

In view of (2), the integer solutions to (1) are given by

x =13(2a* + 4ab)

y =13(-6b* —4ab)
z=a’-3b” +d
w=a’-3b*-d
p=13(2a® +6b* +6ab)

Note: 2

The integer 1 on the R.H.S. of (10) may also be represented as follows:
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1=(7+4+/3) (7-4+/3)
_ (3r2 +s2 +/32rs) (3r? +5% —/32rs)

1
(3r2 _SZ)Z

Following the above procedure two more sets of integer solutions to (1) are obtained.

Way 5:
Introduction of the linear transformations

u=X+3T,v=X-T,0=2R (14)
in (3) leads to

X? 4+3T? =R?
which is satisfied by

T=2ab,X=3a?-b?,R=3a%+b? (15)
Using (15) in (14) and employing (2),the integer solutions to (1) are found to be

x =13(6a* —2b* + 4ab)
y=104ab
z=3a’-b’+6ab+d
w=3a’-b*+6ab-d
p=13(6a’ +2b%)

Note: 3
Instead of (14), suppose we have the transformations
u=X-3T,v=X+T,0=2R

In this case, the corresponding integer solutions to (1) are found to be
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x =13(6a* —2b* —4ab)
y=-104ab
z=3a’-b’-6ab+d
w=3a’-b*-6ab-d
p=13(6a’ +2b%)
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